
 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 144-149| e-ISSN: 2347-470X

 144 Website: www.ijeer.forexjournal.co.in A Cost-Effective and Scalable Processing of Heavy Workload

░ ABSTRACT- Recent technological advancements in the IT field have pushed many products and technologies into the

cloud. In the present scenario, the cloud service providers mainly focus on the delivery of IT services and technologies rather than

throughput. In this research paper, we used a scalable cost-effective approach to configure AWS Batch with AWS Fargate and

CloudFormation and implemented it in order to handle a heavy workload. The AWS service configuration procedure, GitHub

repository, and Docker desktop applications have been clearly described in this work. A cost-effective configuration and

architecture of AWS Batch processing are given to provide high throughput. The processing of heavy workload by AWS Batch is

represented in terms of execution time and the result shows that the concurrent execution reduces the execution time. To enhance

the throughput heavy workload using batch processing an "Amazone FSx for Lustre" can also be used.

General Terms: Data Science, Machine Learning and Artificial Intelligence

Keywords: AWS, CloudFormation, Fargate, GitHub, Docker, Amazon Web service (AWS)

░ 1. INTRODUCTION
Modern science and technology require robust computation to

process a high volume of data, retrieve, and discover

meaningful and valuable information. In the traditional

method, scientists and researchers used High-Performance

Computing (HPC) Centre to process the work. The

conventional method of distributing tasks and data among

HPC is costly and difficult to manage. Cloud computing is an

alternative to HPC, where scientists and researchers can

process the high volume of data and pay only for what they

use.

AWS Batch is a compute service on AWS where scientists,

researchers, and developers quickly and efficiently execute

thousands of computing jobs in a batch. AWS Batch

dynamically provisions compute resources based on the

volume and worker resources required for the specific

submitted batch. AWS Batch, plans, schedules, and runs batch

compute workloads against AWS compute services and

capabilities, such as AWS Fargate, Amazon EC2, and spot

instances. AWS Batch has no additional charges. The

customer only pay for AWS resources created to store and run

jobs in batches. With AWS batch computing, customers can

execute many "tasks" on one or more compute resources

without any intervention. Hence, users can create a job or an

array of jobs, schedule and sequence them as needed, and

configure compute resources [1].

In machine learning, discipline batch processing is a common

method to process, analyze, and prediction of information

from data sets of video, image, text, etc. Batch processing is a

common need in Big-data analysis, data mining, and genomics

research.

1.1 AWS Batch Features
A. Dynamic compute resource provisioning and scaling.

When we need to use AWS Fargate, FSx, Cloud Formation

with AWS Batch, we only need to stop compute environment,

job queue, and job definition. Complete compute

infrastructures are available and there is no need to manage

any infrastructure [2, 3].

B. AWS Batch with Fargate

AWS Fargate with AWS Batch provides managed server-less

architecture for the execution of jobs. In this environment,

every job receives the exact amount of CPU cycle and

memory requested by the Jobs, and there is no wastage of

resources.

C. Support for tightly-coupled HPC workloads

AWS batch enables to execute a single job having multiple

tasks on multiple EC2 instances or multiple Jobs on multiple

EC2. The AWS batch facility helps us to execute heavy

workloads efficiently like Distributed graphics processing unit

(GPU) model training or tightly coupled high-performance

computing.

A Cost-Effective and Scalable Processing of Heavy

Workload with AWS Batch

 Nagresh Kumar1 and Sanjay Kumar Sharma2

1Department of Computer Science, Banasthali Vidyapith, Rajasthan, India, nagresh@gmail.com
2Department of Computer Science, Banasthali Vidyapith, Rajasthan, India, skumar2.sharma@gmail.com

*Corresponding Author: Nagresh Kumar ; E-mail: nagresh@gmail.com

ARTICLE INFORMATION

Author(s): Nagresh Kumar and Sanjay Kumar Sharma

Special Issue Editor: Dr. Vikash Yadav
Received: 21/03/2022; Accepted: 21/04/2022; Published: 22/05/2022;

e-ISSN: 2347-470X;

Paper Id: 0422SI-IJEER-2022-01;
Citation: 10.37391/IJEER.100216

Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100216

This article belongs to the Special Issue on Recent Developments in

Communication Technology using Machine Learning Techniques.

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
mailto:nagresh@gmail.com
mailto:skumar2.sharma@gmail.com
https://doi.org/10.37391/IJEER.100216
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100216
https://ijeer.forexjournal.co.in/archive/volume-10/si-communication-ml.php
https://ijeer.forexjournal.co.in/archive/volume-10/si-communication-ml.php

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 144-149| e-ISSN: 2347-470X

 145 Website: www.ijeer.forexjournal.co.in A Cost-Effective and Scalable Processing of Heavy Workload

D. Priority-based job scheduling

AWS batch provides a facility to configure multiple queues

with priority scheduling. There is the facility to assign priority

to the jobs in the queue. We can configure job definition and

job queue by AWS batch linked with different compute

facilities. Each job executes according to given priority with

optimal compute facility.

E. Support for GPU scheduling

GPU scheduling enables to configure the number of

accelerators and type of accelerators needed during job

definition. AWS Batch scales up according to the required

instance based on job definition and GPU configuration. AWS

batch also isolates accelerators according to instance required

so that specified containers can access them.

F. Support for popular workflow engines

AWS Batch service can also be used with the open-source and

commercial workflow engine. AWS step function integrates

AWS Batch with the workflow engine.

G. Integration with EC2 Launch Templates

AWS Batch supports EC2 startup templates that allow creating

custom models for compute resources and scaling instances in

order to meet the requirements.

H. Resource allocation strategies

AWS batch provides three allocation strategies of resource

provisioning to consider throughput and pricing.

Best Fit: AWS Batch prioritizes the cheapest combination of

jobs and instance types and then chooses the instance type that

best suits for the minimum cost. This process of customization

strategy reduces the costs but can also reduce scalability.

Best Fit Progressive: In this strategy AWS batch select

additional instance types with minimum cost, which are large

enough to execute the job. If these selected instances are not

available then AWS Batch selects new instances.

Spot Capacity Optimized: In this allocation strategy, AWS

Batch selects one or more than one spot instances which are

large enough to execute the jobs.

1.2 Components of AWS Batch
AWS Batch is a compute service that facilitates the execution

of batch jobs on multiple resources provisioned on different

availability zone of a single region. Now, a compute

environment for AWS Batch under a particular virtual private

cloud (VPC) is created. After that, a job queue is associated

with an active compute environment. Now, we can define a

job that refers to a container image. Container images are a set

of programs to perform a particular task.

Jobs

A Job is the smallest unit of work, a script or image of a script

available through Docker container image submitted to AWS

batch. It runs on configured EC2 instance of AWS Fargate

using specified parameters by job definition.

Job Definitions

Job definition is the main component of AWS batch

configuration. It is also called the blueprint of resources on

which a job is provisioned to execute. Here Jobs supplied with

predefined (identity and access management) IAM roles to

access the resources. The user can define CPU requirement,

memory, container image, timeout, and other environment

variables.

Job Queues

When the user submits a job, it resides in the Jobs queue. Job

scheduler schedules the Jobs from the job queue to the

resources provisioned. The priority value for Jobs across job

queues is also assigned.

Compute Environment

A compute environment is a configured computing resource in

AWS. Instance type is an important parameter to create

compute environment. Users can select a particular instance

type as per execution workload like c4.xlarge, m5.10xlarge,

etc. AWS Batch can be easily configured, launched, manage

and terminate as per need. The working architecture of AWS

Batch is described in figure-1.

.
Figure 1: AWS Batch Architecture

1. The user creates the job definition

2. The user submits jobs to managed AWS Batch job

queue

3. AWS Batch evaluate the CPU, Memory, and GPU

requirement of the jobs in the queue and launch the

compute resources in the compute environment

4. Job exists with status and writes results to user-

defined storage

The major contribution of this research paper is providing

architecture for high performance computing with AWS

resources and services. Section-1 describes the concepts and

architecture of AWS Batch service. Section-2 describe the

related works. Section-3 describe the steps to configure AWS

Batch to handle heavy workloads. In Section-4, we have

shown our architecture to handle heavy workload. Section-5 is

about execution output and result discussion. Section-6

describe the conclusion and future scope.

░ 2. RELATED WORKS
In the present cloud computing scenario, the core issues are

heavy processing workload, scientific workflow, and resource

provisioning. AWS batch plays an important role in improving

workflow scheduling, resource allocation, scheduling, and cost

optimization.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 144-149| e-ISSN: 2347-470X

 146 Website: www.ijeer.forexjournal.co.in A Cost-Effective and Scalable Processing of Heavy Workload

Kyle M. et al. [4] used a high throughput AWS batch to

see the capability of AWS batch in executing a heavy

scientific workload. The author develops a testing suite. A

workflow has been applied to configure AWS batch

infrastructure by increasing the number of jobs, job size, job

queue, etc. The author found that when there is a significant

delay in sending job to AWS Batch and running AWS EC2,

there is a little overhead in the actual running of the Jobs.

D. Cui, et al. [5] proposed a multi-objective optimization

to solve workflow scheduling based on a heterogeneous

distributed deep learning strategy. AWS Batch is a compute

service on AWS where scientists and developers can easily

and efficiently execute the processing of thousands of batch

jobs.

Due to the increasing demand for interactive

supercomputing, big-data analysis, machine learning

algorithms, and fast processing of thousands of jobs is

essential in reasonable throughput [B C]. C. Byun et al. [8]

proposed a pre-emptive approach to implement spot jobs on

the MIT super cloud system to utilize batch for the long-

running batches job. This new approach separates job pre-

emption and scheduling operation. This approach achieves 100

times faster performance than the standard scheduler with

automatic priority pre-emption.

Most existing workflow scheduling algorithms are tightly

bounded to compute resources. The compute resources in this

environment are not released or provisioned on-demand until

execution is completed. Such an environment directly affects

the efficiency of workflow scheduling. C. Lin et al. [9]

proposed SHEFT algorithms optimize the workflow time

scheduling and also elastically provisioned the resources.

A multi-core system can run more than one user program

concurrently. When the number of user programs exceeds the

number of core, oversubscription occurs. In the

oversubscription technique programs are executed in a time-

shared manner using the resources. In the traditional method,

oversubscription is used to enhance system utilization. V.

March et al. [10] suggested a batch scheduler for HPC with

virtualization technology.

Cloud computing is an advance distributed technology.

In this technology, there are various features like

heterogeneity, scalability, and virtualization of resources that

are most suitable for scientific workflow for processing

thousands of jobs and vast amounts of data. Many scheduling

algorithms have been proposed for scientific workflow. V.

Vinothina et al. [11] have presented an IWSACO with

variance in WFSACO. The author shows that IWF performs

better after the implementation and analysis of results.

J. Agarkhed et al. [12] have presented a multi-objective

optimization technique for resource provisioning to handle the

workload. A batch job is placed on an idle workstation in an

opportunistic scheduling algorithm to improve system

performance.

J. Abawajy et al. [13] have presented a new opportunistic

scheduling algorithm using three policies known as job

rotation, scheduling policy used in condor, and round-robin

policy. The result shows that the algorithm performs better

than the existing scheduling algorithm.

To enhance the throughput and system performance the

parallel programming environment is most suitable to handle a

heavy workload. As per other parallel processing

environments, time elasticity is insufficient for high

throughput. D. Kumar et al. [14] examined a runtime elasticity

environment for high throughput.

S. Rana et al. [15] investigated various workflow

scheduling algorithms to model high-performance throughput.

The author also identifies multiple challenges that need to be

addressed to utilize resources efficiently. They also analyze

pros and cons as well as list numerous research issues in

workflow scheduling algorithms.

Y. T. Chou et al. [16] also raises a core issue in solving

the workflow scheduling. The author proposed Search

Economics for Working Scheduling Algorithm (SEWSA) and

experimentally showed that the proposed algorithm

performance is better than the existing algorithm concerning

cost and makes span.

In high-performance scientific workflow scheduling,

many processes execute on different processors. This reduces

the system performance due to job dependency, frequent

communication among processes, and synchronization. To

handle these issues R. Balasubramanian et al. [17] proposed a

co-scheduling technique along with batch scheduling and gang

scheduling where resources are shared. The author concludes

that this technique works well when jobs are distributed

parallel on the entire machine.

░ 3. PROCEDURE
Currently, batch processing is a common method to execute a

heavy workload. AWS Batch is one of the best-managed

services to perform the task efficiently. AWS Batch allows

researchers, developers, and scientists to focus on solving

problems, analyzing methods used rather than managing the

resources. But before that, we need to complete the following

steps in setting up with AWS Batch according to the

guidelines given below [18-23].

Step 1- Create the following accounts

(a) AWS Console account

(b) GitHub account

(c) Docker hub account

Step 2- Install and configure AWS Command line Interface

 (CLI)

Step 3- Install Docker on AWS

Step 4- Create the AWS CloudFormation stack

(a) Log in to AWS CloudFormation console

(b) Create a cloud formation stack using the following steps

(i) Start Create Stack wizard

(ii) Select a stack template

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 144-149| e-ISSN: 2347-470X

 147 Website: www.ijeer.forexjournal.co.in A Cost-Effective and Scalable Processing of Heavy Workload

(iii) Specify stack parameters

(iv) Set the AWS CloudFormation stack options

(v) Review the stack

(c) Once stack creation is complete, select outputs tab to view

identifiers for the resources created.

Step 5- Upload input dataset to AWS simple storage service

(S3)

Step 6- Link GitHub repository containing necessary script

and template to Docker hub

Step 7- Create, and upload the Docker image

Step 8- Link Elastic Container Registry (ECR) to Docker

Step 9- Submit the sample AWS Batch jobs using the process

given below

(a) Create/select compute environment

(b) Create job queue

(c) Create job definition

(d) Submit job

░ 4. ARCHITECTURE
As per the architecture shown in figure-1, we use the

following parameters in configuration.

1. Region- N. Virginia

2. Compute- c4.xlarge

3. Storage- S3 standard

4. CloudFormation- We modeled the AWS resources

through CloudFormation. This resource can also be

configured through the AWS management console or

AWS CLI.

5. GitHub Repository (private) - The necessary scripts

are available here.

6. Docker desktop application- Image from Github

repository is pushed in Docker desktop application. In

place of the Docker desktop Application, ECR can also

be used.

7. Array Job- An array job is an application under AWS

Batch service which is used to share standard

parameters like memory, vCPUs, and job definition. It is

used to execute a set of different jobs with common

parameters by distributing concurrently and parallel

across multiple resources. A single job is divided into

child jobs as per array size declared during job creation.

These child jobs span over multiple EC2 instances to

execute concurrently [24].

Figure 2: AWS Batch workload process

Now, our data sets are available in the S3 bucket in .csv

format. Since we configured these arrangements to process the

heavy workload, the AWS Batch will fetch the image of our

scripts from the ECR/Docker desktop application. Now our

script process the data sets according to different

configurations of AWS Batch. Parallel execution of compute

environment is configured with a different scenario of job

queue and array size.

4.1 Cost of Resources
AWS generally charges for the resources named compute,

storage, and data transfer. There are no charges for the

configuring or architecting of resources. AWS charges based

on the "pay as you go" principle.

Here we have used S3 standard storage and c4.xlarge compute

services. Costs of these resources are shown in the tables given

below [25, 26].

░ Table 1. Cost of c4.xlarge EC2 instance

Instance

Name
Region vCPU

RAM

(MiB)

Storage

(GB)

Price /

hour

(USD)

c4.xlarge N. Virginia 4 7680 EBS only 0.199

░ Table 2. Storage Cost

S3 Standard/Per Month Cost/GB (USD)

Up to 50 TB $0.023

51TB - 500 TB $0.022

Over 500 TB $0.021

To process the heavy workloads like scientific

workload, machine learning algorithm, and big data [6, 7]

processing, we need high-performance computing (HPC)

resources but it is not always feasible for researchers,

scientists, and developers. Using AWS service charges

mention in table-1 and table-2, and our AWS Batch

configuration shown in figure-1, it becomes cost-effective and

feasible for every individual. The execution process of

scenario-1 and the scenario-2 process is given below.

░ 5. RESULT ANALYSIS
Scenario-1: We created 200 copies of the data set in S3 and

our scripts execute this data set with a different cluster of

compute. We used 5 instances of c4.xlarge. The execution

time in different scenarios is captured, calculated, and

represented in tabular and graphical form.

░ Table 3. Array size Vs Total execution Time

Array size Input files Execution time

0 200 25m 14s

2 200 12m 08s

4
200

5m 52 s

8
200

2m 38 s

10
200

2m 4s

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 144-149| e-ISSN: 2347-470X

 148 Website: www.ijeer.forexjournal.co.in A Cost-Effective and Scalable Processing of Heavy Workload

Figure 3: Array size Vs Total execution Time

Result discussion of scenario-1: In this scenario, we used 5

instances of c4.xlargge where each instance has 4 vCPUs. It

means a total of 20 vCPUs are available to execute our scripts

in parallel to process the dataset. When we take array size zero

means a single task executed 200 times sequentially that is not

a better utilization of the resources. When we take array size 4

means 4 scripts are executed concurrently on 20 vCPUs.

Similarly, when the array size is 10, then 10 scripts are

executed concurrently on 20 vCPUs. Table-1 and figure-3

shows that as the array size increases the execution time

decreases.

Scenario-2:

░ Table 4. Array size Vs Total execution Time

Array size Input files Execution time

0 200 26m 06s

2 200 12m 29s

4 200 6m 21 s

8 200 8m 14 s

10 200 11m 13s

Figure 4: Array size Vs Total execution Time

Result discussion of scenario-2: In this scenario, we used

only one instance of c4.xlarge. All other parameters are the

same as in scenario-1. In this only one instance with 4 vCPUs

are available. When the array size increases up to 4 the

execution time decreases and when the array size is greater

than 4, then more than 4 scripts are ready to execute

concurrently on vCPUs. This increases the waiting time as

well as communication overhead and hence execution time

increases.

It is clear from scenario-1 and scenario-2 that there is

a relation between array size and execution time. So in

architecting the resources, CloudFormation plays an important

role. As per architecture, array size must be taken carefully for

cost-effective batch processing for heavy work.

░ 6. CONCLUSION
In this research paper, we focus on the architecture and

configuration of AWS Batch service for cost-effective

processing of heavy workload with high throughput. As per

implementation results shown in table 3, we found that the

concurrent execution of jobs reduces the execution time. The

table 4 shows that first, the execution time decreases and then

increases because sufficient resources are not available as per

the size of the array and therefore the jobs are in a waiting

state also increases the execution time. So the configuration of

resources and array size must be taken carefully. As a future

direction, too many architecture with AWS Batch and other

AWS services may be possible. To enhance the fast accessing

and throughput of batch processing Amazon FSx for Lustre”

can also be used. Selection of instances, storage and other

AWS services to configuration of AWS Batch for high

performance computing (HPC) must be taken carefully.

░ 7. ACKNOWLEDGMENTS

We would like to express our appreciation to all those who

have supported us during our research and study in the

department of Computer Science at Banasthali Vidyapith,

Rajasthan, India.

░ REFERENCES
[1] AWS documentation on AWS Batch. Accessed on: Feb. 20, 2022

[Online]Available:

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html

[2] AWS documentation on AWS Batch Features. Accessed on: Feb. 20,

2022 [Online] Available: https://aws.amazon.com/batch/features/

[3] Chandrajeet Yadav, Vikash Yadav et al, “Authentication, Access

Control, VM Allocation and Energy efficiency towards Securing

Computing Environments in Cloud Computing”, Annals of the

Romanian Society for Cell Biology, Association of Cell Biology

Romania Publication, ISSN 1583-6258, Vol. 25, No. 6, pp. 17939-

17954, June 2021.

[4] Kyle M. D. Sweeney and Douglas Thain, 2018. Early Experience Using

Amazon Batch for Scientific Workflows. In Proceedings of the 9th
Workshop on Scientific Cloud Computing (ScienceCloud'18).

Association for Computing Machinery, New York, NY, USA, Article 5,

1–8.

[5] D. Cui et al., "Cloud Workflow Task and Virtualized Resource

Collaborative Adaptive Scheduling Algorithm Based on Distributed
Deep Learning," 2020 IEEE International Conference on Advances in

Electrical Engineering and Computer Applications(AEECA), 2020, pp.

137-14.

[6] Vikash Yadav et al, “Healthcare, IoT, and Big Data Support”,
“Empowering Artificial Intelligence through Machine Learning New

https://www.ijeer.forexjournal.co.in/
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://aws.amazon.com/batch/features/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 144-149| e-ISSN: 2347-470X

 149 Website: www.ijeer.forexjournal.co.in A Cost-Effective and Scalable Processing of Heavy Workload

Advances and Applications”, Print ISBN: 9781771889308, pp. 57-81

Published by “CRC Press & Apple Academic Press”, July 2021.

[7] C. Byun et al., "Best of Both Worlds: High Performance Interactive and

Batch Launching," 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1-7.

[8] C. Lin and S. Lu, "Scheduling Scientific Workflows Elastically for

Cloud Computing," 2011 IEEE 4th International Conference on Cloud

Computing, 2011, pp. 746-747.

[9] V. March, S. See, M. Garg, P. Gupta and T. Atrey, "Batch Scheduler for

Personal Multi-Core Systems," in 2013 12th International Symposium
on Distributed Computing and Applications to Business, Engineering &

Science, Hong Kong, China, 2010 pp. 584-587.

[10] V. Vinothina, "Scheduling scientific workflow tasks in cloud using

swarm intelligence," 2017 IEEE International Conference on Current

Trends in Advanced Computing (ICCTAC), 2017, pp. 1-5.

[11] J. Agarkhed and R. Ashalatha, "Optimal workflow scheduling for
scientific workflows in cloud computing," 2016 International

Conference on Emerging Technological Trends (ICETT), 2016, pp. 1-6.

[12] J. Abawajy, "Job Scheduling Policy for High Throughput Computing

Environments," in Proceedings of the Ninth International Conference on

Parallel and Distributed Systems, Taiwan, China, 2002 pp. 605.

[13] D. Kumar, Z. Shae and H. Jamjoom, "Scheduling Batch and

Heterogeneous Jobs with Runtime Elasticity in a Parallel Processing
Environment," 2012 IEEE 26th International Parallel and Distributed

Processing Symposium Workshops & PhD Forum, 2012, pp. 65-78.
10.1109/IPDPSW.2012.10

[14] S. Rana, A. Choudhary and K. J. Mathai, "A critical analysis of

workflow scheduling algorithms in infrastructure as a Serivce Cloud and

its research issues," 2016 IEEE Students' Conference on Electrical,

Electronics and Computer Science (SCEECS), 2016, pp. 1-6.

[15] Y. -T. Chou, S. -J. Liu, T. -C. Wu, C. -L. Wu, C. -W. Tsai and M. -C.

Chiang, "An Effective Algorithm for Cloud Workflow Scheduling,"
2018 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), 2018, pp. 3603-3608.

[16] R. Balasubramonian and N. Madan, "Power Efficient Approaches to

Redundant Multithreading" in IEEE Transactions on Parallel &
Distributed Systems, vol. 16, no. 08, pp. 1066-1079, 2007.

[17] Docker Manuals on Docker Hub Quickstart. Accessed on: Feb. 20, 2022

[Online] Available: https://docs.docker.com/docker-hub/

[18] AWS documentation Installation of AWS CLI. Accessed on: Feb. 20,

2022 [Online]

Available:https://docs.aws.amazon.com/cli/latest/userguide/getting-

started-install.html retrieve from www.aws.amazon.com

[19] AWS documentation on docker installation on Linux AMI. Accessed on:
Feb. 20, 2022 [Online] Available:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker

-basics.html

[20] AWS documentation on AWS CloudFormation. Accessed on: Feb. 20,

2022 [Online] Available: https://docs.aws.amazon.com/cfn-
guard/latest/ug/cfn-guard.pdf

[21] GitHub documentation on Publishing Docker images. Accessed on: Feb.

20, 2022 [Online] Available:

https://docs.github.com/en/actions/publishing-packages/publishing-

docker-images

[22] AWS documentation on AWS Batch API Reference. Accessed on: Feb.
20, 2022 [Online]

Available:https://docs.aws.amazon.com/batch/latest/APIReference/batch

-api.pdf

[23] AWS documentation on AWS Batch -Array Jobs. Accessed on: Feb.

20, 2022 [Online] Available:
https://docs.aws.amazon.com/batch/latest/userguide/array_jobs.html

[24] Amazon EC2, On-Demand Pricing. Accessed on: Feb. 20, 2022 [Online]

Available: https://aws.amazon.com/ec2/pricing/on-demand/

[25] Cloud Storage on AWS, Amazon S3 pricing. Accessed on: Feb. 20, 2022

[Online] Available: https://aws.amazon.com/s3/pricing/

© 2022 by the Nagresh Kumar and Sanjay

Kumar Sharma. Submitted for possible open

access publication under the terms and

conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cfn-guard/latest/ug/cfn-guard.pdf
https://docs.aws.amazon.com/cfn-guard/latest/ug/cfn-guard.pdf
https://docs.github.com/en/actions/publishing-packages/publishing-docker-images
https://docs.github.com/en/actions/publishing-packages/publishing-docker-images
https://docs.aws.amazon.com/batch/latest/APIReference/batch-api.pdf
https://docs.aws.amazon.com/batch/latest/APIReference/batch-api.pdf
https://docs.aws.amazon.com/batch/latest/userguide/array_jobs.html
https://aws.amazon.com/s3/pricing/

