
 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Review Article | Volume 10, Issue 1 | Pages 01-06 | e-ISSN: 2347-470X

 1 Website: www.ijeer.forexjournal.co.in Load Balancing in Cloud Computing Based on Honey Bee Foraging

Algorithm

░ ABSTRACT- Cloud computing relies on the collection and distribution of services from internet-based data centers. With

the large resource pool available in internet wide range of users are accessing the cloud. Load balance is important feature

involving resource allocation to prevent overloading of any system or optimal use of resources. Major load in cloud network are

concerned with CPU, memory and network. This cloud computing aspect has not yet earned too much coverage. Although load

balancing is an important feature for cloud computing, concurrent computing etc. In these areas, several algorithms were

suggested to solve load balance problem. However, it does recommend very few cloud computing algorithms. Given that cloud

storage differs considerably from all other environments, particular load balancing algorithm should will built in sort to serve its

needs. This work proposes novel load-balancing algorithm based on artificial bee colony algorithm and load balancing min-min

scheduling algorithm for balancing load in cloud computing network. Simulation here is carried out in clouds to generate

comparative results. Improving on various parameters like power consumption, resource utilization, stability of system are some

major areas focused on. This work has used algorithm that has the best efficiency of resources, optimal performance, minimal

response time, scalability and durability in integrated resource planning.

Keywords: Agents, Dynamic load balancing, Energy consumption, make span, Virtualization, Virtual machine task allocation.

░ 1. INTRODUCTION
Within the distributed network model cloud computing

systems are a dominant competitor. Customers are granted

access to services offered by a cloud provider using this

model, as defined in their service level agreement (SLA) [9].

In centralized data centers, clouds use virtualization

technologies to delegate services to users, where they require

them. Clouds are typically implemented to provide users with

three service levels [7], platform as a service (PaaS), software

as a service (SaaS) and infrastructure as a service (IaaS) [12].

In addition to profits for organizations using public clouds

there are issues of trust, protection, and lawfulness. Or

businesses may rely on a third party for their expertise and/or

applications. Many companies might not have been

comfortable requiring third parties to be liable for cloud

protection. Ultimately, because of privacy limitation, many

companies are dealing on privacy they are technically unable

to retain on the web. For situations like that, the company

should opt for a for-house cloud. There are various open

source cloud computing solutions that businesses can use

while running their own private cloud. Open Nebula or

Nimbus are some possible solutions. Nonetheless, Eucalyptus

is the highly popular receptive source cloud heap to be

discussed in this article, provided by Eucalyptus Methods, Inc.

IaaS cloud application in which provides users unknown job

types on virtual machines (VMs). A typical server for

Eucalyptus consists of a cloud manager at the front end, a

cluster management system for controlling database nodes, a

VM image store, a permanent storage controller and a variety

of data node functions. It has been planned to make it easy to

scale and available, but in the standard architecture it does not

address the question of power consumption. This is achieved

by convenient hardware organizations that want to create local

clouds. This can make the cloud consist of various hardware

configurations. Although a cloud was originally designed

using a specific form of hardware, the design of a cloud also

ensures that new and varied hardware can be introduced

during its existence. The number of computer nodes will

typically increase exponentially over time in terms of

scalability. The nodes used will be special in terms of energy

consumption given their heterogeneous nature. Administrative

cloud components (cloud, cluster and storage) must operate on

an ongoing basis for users to access nodes. The paper

addresses the following research questions:

1. What’s the architecture of the cloud system?

2. What is load balancing and why it is done?

1.1 Static Algorithm
The interferer traffic is equivalent to a static algorithm. This

Load Balancing in Cloud Computing Based on Honey Bee

Foraging Behavior and Load Balance Min-Min Scheduling

Algorithm

Nitin Thapliyal1, Priti Dimri2
1Phd Scholar, Department of CSE , Uttarakhand technical university, Dehradun, India, thapliyal.nitin@gmail.com
2Associate Professor, Department of Computer Science, GBPEC, Ghurdwari , India, pdimri1@gmail.com

*Corresponding Author: Nitin Thapliyal; Email: thapliyal.nitin@gmail.com

ARTICLE INFORMATION

Author(s): Nitin Thapliyal and Priti Dimri;
Received Dec 15,2021 Accepted Feb 20,2022 Published Mar 30, 2022;

E- ISSN: 2347470X;

Paper Id: 0122SI-IJEER-2022-04;
Citation: https://doi.org/10.37391/IJEER.100101

Webpage-link:

www.ijeer.forexjournal.co.in/archive/volume-10/ijeer-100101.html

Publisher’s Note: FOREX Publication stays neutral with regard to

jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100101.html

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Review Article | Volume 10, Issue 1 | Pages 01-06 | e-ISSN: 2347-470X

 2 Website: www.ijeer.forexjournal.co.in Load Balancing in Cloud Computing Based on Honey Bee Foraging

Algorithm

tactic would shortly deprecate the traffic on the servers and

inevitably make the situation more chaotic. This algorithm will

be revealed to split traffic evenly as a round robin algorithm.

But for this algorithm, there were other difficulties. Then the

important round robin problems were further established with

a weighted pass robin.

1.2 Dynamic Algorithm
Interactive algorithms automatically scan the entire network to

determine the correct weights on servers. To balance traffic

the lightest server is loaded. However, selecting a suitable

server requires real-period interaction with the webs, which

results in additional traffic increased to the procedure.

Dynamic algorithm predicts query which is frequently made

on servers.

░ 2. LITERATURE REVIEW
The next wave of cloud computing will rely on how well the

technology is designed and efficiently used usable services.

Charging management, one of cloud computing's biggest

challenges spreads the distributed workload over multiple

nodes so no resource is overloaded or underused. It can be

considered a question of optimization and a successful load

balancer can change its approach to the changing world and

job styles. This paper uses genetic algorithm (GA) to propose

a novel load balancing strategy. The next wave of cloud

computing will rely on how well the technology is designed

and efficiently used usable services [11]. Cloud data centers

are usually consisting of various product attendants hosting

various virtual systems with different characteristics and

resource use variations. It might trigger a server capital

utilization disparity that can contribute to data degradation and

service quality infringement. This work provides a shared

problem solving strategy that offers a commodity-based,

heterogeneous storage equilibrium through the use of live VM

migration. (i) Migration heuristics are given to define the VMs

should be migrated to and their hosts for the migration of VMs

(ii) the policies for migration to determine when VMs will

migrate. [5].

The literature has found that the static design of the load

balancing algorithms, the lack of scalability and durability are

some of the limitations. In addition to literature review, it was

found that artificial intelligence systems such as genetic

algorithms, honeybee algorithms, game theory and intelligent

agents were used as load balances in cloud computing.

Therefore, an effective load balancing system is urgently

required in cloud computing.

░ 3. METHOD
Throughout the literature analysis, no research was performed

in the field of cloud infrastructure for load balancing so certain

existing solutions could set limits. It includes the usage of the

algorithm, optimal efficiency, minimal response time,

scalability and efficient integrated resource planning. The

present thesis focusses on the utilization of advantages offered

by the cloud computing and to minimize the time required for

completion of a task through available resources. The

methodology disclosed in the present paper for the selection of

optimal resource for execution of a task in minimal time is

created on the honey bee fodder behavior and uses Load

Balance Min-min (LBMM) algorithms for the allocation of

work across resources available.

The available resources are called VMs in the cloud world.

The idea of parallel and distributed computing is based on

cloud computing, where a consumer is involved in the total

output of a function on the computer. From business point of

view, it is necessary that the VM should execute the task as

early as possible by running in parallel. Many a time this may

lead to the problem of scheduling customer’s task through

available resources. To make best use of available resources,

the planner will create an effective programming process. One

or more VMs which run tasks at the same time are assigned

more than one task. This type of system would ensure that

loads in all VMs are balanced, i.e. that tasks are not loaded in

a single VM heavily, and that all VMs are not idle and/or

uncovered. The algorithms used in this study are designed to

accelerate the execution of resource applications whose

workload differs unpredictably at times. Considering the

network as multi-level hierarchical structure will decrease the

cost of data storage [13]. But at a higher level the amount of

system administration will increase. In this study, therefore,

developers consider cloud computing to be 3-level classified

structure. (As demonstrated in Figure 1 [13]). The nodes at 3-

level of framework are called as service nodes. These nodes

are meant to implement subtask. Nodes at the 2nd level are

called as assistance administrator. These are responsible for

dividing a task into multiple independent subtasks whereas

node at the level 1 is called as request manager and is

responsible to designate assignment to the assistance manager

based by evaluating load balance condition of the network,

and expected execution time of the task.

Figure 1. Framework for cloud computing network

Honey bee behavior inspired artificial bee colony (ABC)

algorithm is used by request manager at level 1 of the

framework for selecting a service manager at level 2 to

maximize the throughput by balancing the load across VMs.

The algorithm also ensures that perhaps the quantity of long

waits for the tasks in the queue is negligible. After selection of

service node at level 2, the selected service node divides the

task in multiple independent subtasks and a lot these subtasks

to the service nodes on the basis of LBMM scheduling

algorithm. Load balancing methods were also effective in

reducing response time and span. Makespan is defined as the

time needed to complete the task as a whole. The completion

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Review Article | Volume 10, Issue 1 | Pages 01-06 | e-ISSN: 2347-470X

 3 Website: www.ijeer.forexjournal.co.in Load Balancing in Cloud Computing Based on Honey Bee Foraging

Algorithm

time of task Ai on service node Nj is ATij. Therefore, the

function for makespan can be written as:

Makespan= max {ATij|iєA, i=1, 2…n and jєN, j= 1, 2 …m}

(1)

3.1 Mathematical model for selection of service

manager based on honey bee foraging behavior
Let N= {N1, N2, …. Nm} be a group of m VMs to execute a

group of n tasks. A= {A1, A2, …. An}. All VMs constituting

the cloud environment are incompatible and parallel and in the

model are referred to as R. In this study, non-preventive

impartial responsibilities are scheduled to these Ns. Here, non-

preemptive task is referring to as npmtn and refers to the

processing of Task that cannot be disturbed on the VM N.

Final period of the task Ai is denoted by ATi and the ATmax

denotes the reduced makespan. Therefore, our model is now

represented as R|npmtn|ATmax. The processing time of task Ai

is shown as Pij on a virtual Nj computer. The equation

describes the time of execution of all tasks in an Nj

1

1,2......
n

j ij

i

P P j m


  (2)

max

1

1,2......
n

ij

i

P AT j m


  (3)

By minimizing ATmax, we get equation (3) and from equation

(2) and (3) we can conclude equation (4) as:

max 1,2......jP AT j m  (4)

The tasks are moved from one VM to the other to balance the

Load on the cloud network so as to reduce ATmax and response

time. Base on the capacity of VMs, the processing time varies

from one machine to another. The completion period of a

chore might vary during transferring since of load balancing.

max

1

{max ,max
n

n m

i in

i

AT AT P


  (5)

The honey bee behavior inspired algorithm used at level 2 not

merely settles the stack in the network yet it also takes

flexibility into account to wait in a line for the job. The

algorithm used is an advancement over dynamic load

balancing technique by merging it with honey bee behavior.

When a VM gets overloaded the tasks are removed from the

queue of the machines. These removed tasks behave as honey

bees and are allotted to the below stacked VM. After allotting

the removed tasks to the under loaded VM, Updates shall be

given to the amount of urgency tasks and capacity of tasks

allocated to the VM.*Images can be extract in both column.

The current workload on particular VM is calculated on the

basis of info collected from the data center. Centered on this

standard variation is calculated to calculate deviation of load

on VM.

3.1.1 Capability of a virtual machine

Cj = (Nj product of numb. of CPUs and Nj billion instructions

per sec. in each pcs) + Nj communication bandwidth ability (6)

3.1.2 Capability of each virtual machines

1

m

i

i

C C


 (7)

Capability of each virtual systems represents the capability of

data base.

3.1.3 Load on a virtual machine

Number of tasks on times t at the virtual desktop service queue

Ni separated into a service rate t is allocated for load on a VM

or we might assume that total VM load equals the full length

of a VM’s assigned tasks.

Total load of each VMs in a data base is computed as:

1
iN

m

i

L L


 (9)

3.1.4 Time processing of a virtual machine

i

i

L
PT

C
 (10)

3.1.5 Time Processing of each virtual machines

L
PT

C
 (11)

3.1.6 Basic variation of load

2

1

()
m

i i

PT PT


 (12)

3.1.7 Load balancing decision

Based on the computed value of load and standard deviation it

is decided that whether the load balancing has to be done or

not. The decision on load balancing is based on two findings:

(1) whether the method is stable (2) whether the scheme is

inundated or not. If the network is overburdened, load

balancing is meaningless. For taking decision on load

balancing it is essential to find state of the virtual system

group and then finding the overloaded group in the network.

3.2. Selection of virtual machines based on

different prioritized tasks
The tasks need to be allotted to the VMs are divided into three

categories: high priority tasks (Ah), middle priority tasks (Am),

and low priority tasks (Al). If one of the under loaded

machines must be faced with a high priority mission, the high

priority demands already made by that machine must be

considered. It means that the computer, or lower priority

activities, is given the high priority assignment.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Review Article | Volume 10, Issue 1 | Pages 01-06 | e-ISSN: 2347-470X

 4 Website: www.ijeer.forexjournal.co.in Load Balancing in Cloud Computing Based on Honey Bee Foraging

Algorithm

Ah → Nd | min (∑ 𝐴ℎ) ϵ Nd (13)

Am → Nd | min (∑ 𝐴ℎ + ∑ 𝐴𝑚) ϵ Nd (14)

Al → Nd | min (∑ 𝐴ℎ) ϵ Nd (15)

3.3 Algorithm for selection of service manager

based on honey bee foraging behavior
Here we have divided the service manager nodes in three sets:

low loaded service managers (LLSMs), over loaded service

manager (OLSMs), and balanced service managers (BSMs).

1. Compute capacity and load of all service manager nodes

based on equations from 2 to 9 and check whether the network

is balanced or not:

If σ < = threshold value, network is balanced

Exit

2. Perform a load balancing decision:

If load (L) > highest capability, load stabilizing is not viable

Else Trigger load balancing

3. Create group of service managers based on load as LLSM,

OLSM and BSM.

4 Supply of each service manager node in LLSM is

OLSM

ForS=1 to OLSM

s

s

j

Load
D

r

emand of OLSM

b

M

Sort N inOLSM by descending orde

Sort N in LLSM y ascending order

Where as LLS

iax capac lty
Capacity

M  



 







Order tasks by selection criteria in service manager nodes

based on priority. For each task A in Ns find node such as Nd ϵ

LLSM such as

If (A is non-preemptive)

|min()

|min()

|min()

h

h m

h

d

d

d

A

A A

A

h d d d

m d d d

i d d d

and load capacity

and load capacity

and load capacity

NN

NN

NN

A N N

A N N

A N N







 

   

 

If (A is preemptive)

|min()

|min()

|min()

h

h m

h

A

A A

A

h d d

h d d

i d d

A N N

A N N

A N N

 

   

 

Modernize the num. of tasks assigned to Nd

Modernize the num. of priority tasks assigned to Nd Update

load on both Ns and Nd

Update sets LLSM, OLSM, and BSM By decreasing order,

sort Ns in OLSM. By ascending order Sort Ns in LLSM.

3.4 Selection of service node based on LBMM

scheduling algorithm
The LBMM algorithm as illustrated in Figure 2 [13] is meant

for distributing Task for the plurality of tasks which is

performed in appropriate assistance node between each service

manager. The period for each subtask on each service node

shall be considered by LBMM. An agent will figure out the

performance period of all subtask dissimilar sacrament

protuberances (N11, N12). For the execution of subtask, the

service manager selects the provision node with direct

performance period based on the information gathered by the

agent and put that service node in the Minimum -period array.

The minimum- period collection to every subtask in minimum

runtime collection for some service nodes.

Figure 2: The progression of load balance min-min scheduling algorithm

[6]

3.5 An example should be carried out with the

proposed algorithm for load balance
In this section, one can find an example to be used in a 3-tier

cloud computing system using the 2-phased programming

system proposed. ABC and LBMM scheduling algorithms are

combined to increase the reliability and load balancing of the

network. The scheduled algorithm is a mix. A list is used for

storing tasks which the manager will perform. The ABC

algorithm is used in the first stage to delegate the program

manager's role to the service manager. The LBMM

programming algorithm is utilized to select the correct service

node to perform a subtask of the Service Manager. The norms

for planned load balancing system are as follows:

1. The period of transmission can be obtained.

2. It is possible to estimate the time every job will take.

3. Every program is divided into a plurality of separate sub-

tasks, and each sub-task could be fully performed to

specific service node.

4. The numeral of joints should be equal or greater than the

quantity in subtasks.

For examples. The two-phase programming algorithm of a 3

level Web cloud is one of the three tasks that needs to be

discussed.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Review Article | Volume 10, Issue 1 | Pages 01-06 | e-ISSN: 2347-470X

 5 Website: www.ijeer.forexjournal.co.in Load Balancing in Cloud Computing Based on Honey Bee Foraging

Algorithm

Step 1- Let say three tasks A1, A2, A3 needed to be carried out

are placed in a queue by the request manager node N0 as

demonstrated in Figure 3.

Figure 3. Working queue of service manager

Step II- Corresponding to the ABC algorithm, a service

manager node is allotted a task by the request manager. The

service manager node is selected after performing a check on

the balance load condition for the network. As a consequence,

task A1 could be given to N), N4, N5, N3, or N2, and chore A2

can also be assigned to the NI, N4, N5, N3, or N2 node (to

replace the service manager point which gets previously taken

out task A1) & so forth.

Step III- As a chore is transferred in the service manager it is

divided into multiple independent subtasks. For example, task

A1 is subdivided into three sub tasks.

Step IV- For each subtask, the service manager calculates the

implementation period at various service nodes by utilizing

LBMM in demonstrated as Table 1. A11 subtask gets a

slightest completion period at the N12 provision node,

therefore the Minimum-Time = (A11, N11) = 14.5s (as given).

The Min-Time is a range which signifies a stage set of

minimal processing time, as seen in the calculation. (16).

░ Table 1: Time of execution of every subtask in task A1 in

various service nodes prior to dispatch

Subtask/Service

Node

N1

1

N1

2

N1

3
Threshold (average)

A11 16 13 28 38

A12 15 12 34 20

A13 25 19 29 24

 𝐴
11

, 𝑁
12 13

Min-Time = 𝑨𝟏𝟐, 𝑵𝟏𝟐 = 12 (16)

 𝐴
13

, 𝑁
12 19

Step V- The Provision Manager Measures maximum worth

of every subtask (equal) relates it to total execution period

of every subtask. The mean the A11 subtask is 13 (< 38) and

the time complexity is much fewer than the "threshold of

the service node," that subtask could be performed

normally; the Avg. The specific task A12 is 12 (< 20), the

complexity of the time is much lower than the service Node

threshold. The subtask can be carried out in general.

Step VI- The service manager of the Min-Time series is

responsible for the required execution of a task. Then the

subsequent subtask is A12, and the working node is N12.

Subtask A12 is then performed by the node N12. The A12

subtask is removed from the subtask collection required to

remain performed, and period execution of remaining subtasks

is changed as shown in Table 2.

░Table 2: Execution time within task A1 at various service

nodes prior to dispatch

Subtask/Service

Node
N11 N13 Threshold(average)

A11 16 28 30

A13 25 29 27

Step VII- The A12 subtask is removed from the subtask set

and the N12 service node is the last one. The service nodes

collection for the Minimum-Time is seen in the equation

(17). (N11, A11) is identified, the subsequent operation

nodes N11, and subsequent subtask is the A11. The A11

subtask is removed from the subtask collection required to

remain completed, the period execution of remaining

subtasks changed as shown in Table 3.

░Table 3: Time of execution of every sub-task under chore

A1 at separate facility nodes prior to dispatch

Subtask/Service Node N13 Threshold(average)

A13 29 27

 𝑨𝟏𝟏, 𝑵𝟏𝟏 𝟏𝟔
Min-Time = = (17)

 𝐴13, 𝑁11 25

Step VIII- After the execution of Phase 7, A11 is removed from

the subtask collection and the resulting N11 service node is

graded as the last 1. Finally, the Minimum-Time of every

service node is matched to the average worth of the assistance

manager / threshold. It is noted that the total time complexity

of the service node A13 exceeds the threshold value, thus, all

executing service nodes must re-enter a queue as listed in

Figure 3 and, eventually, the service node N12 must perform

the task A13.

░ Table 4: Time of execution of each subtask in task A1 at

separate service nodes before dispatch (fourth)

Subtask/Service

Node
N11 N12 N13 Threshold (average)

A13 25 19 29 24

Min-Time= [A13, N12] = [19] (18)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Review Article | Volume 10, Issue 1 | Pages 01-06 | e-ISSN: 2347-470X

 6 Website: www.ijeer.forexjournal.co.in Load Balancing in Cloud Computing Based on Honey Bee Foraging

Algorithm

From the above experimental results, we can say that the

current two-phase load balancing algorithm for cloud

computing achieves even better efficiency and retains cloud

network load balancing.

░ 4. DISCUSSION
This part addresses the various methods used by different

writers to find favorable outcomes and collusions. The authors

even evaluate these algorithms based on the problems. As

previously discussed, various approaches have specific load

balancing solutions that match certain circumstances, although

not for others. Constant systems are normally highly overhead

effective since it does not have to monitor resources during

run- time. Therefore, in a predictable setting where operating

properties do not change with time, they should operate very

well, and loads are usually consistent and constant. At the

other hand, the dynamic algorithms give a slightly better

approach which could dynamically change the load at runtime

depending on the observed resource properties at run time.

This functionality, however, adds to elevated transparency at

the network continuous tracking and control can add

additional traffic and can result in more delays. Many recently

developed energetic load balancing algorithms by using novel

duty management structures aim to escape this overhead.
Applied on our & “Fluffy” local cloud this cloud is a regular

Eucalyptus construct for each part of the cloud, with separate

nodes. Also, we must incorporate other load balancing

algorithms to compete with proposed load balancing

algorithm, keeping balance mindset on energy savings. The

load balance schemes presented here are promising and

adaptive and fault tolerant; there is still significant scope for

future research. This work strengthens the understanding and

the development of distributed computing systems through its

contributions. Other research showed fields of the distributed

network that still have a lot to do.

░ 5. CONCLUSION
This research is focused on load balancing in the cloud. Cloud

storage load balancing has not been taken into consideration,

while the rapid growth of cloud users has driven up

competition for load control strategies. Our future work will

Entail this being

 Min-Time = [A13, N12]

From the above experimental results, we can say that the

current two-phase load balancing algorithm for cloud

computing achieves even better efficiency and retains cloud

network load balancing. As a part of load balancing more

focus needs to be put in various other parameters too for

efficient working of networks under different situations.

░ REFERENCES
[1] H. Shen and L. Chen, "A Resource Usage Intensity Aware Load Balancing

Method for Virtual Machine Migration in Cloud Datacenters," in IEEE
Transactions on Cloud Computing, vol. 8, no. 1, pp. 17-31, 1 Jan.-March

2020, doi: 10.1109/TCC.2017.2737628.

[2] E. Jafarnejad Ghomi, A. Masoud Rahmani, and N. Nasih Qader, “Load-
balancing algorithms in cloud computing: A survey,” Journal of Network

and Computer Applications. 2017.

[3] M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm for

balancing the workload among virtual machine in cloud computing,” in

Procedia Computer Science, 2017.
[4] Ranesh Kumar Naha and Mohamed Othman, "Cost aware service

brokering and performance sentient load balancing algorithms in the

cloud", Journal of Network and Computer Applications, Vol: 75, pp: 47–
57, November 2016

[5] O. Gutierrez-Garcia and A. Ramirez-Nafarrate, “Agent-based load

balancing in Cloud data centers,” Cluster Comput., 2015.
[6] K. Goyal and M. Singh, “Adaptive and dynamic load balancing in grid

using ant colony optimization,” International Journal of Engineering and

Technology, vol. 4, no. 9, p. 167, 2012
[7] C. W. Brown and K. Nyarko, “Software as a service (SaaS),” in Cloud

Computing Service and Deployment Models: Layers and Management,

2012.
[8] D. Dhinesh Babu and P. Venkata Krishna, “Honey bee behavior inspired

load balancing of tasks in cloud computing environments,” Appl. Soft

Comput. J., 2013.
[9] G. Nie, X. E, and D. Chen, “Research on service level agreement in cloud

computing,” in Lecture Notes in Electrical Engineering, 2012.

[10]“Power Aware Load Balancing for Cloud Computing,” Lect. Notes Eng.
Comput. Sci., 2011.

[11] Balancing ant colony optimization,” Proc. - 2011 6th Annu. ChinaGrid

Conf. ChinaGrid 2011.
[12] S. Bhardwaj, L. Jain, and S. Jain, “Cloud Computing : a Study of

Infrastructure As a Service (Iaas),” Int. J. Eng., 2010.

[13] S. C. Wang, K. Q. Yan, W. P. Liao, and S. S. Wang, “Towards a load
balancing in a three-level cloud computing network,” in Proceedings -

2010 3rd IEEE International Conference on Computer Science and
Information Technology, ICCSIT 2010, 2010.

[14] Patel G, Mehta R, Bhoi U (2015) Enhanced load balanced min-min

algorithm for static meta task scheduling in cloud computing. Proced
Comp.

[15] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A cooperative game

framework for QoS guided job allocation schemes in grids,” IEEE
Transactions on Computers, vol. 57, no. 10, pp. 1413–1422,2008

[16] D. Grosu and A. T. Chronopoulos, “Noncooperative load balancing in

distributed systems,” Journal of Parallel and Distributed Computing, vol.
65, no. 9, pp. 1022–1034, 2005

© 2022 by Nitin Thapliyal and Priti Dimri.

Submitted for possible open access publication
under the terms and conditions of the Creative

Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

