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░ ABSTRACT- Matroids are the combinatorial structure and Greedy algorithmic methods always produces optimal 

solutions for these mathematical models. A greedy method always selects the option that looks best at each step of process of 

finding optimal solution. In other words, it selects a choice which is optimal choice locally in such a strategy that this locally 

chosen option may direct to a solution that will be globally optimal. It is true that while selecting locally optimal solution at each 

stage, Greedy algorithms may not always yield optimal solutions, but if we can transform an unknown problem into matroid 

structure, then there must be a greedy algorithm that will always lead optimal solution for that unknown problem. The range of 

solutions provided by Greedy is large as compared to the applicability of the Matroid structure. In other words the problems that 

can be translated into Matroid structure is proper subset of set of all problems whether Greedy algorithm produces optimal 

solution. Matroid structure thus ensures the global optimal solution one can obtain with help of Greedy approach. We study 

various logarithmic and linear hierarchical based mathematical models from divergence sources to maximize our information for 

research purposes. We analyze the time complexity and provide constrains over the upper/lower bounds in correspondence with 

the optimal (maximum/minimum) solution. We try to establish the relationship between the maximization of information 

divergences, the optimal-likelihood theory, and classified sharing is instituted. We propose integration of unknown rough sets to 

matroids in this paper. Particularly, we devise methodically the upper and lower tightening bounds on rough matroids which may 

expand up to the generic combinatorial matroid structure. The relationships are established by the upper and lower tightening 

bounds approximations of generalized combinatorial rough sets based on different interdependent relation sets, respectively. As 

we define the generalized lower/upper bounds for rough matroid, we define a new structure for lower/upper greedoid leading to 

generalization of the greedoid. Additionally, based on the new established relation, the generalized rough set also provides a 

theory of poset matroid. 

General Terms: Combinatorial structure, Greedy algorithms, Posets, Unit-time-processor, Activities, Graphical Data 

structure, Tree, Forests, Time complexity, Amortized analysis. 

Keywords: Optimization, Cyclicity, Graphs, Tree, Greedy approach, Sets, Subsets, Sorting, Penalties, Vertex, Edge, Graphs. 

 
 

 

░ 1. INTRODUCTION 
The Greedy algorithms are very effective and widely 

acceptable algorithm that are applicable on wide range of real 

time problems to produce optimal (Maximum/minimum) 

solution. Each step of Greedy algorithm makes a locally best 

available choice at that particular moment of calculation. In 

other words, this method select a locally best (optimal) choice  

 

in such a hope that the selected choice may lead to a globally 

optimal solution. Although greedy methods may not produces 

optimal solutions always but for a range of problems, Greedy 

methods do yield optimal results much efficiently in 

comparison to solution provided by dynamic programming for 

the same problem. A greedy algorithm produces an optimal 

solution to a given problem by selecting a best choice among a 

range of choices. Decisions are made by selecting the best 

available choices at each stage. We will discuss about a theory 

that underlies a combinatorial structures known as matroids in 

this section. A greedy algorithm will always yield an optimal 

solution for these combinatorial structures (matroids). 
 

A matroid is defined as an ordered pair P = (S, ξ) that satisfies 

the following conditions- 
 

1. The set S is a Finite.  
 

2. The set ξ is a collection of nonempty subsets of S, called 

the independent subsets, satisfying the property as if Y ∈ ξ 

and X ⊆ Y, Then X ∈ ξ. This property is called hereditary.  
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3. If X ∈ ξ, Y ∈ ξ, and |X| ⊂ |Y|, then there must be some 

element a ∈ X – Y, then we will have X ∪ {a} ∈ ξ. And we 

say that P satisfies the exchange property.  

 

The sets in P are generally known as independent sets. We can 

state that if A is subset of any independent set of P, then A will 

itself be an independent set. The union of all sets in P is 

known as ground set. If an independent set X is not a proper 

subset of another independent set, then X is called a basis. The 

exchange property implies that every basis of a matroid will 

have the same cardinality for every independent subset of A 

[1-2].  

 

░ 2. BASIC CONCEPTS AND 

DEFINITIONS 
 

2.1 Graph  
A graph G = (Φ, Ε), consist of set of objects Φ = {v1, v2, v3.  . . 

vn}, denoted as set of vertices and E = {e1, e2, e3, . . . , em}, 

denoted as set of edges such that ek is identified by an 

unordered pair (vi , vj ) of vertices [3].  
 

2.2 Subgraph  
A graph G′ = (Φ′, Ε′) is said to be subgraph of a given graph G 

= (Φ, Ε), if all the vertices and edges in G′ are also in G. G′ is 

obtained by deleting some edges or some vertices or both from 

G. In In other words (Φ′, Ε′) ⊆ (Φ, Ε) [3]. 
 

2.3 Tree  
A tree is defined as connected graph and does not have any 

cycles, or a tree is a connected acyclic graph. The edges of a 

tree are known as branches. It may be assure that a tree must 

to be a simple graph without self-loops and parallel branches 

forming loops [3]. One of the important classes of graphs is 

the trees. The importance of trees is evident from their 

applications in various areas, especially theoretical computer 

science and molecular evolution. The various kinds of data 

structures referred to as trees in computer science are similar 

to trees in graph theory, except that computer science trees 

have directed edge [3]. 
 

2.4 Properties  
 A tree with n vertices has n edges. 

 A minimally connected graph is a graph that gets 

disconnected if we remove any one its edge.  Clearly, 

there is no cycles in a minimally connected graph  

 A graph is a tree if only if it is minimally connected. 

 A simple graph with n vertices, n-1 edges and no cycles is 

connected must be a tree. 

 Any tree with at least two vertices has at least two pendant 

vertices. 
 

░ 3. GRAPHICAL MATROID: A 

DEMONSTRATION 

Let us consider a graph G = (Φ, Ε), where Φ denotes the no of 

vertices and E denotes the no of edges is shown in Figure 1. 

 
 

Figure 1: Sample Graph 
 

The following are the specifications of the graph: 

 The graph is Simple graph. 

 It does not contain any self-loop and parallel edges. 

 The Graph is strongly connected graph. 

  It contains several circuits so it is not a tree. 
 

The acyclicity and independent property of the matroid 

requires the given graph to be Tree. The graphical matroid is 

said to be independent if the graph does not contain any cycle. 

If there exits any cycle in the graph then independent property 

of the matroid is no longer preserved. A graph can be a tree if 

is connected. That is, if each of the nodes is connected with a 

link to at least one other node. If a node is not connected to 

some other node, then the assembly is not a tree so all the 

operation that involves the graphical matroid structure must be 

in acyclic and connected only form. 

 

3.1 Matroid Structure 

Theorem: If G = (Φ, Ε) is an undirected graph, then PG= 

(SG, IG) is a matroid.  

Proof: Lets Define PG = (SG, IG) as a subset of original 

graph G = (Φ, Ε) as shown below in Figure 2. 

 
 

Figure 3: Reference Graph 

1. Set SG, we defined it on set of edges of graph, i.e. E. 

2. If X is a proper subset of E, then X ∈ IG iff X is 

acyclic. That is, a set of edges X will be independent 

iff the sub graph Gx = (Φ, X) produces a forest. 

3. IG is the family of all independent subset of SG. 
 

3.2 Verification of Matroid Structure 
To prove that the given Structure satisfies the matroid 

Structure we have to the following terms  
 

 Independent Structure  

 Finiteness  

 Exchange Property 

 Hereditary Property  

https://www.ijeer.forexjournal.co.in/
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3.2.1 Independent Structure 
This is the fundamental and essential property that any 

matroid structure must have to satisfy. In case of Graphical 

matroid, the independent property is the acyclic graph. The 

reference graph MG = (SG, IG) is the acyclic graph. 

Whenever the acylicity of the graph is preserved, then 

matroid structure is also remain preserved. 
 

3.2.2 Finiteness 

 Graph G = (Φ, Ε) has six no. of vertices (finite).  

 No. of edges is five (finite). Thus, it is a finite graph.  

 We have defined SG = E, so SG will be finite.  

 All the family of subsets of edges i.e. IG will also be   

finite hence Independent. 
 

3.2.3 Exchange Property 

Let us consider the reference graph again in Figure 3: 

 
 

Figure 3: Reference Graph GR = (Φ, R) 
 

Let GX = (Φ, X) (shown in Figure 4), and GY = (Φ, Y) are two 

independent graph of the reference graph. Consider |Y| > |X|. 
 

1. The graph GY = (Φ, Y) is shown in Figure 5. 

2. Number of components in this graph is three. 

3. The cardinality of this graph is larger than the Graph GX 

4. Number of vertices in this graph is V same as reference 

graph. 

     
     

             Figure 4: Graph GX = (Φ, X) 

 

    
 

Figure 5: Graph GY = (Φ, Y)’ 

 

Consider an edge ek ∈ (Y − X) as shown in Figure 6 
 

 
Figure 6: Graph GY = (Φ, Y) 

 

[\Let us remove edge ek from graph GY forming a new graph 
G′Y = (Φ, Y′) as shown in Figure 7. 

 
 

Figure 7: Graph G′Y = (Φ, Y′) 

 

Let us join the separated edge ek in graph GX = (Φ, X) forming 

a new Graph G′X = (Φ, X′) shown in Figure 8. 

 

 
          

Figure 8: Graph G′X = (Φ, X′) 
 

The resultant graph G′X is nothing but the original graph GY = 

(Φ, Y) itself. A forest is an undirected graph, all of whose 

connected components are trees. Now it is clear from the 

figure that if we connect two disjoint a cyclic component, and 

then the resulting graph will remain acyclic. 
 

1. The resultant graph is still acyclic thus preserve the 

independent property. 

2. Adding an edge between two different components is safe 

and does not create a cycle as long as components are 

itself acyclic. 

3. Thus, two components are merged into single component 

producing a new component by preserving the original 

property. 

4. Hence proving the Exchange Property.  
 

3.2.4 Hereditary Property 

 Let A∈ IG is a subset of forest. 

 Let B⊂A, which means no. of tree in B is less than 

that of A. 

https://www.ijeer.forexjournal.co.in/
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 Intuitively, removing of trees from a forest will leave 

it as forest again.  

 Therefore, it satisfies independent property. 
 

Consider the reference graph MG= (SG, IG) as in Figure 9. 

 
           Figure 9: Connected Graph 

Consider the edge ek, let’s remove the edge ek from this 

graph. The resultant graph will look like as in Figure 10. 

 
       

               Figure 10: Disconnected Graph 

Removal of ek does not create a cycle in graph [3], rather it 

disconnect the graph, hence proving Hereditary Property. 

 

░ 4. METHODOLOGY & RESULT 

ANALYSIS 
 

4.1 A task-scheduling problem 
In task scheduling problem, we optimally schedule single-unit 

tasks (activities) executing on a single threaded processor [1].  

Here every unit-time task is provided with its deadline and an 

incurred penalty if the task fails to meet its mentioned 

deadline. A single-unit task is a process that required single 

time unit to complete when allocated on a single processor 

machine. 
 

More formally, we are provided with following information 

 A set of n unit time activities S = {a1, a2.  . . an}. 

 n deadline d1, d2, . . . , dn, corresponding to each activity 

ai. 

 Inequality 1 ≤ di ≤ n, is satisfied for each activity. 

 A set of non-negative penalties w1, w2. . . wn incurred 

with each activity ai, If it does not end by its deadline. 
 

We can define the execution of activities of S in any of |S|! 

The sequence thus obtained is called schedule. An activity ai 

finishes after its deadline then it will be late in a schedule. An 

activity ai will be early in a schedule if it is finished before its 

deadline. We can always transform an arbitrary schedule into 

early-first form, in which the early tasks followed by the late 

tasks. Such schedule where all early task are followed by all 

late tasks are in form called canonical structure. A canonical 

structure can be translated in a Matroid structure and by this 

virtue; a canonical form of schedule will always generate an 

optimal solution [1]. The activities needed to be sorted in 

increasing order of their deadlines or decreasing order of their 

penalties. In either case, the theme of presented algorithm will 

not change. Here our goal in to minimize the penalties for the 

late tasks. 
 

4.2 Algorithm 
1. The task of scheduling the activities are highly 

dependent on verifying the independence of a give set A 

of activity. 

2. For n activities, any schedule can take maximum time n 

unit. 

3. The activities are sorted in non-decreasing penalties. 

4. Activities can also be sorted in increasing of their 

deadlines, without affecting the algorithm and running 

time. 

5. Nt(A) denotes the number of activities in A that are 

finished by time t or before. For t =0, 1, 2 … n, we have 

Nt(A) ≤   t. This is call independent check. 

6. By definition then N0(A) = 0. 
 

4.3 Time complexity 
1. Sorting time = O(n log n) 

2. Performing ‘n’ independent check, each check takes 

O(n), total time for check = O(n2) 

3. Total time taken (Time complexity) = O (n log n) + 

O(n2) = O(n2) 
 

4.4 Task-scheduling problem with matroid and 

fast disjoint- set forests 
(a) 

1. The operation OPR-MAKE-SET(x) returns a pointer to 

the element ‘x’ that is newly made set of its own [6]. 

2. The operation OPR-FIND-SET(x) tracks the sequence 

of parent pointers starting from a queried node ‘x’ 

extended up to an element on top (root node). 

3. The operation Union(x, y) replaces the set containing 

‘x’ and the set ‘y’ resulting a new set with their union. 

4. The height of the tree and linear time complexity can be 

achieved by executing two operations in parallel named 

as OPR_RANK_UNION and 

OPR_COMPRESSION_PATH. 

(b) 

1. Each of these algorithm will take O(m log n) times 

when executed individually. Where ‘n’ is number of 

operation and ‘m’ is the height of the forest without 

path compression. 

2. The Graphical data structures always performs well 

when several operations are carried out in parallel. 

3. In our algorithm, we calculate a different version time 

complexity called Amortized analysis. 

4. The amortizes analysis performs well when the input 

size is large. 

5. In the algorithm depicted below, we executed Rank 

Union and Path compression operation parallel. 

 
  

https://www.ijeer.forexjournal.co.in/
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4.5 Pseudocode for the Faster Algorithm 

FAST-DISJOINT-SCHEDULING(A) 

     let D[1..n] be a newly created array 

     excecute k (from 1 till n) 

        ak.ET = ak.DL 

        if D[ai. DL] != φ 

            p = OP-FIND-SET(D[ak.DL]) 

            q = OP-FIND-SET(D[ak.ET]) 

            a[k]. ET = q.down - 1 

        p = OP-MAKE-SET{ak} 

        D[ak.ET] = p 

        p.down = p.up = ak.ET 

        if D[ak.ET - 1] != φ 

            UNION{D[ak.ET-1, D[ak.ET]} 

        if D[ak.ET+1] != φ 

            UNION{D[ak.ET], D[ak.ET+1]} 
 

4.6 Time complexity Analysis 
1. Sorting time = O(n log n) 

2. The constant factors and overhead for initializing and 

maintaining Graph data structure is high in comparison 

with linear data structures implemented via arrays. 

3. Performing OPR_MAKE_SET O(n), UNION O(n) & 

OPR_FIND_SET O(n), total 3n operations, where each 

may occur at most n times will be O(n* α (n)), where α 

(n) is a very slowly growing function. 

4. The function O(α(n)) is practically highly slow growing 

function and for all practical purposes O(α (n)) ≤ 4. 

5. Time complexity =O(n α (n)) +O(n log n) = O(nlogn). 

 

░ 5. CONCLUSION 
The result of Task-scheduling algorithm over Modified Task-

scheduling algorithm is depicted by achieving lower time 

complexity by the later algorithm. The proposed algorithm 

will perform well and more effective in comparison finding 

solution via canonical form when the input size of the 

problem is fairly large. Although the proposed algorithm may 

not work well for small size input due hidden constants and 

overheads, but it will outrun the other algorithm once the size 

in fairly enough. The time comparison is depicted in the graph 

chart below in Figure 11. 

 
Figure 11: Cost Comparison of different Algorithms  
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