
 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 131 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

░ ABSTRACT- Software quality is a multidimensional concept. Single attribute can’t define the overall quality of the

software. Software developer aims to develop software that possesses maximum software quality which depends upon various

software quality attributes such as understand ability, flexibility, reusability, effectiveness, extendibility, functionality, and many

more. All these software quality attributes are linked with each other and conflicting in nature. Further, these quality attributes

depend upon the design properties of the software. During the designing phase of software, developers must optimize the design

properties to develop good software quality. To obtain the appropriate value optimization is done. This paper implemented two

multi-objective evolutionary algorithms (NSGA-2 and MOEA/D) to optimize software design properties to enhance software

quality. While comparing NSGA-2 algorithm with original values it is found that there is a 1.73% improvement in the software

quality on the other hand MOEA/D shows a 3.58% improvement in the software quality.

Keywords: Software Metrics; Software Quality; Software Quality Attributes; QMOOD.

░ 1. INTRODUCTION
Dependencies on the software are increasing day by day. From

time-to-time software requires regular updates and

modifications to satisfy the customer needs. While updating

the software it is essential to focus on the quality. Poor quality

of the software has serious consequences such as it may cause

loss of life, mission failure, financial loss, and permanent

injury. To ensure the quality, measuring software quality is

essential. In literature, several quality models are available to

measure the software quality, and a few such models are,

Boehm's Quality Model [12], FURPS Quality Model [19],

Dromey's Quality Model [16], ISO 9126 Quality Model [10],

and Quality Model for Object-Oriented (OO) Design

(QMOOD) [15]. Out of all these models, this research work

focuses on QMOOD hierarchical model to analyze the quality

of software. QMOOD considers both internal as well as

external quality attributes of the software. As well as it also

maps source code metrics to a higher abstraction level.

Researchers have used various metrics to measure these

attributes. All these quality attributes further depend upon ten

design properties. These design properties can be measured

with the help of software metrics. These metrics are Depth of

Inheritance (DIT), Response for class (RFC), Number of

Children (NOC), Coupling between Objects (CBO), Weighted

Method per Class (WMC), Lack of Cohesion of Methods

(LCOM). These six metrics suites are known as Chidamber &

Kemerer (CK) metrics [17] and four other OO metrics are

Number of Attributes, Number of Method, Number of Private

Attributes, and Number of public methods. These metrics are a

decent indicator to describe the software quality during the

design phase. The objective of this research is to optimize the

design properties of the software by using the Multi-Objective

Evolutionary Algorithm based on Decomposition (MOEA/D)

and Non-Dominated genetic algorithm (NSGA-2) algorithms.

Software developers can use these optimized values of design

properties while updating the software it will enhance the

software quality.

This paper covers background study in section II; explanation

of QMOOD in Section III, research methodology is described

in Section IV. The proposed model is applied to QMOOD to

maximize software quality, and this is explained in Section V.

The final section concludes the paper and highlights the future

scope.

░ 2. BACKGROUND STUDY
In literature various techniques has been used by many

researchers to enhance the software quality such as fault

prediction, refactoring, class prioritization, optimization of

software quality attributes. Author R. Malhotra et al. [9]

emphasis the importance of software quality attributes and

proposed a model used QMOOD for fault prediction at early

stage of software life cycle by using statistical method and

Optimization of Software Quality Attributes using

Evolutionary Algorithm

Priyanka Makkar1, Sunil Sikka2 and Anshu Malhotra3

1Research Scholar, Department of Computer Science, Amity University Haryana, India, priyanka.makkar@rediffmail.com
2Associate Professor, Department of Computer Science, Amity University Haryana, India, ssikka@ggn.amity.edu
3Associate Professor, Department of Computer Science, The NorthCap University, Gurugram, India,

anshumalhotra@ncuindia.edu

*Corresponding Author: Priyanka Makkar; E-mail: priyanka.makkar@rediffmail.com

ARTICLE INFORMATION

Author(s): Priyanka Makkar, Sunil Sikka and Anshu Malhotra ;

Special Issue Editor: Dr. Vikash Yadav;
Received: 30/03/2022; Accepted: 11/05/2022; Published:22/05/2022;

E- ISSN: 2347-470X;

Paper Id: 0422SI-IJEER-2022-06;
Citation: 10.37391/IJEER.100214

Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100214

This article belongs to the Special Issue on Recent Developments in

Communication Technology using Machine Learning Techniques.

Publisher’s Note: FOREX Publication stays neutral with regard to

jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
mailto:priyanka.makkar@rediffmail.com
https://doi.org/10.37391/IJEER.100214
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100214
https://ijeer.forexjournal.co.in/archive/volume-10/si-communication-ml.php
https://ijeer.forexjournal.co.in/archive/volume-10/si-communication-ml.php

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 132 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

machine learning for improving software quality attributes.

And it is found that metrics WMC and LOC are help in

predicting the software quality. Author Puneet at al. [8]

develop a model use to evaluate the quality of java program

based on QMOOD. Author gave input as java program which

vary in functionality and complexity, and it was concluded

that Total Quality Index (TQI) of software having single class

is very less whereas program which are having low complexity

and high design metrics have high TQI. Usman Mansoor et al.

[5] proposed the novel approach that enables software

developers to apply refactoring technique on model level. This

technique improves the inter diagram consistency, as well as

overall software quality. For model-based technique UML

based class diagram and activity diagram are used to improve

software design quality by applying NSGA-II and MOEA/D

multi-objective evolutionary algorithms. Authors also found

the best tradeoff between multiple criteria and suggested

feasible and good design refactoring solution. The results of

the proposed approach were statistically examined on four

open-source software. Salazar et al. [13] present 3 multi-

Objective reliability optimization problems first to find the

optimal number of redundant components second is to find the

reliability of the components and third is to identify both

reliability and redundancy. These issues were stated as single

objective mixed-integer non-linear programming problems

with one or more constraints. These challenges are framed as

multiple-objective problems (MOPs) and were solved with a

second-generation Multiple-Objective Evolutionary Algorithm

(MOEA) that handles constraints. The Pareto front, or set of

optimal solutions, as well as optimal solution space, are found

using NSGA-II. Ouni et al. [7] proposed a technique based on

multi objective optimization approach to find the optimum

trade-off between semantic coherence and software quality

using NSGA-II. Two criteria, vocabulary similarity and

structural coupling, are used to achieve semantic coherence.

The proposed approach's helps in the development of more

meaningful refactoring solutions that addressed design flaws

while maintaining semantic coherence. From the survey it is

observed most of the work has been done on statistical

method, machine learning. Evolutionary Algorithms (EA) are

another approach of optimization which has gained lot of

popularity among researcher and software developers. In this

research EA are used to optimize the software quality.

░ 3. QUALITY MODEL FOR OBJECT-

ORIETED DESIGN (QMOOD)

In 2002 Bansiya and Davis proposed the model QMOOD [15],

which measures the quality of software in terms of attributes

like reusability, functionality, flexibility, extendibility,

understand ability, and effectiveness. QMOOD explains the

relationship between Qualities Attributes (QA) with design

properties like abstraction, encapsulation, and Coupling.

Figure 1 represents the QMOOD. It implies four levels L1:

design quality attributes, L2: OO design properties, L3: OO

design metrics, L4: OO design components, and three

mappings’ links L12 linking design property to quality

attributes, L23 linking design metrics to design properties, and

L34 linking OO design component to design properties.

Table 1 represents the relationship between design properties

and QA. External quality attributes are computed with these

equations designed by Bansiya et al. [15] according to the

author metrics that are used to access design properties can be

changed or a distinct set of design properties can be used.

Therefore, in Table 2 mapping of design properties with

software design metrics according to the dataset is justified.

Figure 1: Quality Model for OO Design [15]

░ Table 1: Computation Equation for QA [15]

QA Computation Equation

Understandability -1/3 *Abstraction + 1/3*Encapsulation -

1/3*Coupling+1/3*Cohesion-1/3* Polymorphism

-1/3* Complexity -1/3*Size

Functionality +3/25*Cohesion + 11/50 * Polymorphism + 11/50

* Messaging +11/50*Size + 11/50 * Hierarchies

Extendibility +1/2*Abstraction-1/2* Coupling +1/2*Inheritance
+1/2*Polymorphism

Effectiveness +1/5*Abstraction + 1/5*

Encapsulation+1/5*Composition +1/5*Inheritance

+1/5*Polymorphism

Reusability -1/4*Coupling + 1/4* Cohesion + 1/2* Messaging

+1/2*Size

Flexibility +1/4*Encapsulation -1/4* Coupling

+1/2*Composition +1/2*Polymorphism

░ Table 2: Mapping of Design Properties to Software

Design Metrics

Design

Property

QMOOD

[Design

Metric]

Equivalent

Metrics

Computed

Description

Design size Number of

Methods

Class Total number of

Classes

Complexity Direct Class

Coupling

WMC Weighted Method

per Class

Coupling Design Size in

Classes

CBO Coupling Between

Objects

Polymorphism Average

Number of

Ancestors

NOM Number Of Method

Range (0 to 1)

Max=0 Min=NOM

Hierarchies Cohesion
among

Methods of
Classes

NOC Number Of
Children

Cohesion Measure of

Aggregation

LCOM Lack of Cohesion of

Methods

Abstraction Data Access
Metrics

1/DIT 1/ Depth of
Inheritance Tree

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 133 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

Encapsulation Number of

Hierarchies

NOPA (No of Private

attribute/No of
Attribute)

Composition The measure

of Functional

Abstraction

NOA NOA Range (0 to 1)

Max=0 Min=NOA

Inheritance Class

Inheritance

Size

DIT Depth of Inheritance

Tree

Messaging Number of
Polymorphic

Methods

RFC response for a Class
/Number of public

method

░ 4. RESEARCH METHODOLOGY

In the late 1960s, Genetic Algorithms (GA) was introduced by

John Holland [18]. GA help in evaluating the complicated

optimization problem, which cannot be solved using

mathematical techniques. GA evaluates on randomly

generated initial population which contains solutions also

called individuals. These individuals or chromosomes are used

to calculate their fitness value or objective function of the

problem. It represents the quality of the solution.

In this research paper, we are optimizing the quality of

software having six objective function reusability,

functionality, flexibility, extendibility, understandability, and

effectiveness called fitness function. The fitness value depends

upon the quality of the solution.

Figure 2: Research Methodology of Proposed Work

Figure 1 represents the complete workflow of proposed

technique. First, obtained and preprocess the dataset. Select

the quality model as well as metrics. Apply QMOOD to the

selected dataset and design the objective functions. Optimize

the quality attributes and calculate the six objective functions

using two evolutionary algorithms. Finally, validate and

compare the result.

4.1 Dataset and Parameter Setting
Open-source dataset Eclipse Java Development Tool (JDT)

Core is chosen for this research. This dataset has 1041 classes,

91 software versions, 23 metrics are available out of these 10

metrics are used in this research work. Table 3 represents the

detail of parameter settings that have been taken to perform

these experiments. The performance of GA depends upon its

control parameters [3-4].

░ Table 3: Experimental Parameter Settings for modify

MOEA/D and modify NSGA-2

Type Description
Type of genetic algorithm Multi-Objective Evolutionary

Algorithm

Multi-objective approach Ideal multi-objective

Type of Decision Variables Continuous

Type of Optimization Linear

Population size (Total no. of classes) 1041

Representation of chromosome Real coding

Selection operator Tournament selection method

Tournament size 2

Termination criteria Max iteration (100)

Size of the initial population (Parent
Population)

50 chromosomes (~5% of the
total population)

Q in MOEA/D (Size of Neighbors) 8(0.15% of the initial

population)

Crossover operator Simulated Binary crossover

Crossover Rate 0.2

Mutation Rate 0.02

4.2 Optimization
An optimization algorithm is a process that compares

numerous solutions iteratively until an optimum or satisfying

result is obtained. To obtain optimized results various

optimization algorithms are available. In this research work

two evolutionary algorithms MOEA/D and NSGA-2 are used

to optimize the fitness function.

4.2.1 Steps of MOEA/D

Algorithm-1 Modify MOEA/D for an optimized class level

quality parameter of the software

Input: Data_set: Class name and class quality attribute values

of multiple versions.

Stopping Condition: Number_of_Iterations

P: Sub-problems to consider.

Q: No of the neighbours for each P sub-problems.

 µ1, µ1, … µP: Uniformly distributed weight vectors

EP: External Population zi: Initial Population

Output: Classes having optimized quality attribute

Initialization

Step 1- Set EP = , (Store all Non-dominated solutions in

EP.)

Step 2- µi, for each uniformly distributed weight element,

calculate the Q nearest weights, µi(1), µi(2)… µi(Q) using the

Euclidean distance and set neighborhood

.

Step 3- Produce the initial population and evaluate the

fitness of each population using the objective function .

(Here, the fitness functions are six quality attributes of

QMOOD.)

Step 4- Set where α is the reference point.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 134 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

Step 5- Repeat for Number_of_iterations

 5.1 For each Sub problem under MOP l =1 to P, do

 5.2 Reproduction: Produce newer solutions using

individuals zu and zv with crossover operator, here one point

crossover operation is applied, for .

 5.3 Update of : for , if set

 5.3.1 Update neighboring solutions: For each if

, then set and , .

 5.3.2 Update of External Population: Eliminate dominated

solutions from EP if not dominated by any member in EP,

add to EP.

Step 6- Output EP

MOEA/D was proposed in 2007 by Li and Zhang [11].

MOEA/D decomposes the multi-objective problem (MOP)

into several sub-problems rather than solving a problem as a

whole and solves all these N sub-problems concurrently by

providing solutions in terms of the population. It has less

computational complexity at each generation and improved

decomposition approaches than NSGA-2, NSGA-3, and multi-

objective local search (MOLS). MOEA/D uses a small

population size and can produce very evenly distributed

solutions of a small number. MOEA/D is applied to optimized

class quality parameters. First, the data set is imported having

the class name and class quality attribute values for multiple

versions then creates the sub-problem. MOEA/D randomly

selects 50 classes that build the initial population of classes

from the imported data which is sufficient to calculate the

quality of complete software. There is no rigid rule for

selecting the initial population size. The size of the random

population determines by the programmer. If the size is large,

it comes with a quick or better solution but will cost more

time. On the other hand, if a population's size is less, it quickly

terminates the solution but may not give the correct result

always and affect the overall working of GA. After initializing

the population, the fitness function with the help of QMOOD

is calculated. Determine the decomposed cost of selected

classes in the population takes the maximum cost value from

the population. Calculate the domination of the population.

This loop will run until the maximum iteration, and this is the

exit criteria. Run the loop for i= 1 to nPop (50). Select two

random class versions from sub-problems, called positions as

per QMOOD [1-2]. Apply single-point crossover between

selected positions and generate a new chromosome.

Figure 3 represents the flow of MOEA/D. Calculate the cost

(QMOOD) for this new chromosome. Update the variable

having maximum cost, then calculate the decomposed cost for

this new chromosome.

Figure 3: Framework of MOEA/D

Run the loop for j=1 to max sp(i) neighbors. Replace the

current class version in the population with a newly created

chromosome if the decomposed cost is better than the current

determining domination status of the population. Finally, in

the end, a pseudo version of classes having optimized quality

attributes and parameters is formed.

4.2.2 Steps of NSGA-2
NSGA-2 was proposed by Deb et al. [14] in the year 2002.

Figure 2 represents the working of NSGA-2 algorithm. This

algorithm is applied to the same randomly selected classes. In

NSGA-2 first initialize the population then sorting takes place

based on the non-domination criteria of the population. Once

the sorting is complete front number is assigned to the

solution. The individuals in the population are selected based

on front rank and those solution having same front are selected

on the basic of crowding distance. The selection of

individuals is carried out using a binary tournament selection

with the crowded-comparison operator. Real coded GA using

simulated binary crossover and polynomial mutation. The

offspring population and current generation population are

combined, and the individuals of the next generation are set by

selection. The new generation is filled by each front

subsequently until the population size exceeds the current

population size.

Figure 4: Non-Dominated Sorted Genetic Algorithm-II [9]

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 135 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

░ 5. SIMULATION RESULTS
The proposed technique has been carried out on an Intel(R)

Core (TM) i5-2430M Processor running at 2.40 GHz with

RAM of 4 GB. MATLAB R2016a is used to implement

algorithms. The solutions obtained over100 runs are optimal

and non-dominated after that these optimized values are

normalized between zeros to one. The modified MOEA/D and

modified NSGA-2 algorithm return multiple optimal solutions

because of the random selection procedure of this algorithm

some time multiple solutions have similar objective values but

for brevity, all the similar solutions except one have been

removed and graphs are generated between them. The dots or

small circles represent the Pareto optimal solutions obtained

from modify MOEA/D modified NSGA-2. As the problem is

maximization, the points which are farthest from the axis are

to be considered. Figures 5 and 6 represents the graphs

obtained from modify MOEA/D and modify NSGA-2. Figures

5 and 6 (A) represents the graph between objective function 1

(Understandability), and objective function 2 (Functionality).

Figures 5 and 6 (B) represents a graph between objective

function 2 (Extendibility), and objective function 4

(Effectiveness). Figures 5 and 6 (C) represents a graph

between objective function 5 (Reusability), and objective

function 4 (Flexibility) the graphs are called Pareto front. The

implementation result is summarized in Table 4. It represents

the total optimized values of all six objective functions

obtained after applying the modified MOEA/D and modified

NSGA-2 algorithms on fifty classes. It eliminates dominated

solutions and produces newer solutions from the external

population if newer solutions are not dominated by any

member in EP, and adds newer solutions to EP. After adding

all the quality attributes of six objective functions of a class

the Total Quality Index (TQI) of the class is obtained. It is

found that the TQI of the software after applying to modify

MOEA/D algorithm gets increased. Table 5 represents the

quality improvement in percentage. While comparing modify

NSGA-2 algorithm with original values it is found that there is

a 1.73% improvement in the software quality on the other

hand modify MOEA/D shows a 3.58% improvement in the

software quality.

(A)

(B)

(C)

Figure 5: Pareto Optimal solutions obtained from modify MOEA/D

on Eclipse JDT Core dataset between (A) Understand ability and

Functionality (B) Extendibility and Effectiveness (C) Reusability and

Flexibility with their Optimal Normalized value

(A)

(B)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 136 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

 (C)

Figure 6: Pareto Optimal solutions obtained from modify NSGA-2

on Eclipse JDT core dataset between (A) Understand ability and

Functionality (B) Extendibility, and Effectiveness (C) Reusability and

Flexibility with their Optimal Normalized value

In this research work, modify MOEA/D and modify NSGA-2

algorithms are used to optimize the quality parameter and

obtain improved quality parameters. The work presented as

well as the dataset has not been explored by any of the

researchers. Both the algorithms have been modified to work

with the dataset used in this research. It has been found that

modified MOEA/D gave a better TQI value of a class as

compared to NSGA-2 and original data. After having the

optimized values of class parameters, it is easy for software

engineers to work on those parameters, which overall degrade

the software quality. It can easily identify which class has low-

quality attributes in terms of functionality, reusability,

effectiveness, understandability, extendibility, and flexibility.

So that, while updating the next version of the software, the

developer will keep in mind which class has low-quality value.

░ Table 4: Quality improvement in modify MOEA/D and

modify NSGA-II w.r.t original values

QA

Modify

MOEA/D

Modify

NSGA-2 Original values

Understand ability 27826 27802 27678.71

Functionality 257.83 210.33 160.5488

Extendibility 3451.38 3360.13 3272.459

Effectiveness 12780.5 12279.51 11889.93

Reusability 272.78 185.59 140.06

Flexibility 273.79 224.67 168.4355

TQI 44862.24 44061.52 43310.15

░ Table 5: Quality Improvement of Software Attributes in

percentage

QA

Modify

MOEA/D

Modify

NSGA-2

Understand ability 0.532 0.44

Functionality 60.59 31.00

Extendibility 5.46 2.67

Effectiveness 7.49 3.27

Reusability 94.75 32.50

Flexibility 62.54 33.38

TQI 3.58 1.73

5.1 Comparative Analysis
Author Mandeep et al. [8] also calculated the quality attributes

using the QMOOD quality model. By capturing the object-

oriented software metrics of eclipse plugin tool Metrics 1.3.6

metrics scores are normalized but no genetic algorithm is used.

Mansoor et al. [5] apply refactoring technique to improve

software quality for this both MOEA/D and NSGA-2

algorithm were used on QMOOD, and it was found that

functionality of the software get decreases.

;

░ 6. CONCLUSION & FUTURE SCOPE
In this paper, modify MOEA/D and modify NSGA-2

algorithms provide the optimized values of class design

properties through which external quality, as well as TQI of

the software, get improved. And it is found modify MOEA/D

shows better results. The range of improvement of each class

lie between 1to 5% and overall improvement in the software is

found 3.58%. It also provides a population of the class having

an optimized value of class quality attributes. After having the

optimized values of class parameters, it is easy for software

engineers to work on those parameters, which overall degrade

the software quality. It can easily identify which class has low-

quality attributes in terms of functionality, reusability,

effectiveness; understand ability, extendibility, and flexibility.

So that while updating the next version of the software

developer will keep in mind which classes have low-quality

parameters.

In the future, more work can be done by adding more quality

attributes. The proposed technique is computed using static

features of the software however the same work can be further

extended for dynamic features and for software engineers to

work on those parameters, which overall degrade the software

quality. It can easily identify which class has low-quality

attributes in terms of functionality, reusability, effectiveness,

understand ability, extendibility, and flexibility. So that, while

updating the next version of the software, the developer will

keep in mind which class has low-quality value can be further

considered for complex and large real-time software.

░ REFERENCES
[1] Karakonstantis, Ioannis, and Aristidis Vlachos. "Bat algorithm

applied to continuous constrained optimization problems." Journal

of Information and Optimization Sciences 42, no. 1, pp-57-75, (2021).

[2] Makkar, Priyanka, Sunil Sikka, and Anshu Malhotra. "A Multi-

Objective Approach for Software Quality Improvement." Journal of

Physics: Conference Series. Vol. 1950. No. 1. IOP Publishing, 2021.

[3] Indu, and Rishipal Singh. "Trajectory planning and optimization for

UAV communication: a review." Journal of Discrete Mathematical
Sciences and Cryptography 23.2 (2020): 475-483.

[4] Torre, Ennio, et al. "A dynamic evolutionary multi-objective virtual

machine placement heuristic for cloud data centers." Information and

Software Technology 128 (2020): 106390.

[5] Mansoor, U., Kessentini, M., Wimmer, M., & Deb, K. (2015). Multi-

view refactoring of class and activity diagrams using a multi-objective

evolutionary algorithm. Software Quality Journal, 25, 473-501.

[6] Goyal, Puneet Kumar, and Gamini Joshi. "QMOOD metric sets to assess
quality of Java program." 2014 International Conference on Issues and

Challenges in Intelligent Computing Techniques (ICICT). IEEE, 2014.

[7] Ouni, A., Kessentini, M., Sahraoui, H., & Boukadoum, M. (2013).

Maintainability defects detection and correction: a multi-objective
approach. Automated Software Engineering, 20(1), 47-79.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 131-137| e-ISSN: 2347-470X

 137 Website: www.ijeer.forexjournal.co.in Optimization of Software Quality Attributes using Evolutionary

[8] Chawla, Mandeep K., and Indu Chhabra. "Capturing OO Software

Metrics to attain Quality Attributes-A case study." International Journal

of Scientific & Engineering Research 4.6 (2013): 359-363.

[9] R. Malhotra and A. Jain, “Fault Prediction Using Statistical and Machine

Learning Methods for Improving Software Quality,” Journal of

Information Processing Systems, vol. 8, no. 2, pp. 241–262, Jun. 2012.

[10] Al-Qutaish, Rafa E. "Quality models in software engineering literature:

an analytical and comparative study." Journal of American Science 6.3

(2010): 166-175.

[11] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary

algorithm based on decomposition." IEEE Transactions on evolutionary
computation 11.6 (2007): 712-731.

[12] Boehm, Barry W., J. R. Brown, and M. Lipow. "Quantitative evaluation

of software quality." Software Engineering: Barry W. Boehm's Lifetime
Contributions to Software Development, Management, and Research 69

(2007): 21.

[13] Salazar, D., Rocco, C. M., & Galván, B. J. (2006). Optimization of

constrained multiple-objective reliability problems using evolutionary
algorithms. Reliability Engineering & System Safety, 91(9), 1057-1070.

[14] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic

algorithm: NSGA-II." IEEE transactions on evolutionary

computation 6.2 (2002): 182-197.

[15] Bansiya, Jagdish, and Carl G. Davis. "A hierarchical model for object-

oriented design quality assessment." IEEE Transactions on software

engineering 28.1 (2002): 4-17.

[16] Dromey, R. Geoff. "A model for software product quality." IEEE

Transactions on software engineering 21.2 (1995): 146-162.

[17] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics suite for object

oriented design." IEEE Transactions on software engineering 20.6

(1994): 476-493.

[18] Holland, John H. "Genetic algorithms." Scientific american 267.1

(1992): 66-73.

[19] Grady, Robert B. Practical software metrics for project management and

process improvement. Prentice-Hall, Inc., 1992.

© 2022 by the Priyanka Makkar, Sunil Sikka

and Anshu Malhotra. Submitted for possible

open access publication under the terms and

conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

