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░ ABSTRACT: State Estimation Based Inverse Dynamics Controller (SEBIDC), which utilizes an Artificial Neural 

Network (ANN) based state estimation scheme for nonlinear autonomous hybrid systems which are subjected to state disturbances 
and measurement noises that are stochastic in nature. A salient feature of the proposed scheme is that it offers better state 
estimates and hence a better control of non-measurable state variables with a nonlinear approach in correcting the a priori 
estimates by avoiding statistical linearization involved in existing approaches based on derivative free estimation methods. 
Simulation results guarantees significant reduction in Integral Square Error (ISE) and standard deviation (σ) of error, between the 
controlled variable and set point and control signal computation time when compared with best existing related work based on 
Unscented Kalman Filter (UKF) and Ensemble Kalman Filter (EnKF).  Detailed analysis of the experimental results on real plant 
under different operating conditions such as servo and regulatory operations, initial condition mismatch, and different types of 
faults in the system, confirms robustness of proposed approach in these conditions and support the simulation results obtained. 
The main advantage of the proposed controller is that the control signal computation time is very much less than the selected 
sampling time of the process, so direct control of the plant is possible with this approach. 

Keywords: Artificial Neural Network, Hybrid Dynamic Systems, State Estimation, Inverse Dynamics Controller. 
 

 
░ 1. INTRODUCTION   
Systems in which it may be required to model inherent process 
discontinuities, where the continuous behavior is drastically 
changed, or use actuators and sensors which are often 
fundamentally discontinuous, or use discrete events that can be 
a useful abstraction to model various mode switching used in 
the specification and control of the basically continuous 
process, require hybrid systems modeling and control 
approach ([1], [2], [3] and [4]). Kalman filter (KF) [5] and 
extended Kalman filter (EKF) [6] are used as a state estimator 
in conventional state observers. For linear systems as 
uncertainties in state and measurement equations can be 
modeled as Gaussian white noise processes Kalman filter can 
generate optimal estimates of state. Extended Kalman filter 
(EKF), which is a natural extension of the linear filter to the 
nonlinear domain through analytical linearization, can be used 
in state estimation of nonlinear systems.  

In this approach, the estimated states are obtained by using 
Taylor series expansion of the nonlinear state transition 
operator. But, it requires analytical computation of Jacobians 
at each time step, which is considered to be computationally 
demanding for complex nonlinear systems. Also it is required 
that nonlinear function vector appearing in state dynamics and 
output dynamics should be smooth and at least once 
differentiable. However, dynamical models of Hybrid systems 
involve discontinuities due to switching of the discrete state 
values. As Jacobians cannot be computed for non-smooth 
functions, EKF cannot be realized in Hybrid systems [7]. In 
[8] a moving horizon based state estimation approach has been 
reported for hybrid system estimation. But, the use of fixed 
arrival cost used in the moving horizon estimator formulation 
result in sub-optimal state estimates. The authors in [9] have 
proposed UKF as an alternative to EKF so that the main 
shortcoming of EKF when used for highly nonlinear system is 
eliminated. [10] has proposed a derivative free nonlinear 
filtering technique for nonlinear hybrid systems. As far as the 
control element is concerned, [11] had proposed a robust 
model predictive control (RMPC) scheme for a class of hybrid 
system such as piece wise affine system to ensure simple and 
fast suboptimal solution for the control problem with reduced 
computation time. Similarly, the nonlinear model predictive 
control (NMPC) in [7] and [12], and fault tolerant model 
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predictive control in [13], for hybrid systems, used UKF 
approach in its state estimation part. All the state estimation 
schemes for hybrid systems in literature involve analytical or 
statistical linearization [14] and preclude their use from 
systems which require more accurate state estimates. 
Introduction of Artificial Neural Network (ANN) in state 
estimation and control of different systems considerably 
improves the performance which is very clear from the works 
reported in [15], [16], [17] and [18]. But, in the case of [15], if 
a nonlinear scheme is used in correction of a priori estimates, 
more accurate state estimates can be obtained in hybrid 
systems also and this has been implemented in this work. The 
distinguished feature of the proposed approach is that it uses 
nonlinear ANN to correct the a priori estimates and gives 
better estimate than its counterparts. Once trained for 
sufficient variety of input data, including ill-conditioned 
system data, the ANN-based state estimator provides accurate 
estimates of the system states. Further, an ANN based 
Controller (ANNC), using this estimator, is developed for 
controlling the non-measurable states of the hybrid system. 
The proposed controller (ANNC) provides better performance 
and has following advantages over existing schemes.  

 Apart from analytical and statistical linearization in the 
correction part of EKF and UKF based controllers 
respectively; proposed controller uses a nonlinear 
correction approach using ANN to correct the a priori 
estimates and hence offers a better state estimates by 
avoiding the linearization. The correction part of ANNC is 
completely parameter independent, and thereby gives 
better state estimates even under there is mismatch in the 
parameters. 

 ANN has built in noise rejection capability which makes 
the ANNC scheme robust in performance. 

Comparative analysis of the proposed approach with best 
relating work based on UKF (statistical linearization approach) 
and EnKF (Particle Filter) is made in terms of ISE in state 
estimate on the same benchmark model and it reveals that the 
proposed approach is able to reduce the error in state 
estimates. Detailed performance evaluation of the proposed 
approach under servo – regulatory operations and plant model 
parameter mismatch were conducted. Detailed analysis of the 
experimental results on the real plant under different operating 
conditions such as initial condition mismatch, and different 
types of faults in the system confirms efficacy of proposed 
approach. Here, an inverse dynamics controller is utilized for 
controlling the non-measurable states of the system so that the 
computational burden is very much reduced when compared 
with the model predictive control scheme implemented in [7], 
[12] and [13] without compromising the performance. Also the 
constraints handling capability for this scheme is also achieved 
with this approach by introducing upper and lower limiting 

functions at the output of both estimator and controller. The 
rest of the paper is organized as follows. In section 2, 
description of the ANN state estimation algorithm developed 
for hybrid systems is given. The Section 3 explains the 
SEBIDC scheme. Simulation results and detailed performance 
analysis of the proposed scheme and with comparison to the 
best related work is given in section 4. Experimental results 
and its analysis are presented in Section 5. Finally, section 6 
summarizes the paper.  

2. ANN based Hybrid State Estimation 
In this scheme, an ANN based correction is developed.  As in 
the case of EKF and UKF, ANN based state estimation is also 
recursive in nature. Even though it has the same framework of 
Kalman filter based state estimator, it is designed for 
eliminating the analytical and statistical linearization [14]  
used in the case of EKF and UKF. This structure is suggested 
because recurrent type of ANN is better for the complex 
dynamic system [18]. The schematic diagram of proposed 
ANNC is as given in Fig. 1. 

 
Fig.1. Schematic representation of proposed ANNC 

The detailed nonlinear auto regressive with exogenous input 
(NARX) structure used for the considered problem is given in 
Fig. 2 and the other NARX parameters used for this study are 
provided in Table 1. 

The current output can be predicted as a function of present 
and past inputs and past outputs as given below, in which Y 
and X represent the outputs and inputs of the network 
respectively and KNN is a nonlinear ANN function.  

Y (k) = KNN{X (k), X (k-m), Y (k-1)… Y (k-n)}              (1) 
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Table 1:        ANN Parameters 
 

 Parameter  Value 

ANN Structure   NARX 

No. of hidden layers   1 

Hidden Layer neurons  5 

Hidden layer activation function   ‘tan sigmoid’ 

Output layer activation function   ‘purelin’ 

No of epochs  100 

No of exogenous inputs  4 

No. of delayed inputs  0 

No of outputs  3 

No. of feedback output delays  2 

Training method  Back propagation 

Training function  Levenberg–Marquardt 

Performance Function  Mean Square Error 
 

A sequence of current and past input vectors (X (k), X (k-1), X 
(k-m)) are obtained by passing X (k) through an input time 
delay unit, ITD (0: m). Similarly output time delay unit, OTD 
(1: n) provides a sequence of past output vectors (Y (k-1), Y 
(k-n)). For the considered problem, the input and the output 

are T
1 2 3
ˆ ˆ ˆX ( ) [ ( 1), ( 1), ( 1), ( 1)]    k h k k h k k h k k k k  

T
1 2 3
ˆ ˆ ˆY( ) [ ( ), ( ), ( )]k h k h k h k respectively.  

Similar to Kalman filter based state estimators and its 
nonlinear extensions, the proper value for the initial state 
vector is assumed for the prediction model. The input and 
output measurements are made from the process and the input 
measurement are presented to the state prediction model (F) 
along with the assumed initial state vector in order to compute 
the time updated values for states. 

ˆ ˆ( 1) F( ( 1), ( ))  x k k x k u k                                           (2) 

With, ˆ ˆ( 1) (0) [ (0)]  x k x E x , the assumed initial value of 

state vector.  

The a priori state estimates, ˆ( 1)x k k  can be given to the 

output model (H) so that a priori estimates of the 

output, ˆ( 1)y k k  can be obtained as 

ˆ ˆ( 1) H ( 1)    y k k x k k                                              (3)     (3) 

The innovation between plant output
 

( )y k  and a priori output 

estimate ˆ( 1)y k k is calculated as 

ˆ( 1) ( ) ( 1)   k k y k y k k                                          (4)  (4) 

In the correction step of the algorithm, the a priori state 
estimates will be corrected using this innovation with the help 
of the ANN to obtain a posteriori estimates of state vector 

ˆ( )x k k .  

 NNˆ ˆ ˆ( ) K ITD( ( 1), ( 1)), OTD( ( ))  x k x k k k k x k  (5) 

These estimated states are fed back to the controller for 
calculating the new input signal to the plant.   

 

Figure 2: NARX structure for the three-tank hybrid system 

3. State Estimation Based Inverse 
Dynamics Controller (SEBIDC) 
 
In hybrid systems, for the controller design, its mode 
switching property has also to be taken in to account. For such 
processes, model based control schemes are proposed in the 
literature ([12], [13], [19], [20], [21] and [22]) for obtaining 
the satisfactory control of the output variables. In this work a 
model based control namely inverse dynamics controller 
(IDC) have been implemented for controlling the non-
measurable states of Hybrid System. The objective of this 
section is to review the non-linear dynamic control technique 
that can be applied to develop a non-measurable level control 
system that is valid over the entire operating region of the 
hybrid three-tank system which is described below. 

Consider the nonlinear system of the form, 

( ) ( ) x A x B x u                                                        (6) 
y Cx                                                                             (7) 

Where, A(x) = (n × 1) vector, B(x) = (n × m) matrix, C = (m × 
1) vector.  

Using the inverse dynamics of (6) and (7), input vector u can 
be represented as a function of v and x, 

Let it be  1F ( , )u v x   
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Where, F1 is a nonlinear function and v is the input to the 
inverse system. 

Implementation of the inverse dynamics controller of (6) and 
(7) is done by repeatedly differentiating the measurement 
function until the input variable u appears.  

Differentiating (7)  

 y Cx                                                                     (8)  (8) 

[ ( ) ( ). ] y C A x B x u                                         (9)  (9) 
* *( ) ( ). y A x B x u                                          (10) (10) 

Where, A*(x) =C.A(x) and B*(x) =B.A(x) 
So the control law u can be written as per [20] as  

1* *( )[ ( )]


 u B x v A x                                       (11) 

A sufficient condition for the existence of an inverse system 
model to (6) and (7) is that B* in (11) be non-singular. If this is 
the case, then the inverse system model takes the form, 

( ) ( )[ ( ) ( ) ]   x A x B x F x G x v                  (12)            (12) 

Where, 
1* *( ) ( ) ( )


F x B x A x  and 

1*( ) ( )


G x B x  

( ) ( )[ ( ) ( ) ]   x A x B x F x G x v                  (13)  (13) 

The input to the inverse system is v = y – yref  

As the hybrid three-tank system, considered under this study 
can be directly represented in the form of (6) and (7), applying 
this procedure will yield the control law as  

 1 1 1sp=A C h - + + +
1in 1 1 3 5F h Q Q Q                      (14)   (14) 

 2 2 2sp=A C h - + + +
2in 2 2 4 7F h Q Q Q                  (15) 

Since h1, h2, Q1, Q2, Q3, Q4, Q5, and Q7, are non-measureable 
for the considered problem, the estimated values can be used 
so that the controller becomes an estimator based inverse 
dynamics controller. 

 1 1 1sp
ˆ ˆ ˆ ˆ=A C h - + + +

1in 1 1 3 5F h Q Q Q                      (16) 

 2 2 2sp
ˆ ˆ ˆ ˆ=A C h - + + +

2in 2 2 4 7F h Q Q Q                   (17) 

Where, C1 and C2 are controller tuning parameter, and its 
values are varied from 0 < C1,C2 < 1 on separate runs and the 
integral square error between the controlled variable and the 
set point, is noted. The values of C1 and C2, which give the 
minimum ISE, are selected as the tuning parameters. The h1sp 
and h2sp are the corresponding desired values of water levels.  

4.  Simulation Results and Performance 
Analysis 

The schematic representation of hybrid three-tank system is 
given in Fig.3.The benchmark system used in [7] is used here 
with same levels in three tanks (h1, h2 and h3) as continuous 

states and z1 and z2 variables as discrete states for evaluating 
the performance the controller in comparison to best related 
work.  

 
Fig.3. Schematic representation of the benchmark hybrid three tank system 

Detailed modeling of the hybrid three-tank system is given as 
appendix. The algorithm has been implemented in MATLAB.  
The detailed discussions about the results obtained in the 
simulation are given in the following subsections.  

4.1 Performance in Servo Operation  

Servo operation of the closed loop system when a change in 
set point occurs was conducted by introducing a step change 
with magnitude 0.04 m  at 100th sampling instant. The results 
are given in Fig.4.  
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Fig.4. Servo response of hybrid three tank system with ANNC (a) Level in 

Tank 1, (b) Level in tank 2 (c) Manipulating variables  
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Comparison with the best existing related work is shown in 
Table 2. Comparison of the proposed approach to UKF based 
approach based on ISE shows that the new approach is better 
as ISE reduced from 3.3278 to 0.5533 in level, h1 and from 
3.7203 to 0.4568 in level, h2. Also, the average computation 
time per iteration reduced from 60.65 seconds to 0.0777 
seconds. Evolution of true and estimated states of hybrid 
three-tank system with ANNC (Servo operation) is shown in 
Fig.5. Evolution of true and estimated values of discrete 
variables of hybrid three-tank system with ANNC (Servo 
Operation) is shown in Fig.6. 
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Fig.5. True and estimated states of hybrid three tank system with ANNC 
(Servo operation) (a) Level in Tank 1, (b) Level in Tank 2, (c) Level in tank 3. 
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Fig.6. Evolution of true and estimated values of discrete variables of hybrid 
three tank system with ANNC (Servo Operation) 
 

4.2 Performance in Regulatory Operation  

The results of the performance of the estimator in regulatory 
operation are given in Fig.7. Comparison with the best existing 
related work is shown in Table 3. Comparison of proposed 
approach to UKF based approach based on standard deviation 
shows that the new approach is better as standard deviation 
has reduced from 0.0130 to 0.0127 in level h2 and from 0.0484 
to 0.0065 in level h3 with very close standard deviation in level 
h1. It may be noted that the maximum standard deviation in the 

case of nonmeasured state variables is 0.0217 in the proposed 
approach and 0.0484 in the UKF based NMPC(45% reduction 
with proposed approach). 

The results of the performance of the controller in regulatory 
operation are given in Fig.8 and evolution of true and 
estimated values of discrete variables of hybrid three tank 
system with ANNC (Regulatory Operation; Disturbance by 
varying the valve position of fifth hand valve) in Fig.9. 
Comparison with the best existing related work is shown in 
Table 4. Comparison of proposed approach to UKF based 
approach based on ISE shows that the new approach is better 
as ISE has reduced from 3.5869 to 0.0587 in level h1 and from 
1.5212 to 0.0366 in level h2.  Also, the average computation 
time per iteration has reduced from 59.05 seconds to 0.0739 
seconds.  
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Fig.7. Evolution of true and estimated states of hybrid three tank system with 

ANNC (a) Level in Tank 1, (b) Level in Tank 2, (c) Level in tank 3 
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Fig .8.  Regulatory response of hybrid three tank system with ANNC (a) 

disturbance, (b) Level in Tank 1, (c) Level in tank 2 (d) Manipulating 
variables  
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Fig.9. Evolution of true and estimated values of discrete variables of hybrid 

three tank system with ANNC (Regulatory Operation) 

In order to obtain better insight of the ability of the proposed 
controller to achieve decoupling and offset-free control action, 
hypothetical situation, in which state and measurement noise 
are not present, is simulated. Response given in Fig. 10 reveals 
that the effect in level of tank 2, due to the disturbance in tank 
1 is very much less compared with that given in [7]. As in the 
case of UKF based NMPC in [7], proposed method also giving 
a slight offset. 

Table 3: Regulatory Control Problem: Estimator performance 
Comparison 

 

Controller σE(h1) σE(h2) σE(h3) 

Proposed 0.0217 0.0127 0.0065 

UKF based NMPC[7] 0.0213 0.0130 0.0484 

UKF based NMPC[7] 0.0242 0.0141 0.0488 

 
Table 4: Regulatory Control Problem: Controller Performance 
Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 
time per iteration 

(S) 
Proposed 0.0587 0.0366 0.0739 

UKF based 
NMPC[7] 

3.5869 1.5212 59.05 

EnKF based 
NMPC[7] 

3.3928 1.4011 206.44 
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Fig .10.  Regulatory response of hybrid three tank system with ANNC 

(without state and measurement noise) (a) disturbance, (b) Level in Tank 1, (c) 
Level in tank 2 (d) Manipulating variables  

4.3 Plant Model Parameter Mismatch 

The performance of the controller in case of plant model 
parameter mismatch is considered and the performance is 
given in Fig. 11. From Table.5, it can be seen that the ISE is 
improved to 0.0276 from 0.9231 for level h1 and to 0.0228 
from 1.0579 for level h2 when compared to best existing 
related work based on UKF.  
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Fig.11. Response of hybrid three tank system with ANNC (Plant-Model 
mismatch ) (a) Level in Tank 1, (b) Level in Tank 2, (c) Level in tank 3 
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Table 5: Plant Model Parameter Mismatch: Controller 
Performance Comparison 

 
Controller ISE(h1) ISE(h2) 

Proposed 0.0276 0.0228 

UKF based NMPC [7] 0.9231 1.0579 

EnKF based NMPC[7] 0.8647 0.9688 

░ 5. Experimental Results and 
Performance Analysis  

Real-time experimental validations were carried out on the 
experimental setup. In addition to the experimental setup, 
other tools used, which were for the real time implementation 
are the software Lab VIEW and the NI DAQ (USB6251). In 
the real system, the performance of the controller in regulatory 
operation and servo operation based on ISE and average 
computation time per iteration is shown in Fig. 12, Table 6, 
Fig. 13, and Table 7. In Table 8 and Fig. 14 response of the 
system in initial condition mismatch is shown. The response of 
the system in +10% and -10% plant model parameter 
mismatch is given in Tables 9 and 10 and Figures 15 and 16 
respectively. Results of hand valve faults which can occur in 
real time application are given in Table 11, Fig. 17, Table 12 
and Fig. 18.  The real time experimental results support the 
simulation results on performance. 

Table 6: Regulatory Control Problem: Controller Performance 
Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 
time per iteration (S) 

Proposed 0.0200 0.0193 0.1038 

Table 7: Servo Control Problem: Controller Performance 
Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 
time per iteration (S) 

Proposed 0.0172 0.0144 0.1152 

Table 8: Initial Condition Mismatch: Controller Performance 
Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 

time per iteration (S) 

Proposed 0.0214 0.0592 0.1017 

Table 9: Plant Model Parameter Mismatch (+10%): Controller 
Performance Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 

time per iteration (S) 

Proposed 0.0045 0.0069 0.2112 

Table 10: Plant Model Parameter Mismatch (-10%): 
Controller Performance Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 
time per iteration (S) 

Proposed 0.0122 0.0131 0.1037 

Table 11: Hand Valve Faults -Leakage: Controller 
Performance Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 
time per iteration (S) 

Proposed 0.0600 0.0077 0.0768 

Table 12: Hand Valve Faults -Clogging: Controller 
Performance Comparison 
 

Controller ISE(h1) ISE(h2) 
Avg. Computation 

time per iteration (S) 
Proposed 0.0082 0.0078 0.0943 

 
 

50 100 150 200 250 300 350 400
0.24
0.27
0.3

0.33

Le
ve

l (
h 1)

(a)

 

 
CV

1
(Proposed) SETPOINT

1

100 200 300 400
0.24

0.27

0.3

0.33

Le
ve

l (
h 2)

(b)
Sampling Instants

 

 
CV

2
(Proposed) SETPOINT

2

 
Fig.12. Regulatory response of hybrid three tank system with ANNC (a) Level 

in Tank 1, (b) Level in tank 2  
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Fig.13. Servo response of hybrid three tank system with ANNC (a) Level in 

Tank 1, (b) Level in tank 2  
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Fig.14. Closed response of hybrid three tank system with ANNC (Initial 

Condition Mismatch ) (a) Level in Tank 1, (b) Level in Tank 2 
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Fig.15. Closed response of hybrid three tank system with ANNC (Plant-Model 

mismatch +10% ) (a) Level in Tank 1, (b) Level in Tank 2 
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Fig.16. Closed response of hybrid three tank system with ANNC (Plant-Model 

mismatch -10% ) (a) Level in Tank 1, (b) Level in Tank 2 
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Fig.17. Closed response of hybrid three tank system with ANNC (Handvalve 

fault-Leakage ) (a) Level in Tank 1, (b) Level in Tank 2 
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Fig.18. Closed response of hybrid three tank system with ANNC (Handvalve 
fault-Clogging ) (a) Level in Tank 1, (b) Level in Tank 2 
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░ 6.  Conclusion 

An ANN estimation based control scheme which offers better 
state estimates and hence better control, with a nonlinear 
approach in correcting the a priori estimates by avoiding 
statistical linearization involved in derivative free estimation is 
proposed. On comparing with best exiting related work based 
on statistical linearization, 85%, 97% and 97% reduction in 
Integral Square Error (ISE), between controlled variable and 
set point, for servo, regulatory and plant model parameter 
mismatch operations respectively, and a 45% reduction in 
standard deviation (σ) of error between true and estimated 
values of non-measurable states for regulatory control 
operation were obtained. In addition to these performance 
improvements, the attracting feature of the proposed method is 
the time required for the computation of control signals and is 
very much less than the sampling time of the process which 
ensures the capability of online implementation as direct 
control algorithm using the proposed approach.  The 
experimental studies conducted on a real plant illustrate the 
robust performance of the proposed controller in offering 
better online control of hybrid dynamic system under real time 
operating constraints.  
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