FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Brain Tumor Detection Using Texture Characterisation and Classification Based on the Grey-Level Co-Occurrence Matrix

Author(s): K. Sudharani*, Dr.T.C. Sarma and Dr. K. Satya Prasad

Publisher : FOREX Publication

Published : 30 june 2016

e-ISSN : 2347-470X

Page(s) : 57-61




K. Sudharani *, Associate Professor VNR Vignana Jyothi IET Hyderabad, Telangana ; Email: sudharani_k@vnrvjiet.in

Dr.T.C. Sarma, Former Deputy Director NRSA Hyderabad, Telangana ; Email: sarma_tc@yahoo.com

Dr. K. Satya Prasad, Professor JNTU Kakinada Kakinada,Andhrapradesh; Email: prasad_kodati@yahoo.co.in

    [1] G. Vishnuvarthanan., M. Pallikonda Rajasekaran., 2016, “An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images,” Elsevier: Applied Soft Computing, Volume 38, January, pp. 190-212.
    [2] Parveen., Amritpal Singh., 2015, “Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM,” 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 98-102.
    [3] J. Selvakumar., A. Lakshmi., T. Arivoli., 2012, “Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm,” International Conference on Advances in Engineering, Science and Management (ICAESM), Nagapattinam, Tamil Nadu, 30-31 March 2012, pp. 186 – 190.
    [4] Francisco J. Galdames ., Jaillet F., and Perez CA., 2012,”An Accurate Skull Stripping Method Based on Simplex Meshes and Histogram Analysis in Magnetic Resonance Images.
    [5] Guerra L., McGarry LM., 2011, “Comparison between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study,” NCBI, pp. 71-82.
    [6] Selvanayaki.K., & Karnan.M., 2010, “CAD system for automatic detection of brain tumor through magnetic resonance image-a review,” International Journal of Engineering Science and Technology, 2(10), pp. 5890–5901.
    [7] Pham, T.A., “Optimization of Texture Feature Extraction Algorithm,”2010, MSc Thesis, TUDELFT, Mekelweg 4, 2628 CD Delft, The Netherlands.
    [8] Papageorgiou E., Spyridonos P., Glotsos D., Stylios C., Ravazoula P., Nikiforidis G.,2008, “Brain tumor characterization using the soft computing technique of fuzzy cognitive maps,” Appl Soft Comput , 8:820–8.
    [9] F.Segonne., A.M. Dale., E. Busa., M. Glessner., D. Salat., H.K. Hahn., and B. Fischl., 2004, “A Hybrid Approach to the Skull Stripping Problem in MRI,”Elsevier:NeuroImage ,pp. 1060-1075.
    [10] J. Sklansky., 1978, “Image segmentation and feature extraction,” IEEE Transactions on Systems, Man, and Cybernetics SMC-8, pp. 237-247.
    [11] J. S. Weszka., C. R. Dyer., A. Rosenfeld. 1976, “A comparative study of texture measures for terrain classification”, IEEE Trans. System Man Cybernat,6(4), pp. 269-285.
    [12] K. Shanmugam., R. M. Haralick., and I. H. Dinstein., 1973,”Textural features for image classi_cation,” IEEE Transactions on Systems, Man and Cybernetics 3 , pp. 610-621.
    [13] Shaswati Roy , A simple skull stripping algorithm for brain MRI, NCBI,pp. 103-19.

K. Sudharani, Dr.T.C. Sarma and Dr. K. Satya Prasad (2016), Brain Tumor Detection Using Texture Characterisation and Classification Based on the Grey-Level Co-Occurrence Matrix. IJEER 4(2), 57-61. DOI: 10.37391/IJEER.040204.