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░ ABSTRACT- One of the active research areas in recent years that has seen researchers from numerous related fields 

converging and sharing ideas and developing feasible solutions is the area of hardware security. The hardware security discipline 

deals with the protection from vulnerabilities by way of physical devices such as hardware firewalls or hardware security modules 

rather than installed software programs. These hardware security modules use physical security measures, logical security 

controls, and strong encryption to protect sensitive data that is in transit, in use, or stored from unauthorized interferences. 

Without mechanisms to circumvent the ever-evolving attacking strategies on hardware devices and the data that they process or 

store, billions of dollars will always be lost to attackers who ply their trade by targeting such vulnerable devices. This paper, 

therefore, proposes an integrated cryptographic SoC architecture solution to this menace. The proposed architecture provides 

security by way of key exchange, management, and encryption. The proposed architecture is based on a True Random Number 

generator core that generates secret keys that are used in Elliptic Curve Diffie-Hellman Key Exchange to perform elliptic curve 

scalar multiplication to obtain public and shared keys after the exchange of the public keys. The proposed architecture further 

relies on a Key Derivation Function based on the CubeHash algorithm to obtain Derived Keys that provide the needed security 

using the ChaCha20_Poly1305 Authenticated Encryption with Associated (AEAD) Data Core. The proposed Integrated SoC 

architecture is interconnected by AMBA AHB-APB on-chip bus and the system is scheduled and controlled using the PicoRV32 

opensource RISC-V processor. The proposed architecture is tested and verified on the Virtex-4 FPGA board using a custom-

designed GUI desktop application. 
 

General Terms: SoC, Cryptography, Hardware Security, RISC-V et. al. 
 

Keywords: PicoRV32, ECC, FPGA, TRNG, AEAD_ChaCha20_Poly1305. 

 

 

 

░ 1. INTRODUCTION   
According to research by Statista in 2019, It is estimated that 

by 2025, up to about 75 billion devices will be connected to 

the internet [1]. This has been made possible due to IoT 

capability-extending technologies and platforms such as the 

5G and the gigabit-fiber deployment. These IoT or ubiquitous 

devices have brought an enormous amount of flexibility and 

comfort to the lives of individuals. For instance, in a smart 

home, people can now sit in the comfort of their offices or 

place of work and turn on the air conditioning system in their 

homes to get the place well-conditioned before they arrive at 

home. Not all, smart homes can sense when their occupants 

are present and adjust the level of lightning in the home 

accordingly [29]. In the area of healthcare and fitness, 

connected IoT devices are constantly gathering data that opens 

a host of possibilities by way of an early and more accurate 

diagnosis of an ailment for better and effective treatment 

[2][30][31]. 
 

Although numerous benefits come with these IoT systems, 

devices, and platforms, certain key factors among many others 

are negatively influencing the growth and adoption of these 

systems. Three of these key factors are security, standards, and 

skill [3]. If the data being collected cannot be secured, then it 

becomes a challenge to adopt these devices. There are several 

implementation standards. Some are highly developed, others 

are conflicting and overlapping, and the rest are yet to be 

developed. Choosing the right standard for a particular 

purpose makes it a challenge. The final key inhibitor is Skill. 

The availability of adequately skilled and knowledgeable 

programmers. With all these sensors and their collected and 

processed data comes the highest need for securing these data 

which now translates to human lives. IoT security is becoming 

a major concern in recent years. The world has outgrown 

malware that steal private information. It now poses physical 

threats to its subscribers should these security barriers be 

breached. 
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Figure 1: Overview of an Integrated Encryption Scheme 

 

The greatest problem with these devices is that most of the 

manufacturers rolling out these devices have little to no 

measures in place to handle these device-related security risks 

and issues which increases at an alarming rate. Lack of 

security for these IoT devices can result in potentially 

catastrophic situations that can cost an individual, an 

organization, or a nation at large several fortunes. 
 

Having such an exponential increase in the number of 

connected devices has led to a host of new and evolving highly 

sophisticated cybersecurity threats and attacks leading to 

information insecurity [4]. This has led to manners of such 

systems being on high alert and hardware security becoming 

one of the most critical parts of System-on-chip (SoC) design 

because of its usage for the internet of things (IoT) devices, 

cyber-physical systems, and embedded computing systems. 

This is the case because hackers will always try to find and 

exploit a hardware or software system that allows unrestricted 

access to assets or services mainly for financial gains. Since 

connected devices attacks are on the rise and are evolving by 

the day, it has left all interested parties vulnerable, that is both 

the consumer of these devices to the service providers and 

manufacturers. The ever-increasing complexity of on-chip 

components and long supply chain make SoCs vulnerable to 

hardware and software attacks. These attacks can be initiated 

either from inside the chip or from malicious software 

components.  
 

Therefore, this paper presents an integrated cryptographic SoC 

architecture with operations similar to that of Figure 1 and can 

provide an alternative solution to securing connected devices. 

In Section 2, a general discussion and brief overview of an 

integrated encryption scheme are presented. Details on the 

standardized Elliptic Curve Integrated Encryption Scheme 

(ECIES) are also presented. Section 3 discusses the proposed 

integrated cryptographic System-on-a-Chip and its constituent 

IP cores. In Section 4, the simulation result of the proposed 

SoC together with its synthesis results are presented. The 

paper ends with the conclusion and future works in Section 5. 
 

░ 2. OVERVIEW OF ELLIPTIC CURVE 

INTEGRATED ENCRYPTION SCHEME 
Discrete Logarithm Augmented Encryption Scheme (DLAES) 

[5] was initially presented in 1997 by Bellare Mihir and 

Rogaway Philip Diffie-Hellman. In the year 1998, it was 

jointly renamed the Augmented Encryption Scheme (DHAES) 

[6] by Michel Abdella and the authors in [5]. To avoid 

confusing the name in [6] with the Advanced Encryption 

Standard (AES), it was finally renamed Diffie-Hellman 

Integrated Encryption Scheme (DHIES) [7] in 2001, and, the 

integrated encryption scheme was proposed. The DHIES 

which was an extension of the ElGamal encryption protocol 

[8], integrated security primitives which included public and 

symmetric-key cryptographic algorithms and Message 

Authentication Code hash functions. DHIES was standardized 

in 2001 and was included in the ANSI X9.63 standard [9] with 

its subsequently modified versions in the 2004 IEEE 1363a 

standard [10].   
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Figure 2: Proposed Cryptographic SoC Architecture 
 

 

The ECIES is an amalgamation of encryption schemes [11] 

that interoperates to result in unified security. The integrated 

scheme comprises of the following functionalities:  

 

1. Key Agreement Function such as ECDH is the 

function used to generate shared keys for 

communicating parties. 

2. Key Derivation Function such as HKDF is used to 

generate a set of multiple keys for other functions in 

the encryption scheme. 

3. Block Cipher such as AES, which is used for the 

actual encryption of data/information. 

4. Hash Function such as SHA-1 is a function that 

always produces a fixed length of output data from 

any given input data. 

5. Message Authentication Code is a code used for 

authentication by the various communicating parties 

 

░3. PROPOSED CRYPTOGRAPHIC SOC 

ARCHITECTURE  
Figure 2 shows the proposed integrated cryptographic SoC 

architecture to equip hardware devices with secured means of 

communication and information exchange. The proposed 

architecture is based on a PicoRV32 RISC-V synthesizable 

processor as the embedded system processor that performs the 

system scheduling and control of the proposed integrated 

cryptographic SoC platform. The proposed architecture is an 

integration of previous works on ECC [12], TRNG [13], and 

AEAD_Chacha20_Poly1305 [14]. 

 

3.1 PicoRV32 Synthesizable Processor 
PicoRV32 is an open-source hardware synthesizable CPU core 

that implements the RISC-V RV32IMC Instruction Set. 

PicoRV32 can be configured as RV32E, RV32I, RV32IC, 

RV32IM, or RV32IMC core, with an optionally built-in 

interrupt controller. PicoRV32 is core designed with 

optimization regarding the hardware area or size and the 

maximum operating frequency. For this reason, the PicoRV32 

lacks any multi-stage pipelines and operates at maximum 

frequencies that range between 250-450 MHz based on test on 

the 7-Series of the FPGAs by Xilinx [15]. The input ports of 

the PicoRV32 shown in Figure 3 include the system clock—

clk, active low reset—resetn, memory ready strobe signal—

mem_ready, and a 32-bit wide mem_rdata, which is data 

read from the memory to the processor.  

 

Figure 3: PicoRV32 RISC-V Simplified Block Architecture 

 
PicoRV32’s output ports include trap strobe signal which is 

asserted when the processor encounters an unfamiliar 

instruction, mem_addr, mem_wdata, a 3-bit byte strobe 

signal—mem_wstrb, and a valid data indication signal 

mem_valid. The PicoRV32I’s area was further reduced by 

taking out the hardware multipliers and dividers that were 

designed as part of the original architecture since the proposed 

integrated SoC did not have use for them. 

3.2  Elliptic Curve Diffie-Hellman (ECDH) 
Two parties interested in exchanging communication based on 

a key agreement scheme are required to each provide some 

http://www.ijeer.forexjournal.co.in/
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form of input or information to be used in creating a shared 

session key. The anonymous key agreement protocol allows 

two parties—popularly referred to as Alice and Bob—to both 

agree on an elliptic curve septuple (m, f(x), a, b, G, n, h). 

From the septuple and using algorithm from Table 1, the 

ECDH shared key [16]—which is a variant of the Diffie-

Hellman key exchange [17]—can then be computed in 4 main 

stages. To generate the public key for each party involved in 

the communication requires the elliptic curve point 

multiplication computation discussed earlier. The following 

section introduces the proposed architecture of the ECSM 

processor core based on the doubling and additions of points 

discussed. The elliptic curve cryptography-based key 

possesses the advantage of shorter-length key size compared 

to other public-key cryptography such as RSA and the base of 

its security which is the discrete logarithm problem (DLP) 

which make the ECC a trapdoor function. Figure 4 shows us 

the various layers of abstraction involved in a single ECC 

protocol computation. At the very top of the layer is where we 

find the various implementation or usage of ECC. This layer, 

therefore, encompasses every layer beneath it. Beneath this 

layer is the scalar point multiplication layer which consists of 

the group operations of the point-double and point additions—

the third layer from the top.  

░ Table 1. ECDH Key Exchange Scheme 
 

Steps ECDH Action to Perform 

1: Receiver (Rx) and Transmitter (Tx) randomly generate random 

numbers between 1 and n (subgroup order—n)  and  (private 
keys) respectively 

2: Alice (Rx) and Bob (Tx) then generate individual public keys with 

the expression below 

  = (  x P) 

  = (  x P) where P is the base point (G) of the elliptic curve 

3: Alice (Rx) and Bob (Tx) can now exchange their public keys   

and   over an unsecured channel 

4: Alice (Rx) and Bob (Tx) can now independently compute the 

agreed or shared key as follows 

 =    x  =  x ( x P) 

 =  x  =  x ( x P) 

i.e.              =   

 
The point doubling and point additions operations also intern 

consist of the finite field arithmetic operation—this is the final 

layer in the stack—which performs the finite field addition, 

multiplication, and square and operations. The Elliptic Curve 

Scalar Multiplier (ECSM) architecture performs three key 

computations, these are transforming the coordinates from 

affine to projective domain, computing the doubling and 

additions, and then finally converting back to affine coordinate 

and extracting the resulting coordinates as shown in Figure 5. 

Based on the algorithm in Figure 5, the architecture in Figure 

6 was proposed. As already stated, the key modular arithmetic 

modules that are utilized in this architecture are the finite field 

adder, multiplier, squarer, and divider. The finite field 

multiplication core is the most important module in the design 

of an ECC scalar point multiplication hardware architecture.  

 

 
Figure 4: Abstraction Layers of ECC Protocols 

  

 
 

Figure 5: Montgomery Ladder Scalar Multiplication Over GF(2m) 

Algorithm 

 

 
 

Figure 6: Montgomery Ladder Scalar Multiplication Over GF(2m) 

Algorithm 

http://www.ijeer.forexjournal.co.in/
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The bit-serial approach implemented in this proposed 

architecture requires larger amounts of clock cycles to perform 

the field multiplication compared to the digit-serial approach. 

However, the area required for the digit-serial implementation 

is lesser than that of the combinational circuit but more than 

that of a bit-serial-based architecture. The ESCM architecture 

proposed was based on three (3) finite-field multipliers to 

improve the efficiency of the proposed architecture. As shown 

in the proposed scheduler for the controller, which is shown in 

Figure 7, the proposed ECSM core completes its point 

addition and doubling only in a time of 2M + 3 clock cycles 

where M is the number of bits in the largest-sized operand. 

 

 
 

Figure 7: Proposed ECSM Controller Schedule  

 

 

Figure 8: Proposed Multi-Edge Multi-Array Sampling TRNG Architecture 
 

3.3 True Random Number Generator (TRNG) 
As shown in the steps required to locally generate the same 

shared keys required for secured communication between 

parties, there is the need for a secret key generation in the first 

step of the algorithm in Table 1. In the proposed integrated 

cryptographic system. To achieve this, this paper proposes a 

true random number generator that uses basic and standard 

logic cells. The entropy source is based on a novel design of a 

multi-edge multi-mode ring-oscillator architecture shown in 

Figure 8. Each oscillator chain is made up of 3-multi-edge 

rings that are combined to form the oscillator chain. The use of 

the ring oscillators to build the architecture of the multi-edge 

entropy source as shown in Figure 8, increases the instability 

introduced into the bits sampled. The proposed architecture 

also includes a proposed multi-sampling unit that is simple to 

implement and is based on flip-flops. The proposed TRNG is 

cryptographically post-processed to obtain the final true 

random numbers. This paper opted for the cryptographic post-

processing of bits because with this approach when the source 

of entropy ceases to function, the TRNG automatically 

becomes a pseudo-random number generator. A total of 1 GiB 

of data was generated based on the proposed TRNG 

architecture on a Spartan-6 FPGA equipped test board. The 

random samples were generated at 25MHz and 50MHz of 

sampling clock frequencies ( ) each. Since the proposed 

architecture does not embed an online test architecture, the 

sampled results were evaluated through NIST’s statistical test 

suites[18] to establish if the generated bits possess the qualities 

that make them fit for use as TRNGs. The minimum pass rate 

for each statistical test except for the random excursion test 

was approximately 96 for the 100 binary sequences sample 

size. And from the results obtained success rates of above 0.96 

were recorded. Not all, the P-values recorded are greater than 

0.001, indicating that the bit sequences from the proposed 

TRNG passed using a significance level of alpha. In the 

ECDH module, the TRNG core generates either a 163-bit or 

233-bit long secret key for the computation of the shared key 

process. 
 

3.4 CubeHash-based HMAC KEY Derivation 

Function (HKDF) Core 

http://www.ijeer.forexjournal.co.in/
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The CubeHash is a collection of hash functions proposed and 

designed by Daniel J. Bernstein [19]. This set of hash 

functions was one of NIST’s SHA-3 competition candidates 

that were eliminated in the second round although it is yet to 

be broken [20]. A key advantage of this algorithm is its 

simplicity. This hash algorithm uses a uniform structure for 

processing message digests of lengths of up to 512 bits, using 

a tweakable number of rounds and message block sizes. Six 

parameters namely parameters i, f, h, r, b, and m specify the 

exact tweak or setup of the CubeHash algorithm. The i-

parameter specifies the number of rounds of the compression 

function to be executed to obtain the initialization vector. This 

parameter spans the range of 1 up to ∞ but is typically 16. The 

CubeHash notation is written as CubeHashi+r/b+f-h(m) to 

describe a specific variant of the algorithm. The parameter: i 

represents the number of rounds of compression to obtain the 

initialization vector, f denotes the number of round 

computations for the final message block, h denotes the width 

of the message digest which is typically between 8-bits to 512-

bits. The parameter r represents the round compression for 

each message block, b determines the number of bytes per 

block of a message. Finally, m represents the length of the 

message that can be processed. The variant of CubeHash 

implemented in this research is the CubeHash160+16/64+32-

512. Figure 9 shows the top module of the implemented 

CubeHash message hashing function. The compression 

algorithm of the CubeHash shown in the drawn-out image to 

the right in Figure 9 consists of 2 addition modulo-232 

operations, 2 XOR operations, 2 rotation operations, and 4 

swapping operations. The round compression function—

Figure 9—operates on the 1024-bit internal state, organized as 

32 long words. Each of these 32 long words is 32-bits wide. 

The State is divided into two halves, each of size 512 bits and 

labeled as X and Y. This division is performed because the 

compression function only performs 10 simple operations on 

half of the internal state which is (512-bits) during each of the 

10 compression rounds. At the end of each compression round 

the outputs X’ and Y’ are obtained from their respective X and 

Y halves. The X’ and Y’ outputs are fed back to X and Y if 

multiple rounds of the compression are required. Aside from 

being used as the cryptographic post-processing of the TRNG, 

the CubeHash algorithm was also employed in the derivation 

of keys that are used in the encryption of data or the 

generation of message authentication codes (MAC).  

 

 

Figure 9: CubeHash Architecture for used in the Proposed TRNG and HMAC 

 

The key derivation function employed is the HMAC-based 

Key Derivation Function (HKDF). This is a simple key 

derivation function that is based on the HMAC message 

authentication code. HKDF (RFC 5869) [21] follows the 

“extract-then-expand” phases. The first stage takes the keying 

material which is the shared key generated from ECDH and 

extracts from it a fixed-length pseudorandom key R. The 

second phase then expands the key R into several additional 

pseudorandom keys which become the output of the key 

derivation function. For the implemented HKDF in this paper, 

the hash algorithm that was used is the CubeHash shown in 

Figure 9. The value of info used for this HKDF is 163-bit 

0x7deedefefeefededeedefefeefededeedefefeefe. The salt and 

input keying material (IKM) are the ECDH’s generated y and 

x coordinates, respectively. As shown in Figure 10, the input 

key is padded to a 255-bit long key and used to extract the first 

key that is subsequently used in the “Expand Phase” of the 

HKDF. The final derived key is an addition of the previously 

generated output while the number of iterations is not realized.  

 

 
Figure 10: Proposed Implementation of HMAC-based Key 

Derivation Function 

http://www.ijeer.forexjournal.co.in/
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3.5 AEAD ChaCha20_Poly1305 Stream Cipher 

Architecture 
The Cryptographic algorithms – ChaCha20 stream cipher [22] 

and Poly1305 [23] enhance security margins and achieve 

higher performance measures on a wide range of software 

platforms and have proven superior to its counterpart, the 

AES, in the software domain. This new stream cipher, 

compared to the benchmark AES, has recently been 

standardized but their implementations in hardware have had 

extraordinarily little to not very desirable results particularly in 

terms of area. In this paper, a compact, low-area, and high 

throughput ChaCha20-Poly1305 Authenticated Encryption 

with Associated Data (AEAD) architecture consisting of the 

ChaCha20 and Poly1305 algorithms are investigated and 

presented. The key area of improvement for the proposed 

hardware architecture is the simplified quarter-round design 

approach. This architecture uses the addition, rotation, and 

exclusive-or algorithms operators (gates). 

 

 
 

Figure 11: ChaCha20 Encryption Pseudo-Code Listing 

 

 
 

Figure 12: Initial State Matrix Setup for the ChaCha20 Stream 

Cipher 

The ChaCha20 algorithm, shown in the listing of Figure 11, is 

composed of the main core round algorithm, known as the 

Quarter-Round operation. This algorithm works on a 4x4 

matrix each of 32-bits shown in Figure 12, resulting in a total 

of 512-bit data. The upper-left of the matrix is marked index-0 

and the bottom right is marked index-15. The ChaCha20—as 

can be deduced from the name—requires a total of 20 rounds 

to obtain the final keystream used to create the stream cipher. 

The rounds are executed as column and diagonal rounds 

alternatively. The upper 128-bits of the initial state matrix 

setup shown in Figure 12 is filled with the constant of the 

ASCII converted sentence “expand 32-byte k.” The next 256-

bits which form the middle section of the initial state matrix 

contain the key for the encryption or decryption of data. This 

is followed by a 32-bit block counter. This block counter 

uniquely identifies every 64-byte (512-bit) block of data. With 

the 32-bit count value, a maximum of 256-gigabyte of data can 

be encrypted. The nonce which is the last 96-bit of the state 

matrix block is a unique number that is used to encrypt each 

block.  
 

 
 

Figure 13: Proposed Hardware Architecture for ChaCha20 4xQR 

 

 
 

Figure 14: Proposed Hardware Architecture for ChaCha20 4xQR 

http://www.ijeer.forexjournal.co.in/
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That is, the nonce should not be repeated for the same key. In 

other words, the nonce and the counter can be combined to 

perform the same purpose. This means that, effectively, a 128-

bit nonce encrypts data of sizes above 256-gigabyte. To obtain 

a cipher using the ChaCha20 algorithm, the rounds are 

executed as column and diagonal rounds alternatively as 

shown in Figure 11. A total of twenty (20) rounds are 

required. The proposed architecture computes one diagonal 

and one column round in a cycle. In a pipeline fashion, the 

proposed architecture shown in Figure 13 computes the 

ChaCha20 cipher in twenty (20) clock cycles rather than in 

eighty (80) The 256-bit input key and the nonce are passed 

through a little-endian serializer to convert the bits into little-

endian form before being recombined into the initial state 

matrix. The initial state matrix then computes the final matrix 

which is also known as the keystream when the initial state 

matrix has been added after the twenty (20) clock cycles being 

controlled by the controller shown in Figure 13. At the end of 

the twenty (20) clock cycles, the plaintext is XORed with the 

keystream to obtain the stream cipher for the specified block 

of 64-bytes of data. If the data is larger than the 64-bytes, the 

count is increased by 1 to generate a unique set of the nonce 

that is used to identify each block of 64-bytes of data. The 

nonce is also increased changed for every key that is used to 

encrypt or decrypt data. Poly1305 module takes as input, 256-

bit key, and an arbitrary-length message. 

 

The 256-bit key to this module is partitioned into two halves 

as can be seen from the algorithm in Figure 14. The lower half 

of the key is assigned to the variable ‘r’ and the upper half is 

assigned to the‘s’ variable. The value of ‘r’ is clamped. The 

matrix for the clamping is a 4x4 matrix. Each vector location 

is an 8-bit value occupying 16 indexes to result in a total of 

128 bits, the size of ‘r’. The upper left corner is indexed 15 

and the lower right corner is indexed 0. The term OC 

represents Odd Clamp which is performed to clear the top four 

bits of that particular vector or matrix index to a value zero. 

The NC—No Clamp, represents the areas of the ‘r’ vector that 

is not affected by the clamp. The final term which is the EC 

represents Even Clamp. The Even Clamp is performed to clear 

the bottom two bits of the value at that vector index or 

location. This clearing will make the value evenly divisible by 

4. In the 4x4 matrix of r, r[3], r[7], r[11] and r[15] fall under 

the Odd Clamp, the r[4], r[8], r[12] fall under the Even 

Clamp. To perform the clamp, A straightforward bitwise AND 

is performed on the vector r with the value 128-bit 

0x0ffffffc0ffffffc0ffffffc0ffffff. The value of the prime number 

(P), used to perform the modulo computations, can be 

computed directly by performing a left shift of 130 on the 

value 1 and then subtracting 5 from the resulting value. This 

result is the 131-bit long hexadecimal number: 

0x3fffffffffffffffffffffffffffffffb. 

 

The Hardware Implementation of these algorithms focuses on 

improving these two core algorithms in terms of area, speed, 

and throughput. The ChaCha20 is employed to generate a 

keystream which is the result obtained after adding the initially 

constructed state matrix to the resulting matrix after the rounds 

of computation—this is 20 cycles for the 4xQR architecture or 

80 cycles for the 1xQR architecture for this research. This 

keystream is then combined with the plaintext to obtain the 

ciphertext. At the core of ChaCha20’s computation is what is 

known as the quarter-round computations. This structure can 

be implemented in several ways. Examination of the design in 

both pipeline and parallel architectures was performed. The 

design that used the pipeline approach reported a larger 

hardware area while improving operating frequency 

drastically. This is due to the reduction in the critical path of 

the architecture. 

 

There are three main approaches to executing authenticated 

encryption. The form involves encrypting the data and then 

using portions of the encrypted data to generate a MAC tag 

known as the Encrypt-then-MAC. The other form is 

generating a MAC from the plaintext or data to be encrypted. 

This MAC is then sent in addition to the encrypted plaintext 

(ciphertext) in what is known as the Encrypt-and-MAC. The 

final is where the MAC is generated from the plaintext. The 

MAC and the plaintext are then combined to form new 

intermediate data. This intermediate data is then encrypted to 

form a ciphertext. This form is termed the MAC-then-

Encrypt. The ChaCha20-Poly1305 [24] implements a variant 

of this form of authenticated encryption used in TLS and its 

predecessor the SSL [25] [26]. The Associated Data that is 

appended to this form of authenticated encryption is to ensure 

it is contextually accurate. What this means is that moving a 

portion of a valid ciphertext to another portion will turn out to 

be invalid and cause its detection. The remaining architecture 

shown in Figure 15, was implemented using the two modules 

the ChaCha20 stream cipher and the Poly1305 authenticator is 

presented in this sub-section. The main components modules 

of the overall architecture use the individually built modules. 

Since this is a variant of MAC-then-Encrypt, the key for the 

authentication is generated using the ChaCha20. For this key 

generation, the block_count is kept at zero. After the done 

signal is asserted, the keystream that is generated will be used 

to form the key to the Poly1305. The highest 256-bits of the 

keystream is captured and used as the poly1305 one-time key. 
The keys are clamped as explained in the section above and 

the Poly1305 module is enabled to begin execution. When the 

poly_done signal is asserted, we have a 128-bit value which 

will serve as our authentication tag for the specified batch of 

data being encrypted. The Main_Controller unit shown in 

Figure 15 asserts the signal for the ChaCha20 module to be 

executed again to now encrypt the data. The same key, nonce 

but with the block_count now set to one and increases for each 

block. The increment can be linear or randomly generated this 

ensures that the effective nonce is different for each block of a 

512-bit chunk of data to be encrypted. After this has been 

completed, the module AEAD_Recon_Data is enabled for a 

data reconstruction for the tag generation. The data is 

reconstructed by first placing the AAD data from bit zero 

upwards. This is followed by the 64-bit size of the AAD 

(AAD_size). Next in the concatenation is the ciphertext that 

has been generated and then finally the 64-bit little-endian 

integer representing the size of the ciphertext. The design can 

be parameterized to manage variable sizes. For this design, the 

message length used is 512-bit and the AAD utilized is 96-
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bits. This implies that a reconstructed cipher data of size 736-

bit long for the Poly_CSA. The total clock cycles required to 

generate the authentication tag and the ciphertext is 1350 

cycles. This number of cycles is broken down as follows: 20 

clock cycles required for generating the one-time-key for 

authentication, 20 clock cycles to generate the ciphertext, and 

about 1310 cycles required for the modulo reduction 

arithmetic. 

 

 
 

Figure 15: Block Diagram of the Proposed 

AEAD_ChaCha20_Poly1305 Architecture. 

 

3.6 On-Chip Bus Communication Protocols 
On-chip buses are not physical buses yet perform the function 

of interconnecting modules to enhance smooth communication 

and information interchange. Different SoC bus architectures 

exist. Some of these buses include the AMBA (Advanced 

Microcontroller Bus Architecture) from ARM. AMBA is a 

leading on-chip bus architecture that guarantees high 

performance for design. Bus arbitration techniques such as 

priority, round-robin, Time Division Multiple Access 

(TDMA), Code Division Multiple Access (CDMA). Three 

different bus architectures are defined under the AMBA 

specification. These are the Advanced High-Performance Bus 

(AHB), Advanced Systems Bus (ASB), and the Advanced 

Peripheral Bus (APB). AHB is suitable for high-performance 

designs, supports multiple bus-master operations, burst and 

split transfers, and wide data and address configuration. The 

APB is a peripheral bus used to connect low-speed 

peripherals. Between these two is the ASB. This is a cost-

effective bus that allows multiple bus master operations and 

burst and pipelined transactions. The most current bus 

architecture is the Advanced eXtensible Interface (AXI) also 

from the ARM. The AXI is specifically intently designed for 

high-speed, high-performance, and high-frequency SoC 

designs. Notable features are the separate data and address 

phases, support for the unaligned transfer of data, and burst 

transfers. Multiple outstanding addressing and out-of-order 

transactions are equally supported. Arbitration schemes 

supported are the same as those supported by AMBA. In this 

paper, the bus communication protocol designed is the AHB 

bus for the system modules and then the APB for the 

peripheral communication with the UART, 7-Segment, and 

LEDs. The bus designed for the proposed SoC architecture has 

a data width of 32-bit and does not support all the modes of 

data transfers. 
 

3.7 Additional SoC Architecture Components 
The Direct Memory Access (DMA) controller is a simple 

module designed to perform the functionality of data read-

write without the involvement of the system processor. The 

designed DMA accesses the on-chip bus to read and write data 

to the SRAM core. The DMA core has both master and slave 

bus interfaces. It operates as a bus master after the system 

processor hands over read-write functionalities to it through its 

slave interface. The DMA controller modeled in this paper has 

a direct connection to the UART core. This allows the DMA 

to transfer large data files between the SRAM and UART 

cores. The bus master hands over control of read-write data to 

the DMA by sending information regarding the start address of 

the transfer, the total amount of data to be transferred, and the 

transaction type which includes reading of plaintext from the 

UART to the SRAM, sending of plaintext or raw data to the 

AEAD core and writing the ciphertext back to SRAM and 

finally reading the ciphertext from the SRAM and sending it to 

UART. The UART core utilized in this SoC is the 

UART16550D [27] which is compatible with the industry-

standard National Semiconductors’ 16550A device. The 

UART core operates in either 8-bit or 32-bit data bus modes 

and operates in the FIFO-only mode. The UART core is also 

equipped with register level and functionality which is 

compatible with the NS16550A allowing the possibility of 

baud rate programing and FIFO size programming. The 7-

Segment array is also added to the SoC architecture to display 

the bottom 32-bits of the Message Authentication Code Tag 

that is generated from the Poly1305. 
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Figure 16: Floorplan of the Proposed Integrated Cryptographic SoC on a Zync-7000 FPGA Device. 

 

 

░ 4. HARDWARE SYNTHESIS RESULTS 

AND ANALYSIS 
The elliptic curve-based integrated cryptographic SoC was 

designed using Verilog HDL. The proposed cryptographic 

SoC was synthesized using Precision RTL Synthesis Tool 

from Mentor Graphics. The proposed SoC architecture and its 

sub-IPs were simulated for both functional and timing 

correctness using the ModelSim 64-bit 10.6d standard edition. 

Synthesis results of the proposed integrated cryptographic SoC 

architecture are summarized in Table 2. The results are 

compared to a similar cryptographic core designed in [28]. 

Comparing the hardware resources required for similar 

modules in both implementations, it was observed that the 

proposed integrated cryptographic SoC, synthesized on similar 

Vertix-5 FPGA occupied about 80% fewer Slices compared to 

the TLS designed in [28]. Table 4 summarizes the hardware 

resources required by [28] and Table 3 summarizes the 

hardware resources required by similar algorithms or modules 

in the proposed SoC architecture. Except for the HMAC, the 

common modules in both designs occupied fewer resources in 

the proposed integrated cryptographic SoC architecture. The 

HMAC for the proposed integrated cryptographic SoC 

required more hardware resources because it was based on the 

CubeHash hashing function rather than the SHA-256 used by 

[28]. Additionally, the proposed SoC utilized no DSP blocks 

because all elliptic curve computations were not based on 

generic multiplies that were used in [28]. The results of the 

proposed cryptographic SoC architecture on the FPGA it was 

implemented and evaluated are shown in Table 2. It was 

observed that the proposed integrated cryptographic SoC 

architecture occupied 36.22% of the available 6822 Slices, 

78.7% of the 27288 available LUTs, 36.21% of the 54576 total 

available Slice registers, and 28.42% of the 116 total available 

BRAM blocks. The design was implemented using 57 IO pins 

and 1 global buffer. Figure 16 shows the proposed SoC 

architecture’s implementation on the Zynq-7000 

xc7vx485tffg1153-3 device alongside the colour scheme 

showing the area resources utilized by the individual IP cores 

and how much area the proposed integrated core occupies 

relative to the FPGA resources available to the device. 

Additionally, Figure 17 shows the hierarchical view of the 

proposed cryptographic SoC architecture, illustrating the sub-

cores or logics that make up the main core. Figure 17’s colour 

scheme is based on the same colour scheme as that in Figure 

16. 
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Figure 17: Hierarchical View of the Proposed Integrated Cryptographic SoC 

 

Figure 18: Proposed Integrated Cryptographic SoC FPGA-GUI Test Setup 
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░ Table 2. Summary of Synthesis of Proposed Integrated Cryptographic SoC on Virtex-4 FPGA Test Board 

Proposed Designs Area (Slices) LUTs Regs. BRAM DSP48E 

PicoRV32I 843 1686 888 30 0 

DMA Controller 310 619 542 0 0 

ECDH + HKDF (ECC, TRNG, HMAC) 9370 18740 13137 1 0 

SRAM_Controller 56 72 112 0 0 

AMBA_AHB_APB 220 493 166 0 0 

Seven-Segment Controller 31 54 62 0 0 

UART 319 638 272 0 0 

ChaCha20_Poly1305 540 4585 4320 0 0 

Integrated Cryptographic SoC Top 13649 27298 19158 31 0 

 

░ Table 3. Summary of Virtex-5 Synthesis Result for Similar Modules of TLS [28] Utilized in the Proposed Integrated 

Cryptographic SoC Architecture 
Design Area (Slices) LUTs Regs. BRAM DSP48E 

TRNG 658 2301 2629 1 0 

HMAC 267 852 1068 0 0 

CubeHash 518 2168 2070 0 0 

ECC 1171 7096 4684 0 0 

Proposed Integrated Cryptographic SoC 4988 22240 19949 33 0 

 

░ Table 4. Summary of Virtex-5 Synthesis Result of TLS Coprocessor [28] 
Design Area (Slices) LUTs Regs. BRAM DSP48E 

TRNG 1170 3217 1700 0 1 

HMAC 73 20 267 0 0 

CubeHash 638 2325 1035 0 0 

ECC 4624 12117 8234 13 0 

Full TLS system with µP 14145 39052 29014 75 5 

 

Figure 19: Test GUI Showing Key Generation and Encryption of Image 
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Figure 20: Test GUI Showing Successful Decryption of Encrypted Image with Same Keys 

 

░ 5. THE PROPOSED CRYPTOGRAPHIC 

SOC’S EXPERIMENTAL SETUP AND 

TEST 
The FPGA test board—HBE-SoC-IPD— used in this research 

is equipped with the Virtex-4 FPGA device and was utilized in 

the test and verification process of the proposed. 

Cryptographic SoC design alongside all the available 

peripheral components that aided in the testing of the proposed 

integrated cryptographic SoC architecture. The setup for 

evaluating the proposed Integrated Cryptographic SoC is 

shown in Figure 18. The setup consists of the FPGA test 

board, a PC for running the test GUI to monitor the internal 

workings of the SoC, and finally a UART cable that 

interconnects the test GUI program and the FPGA test board. 

After the setup is completed, the user selects from the list of 

comm ports on the test GUI, the appropriate port on which the 

GUI communicates with the proposed cryptographic SoC. 

After all these selections, an image of size 128-by-128 pixels 

is selected and is displayed in the upper right corner of the 

Test GUI application. If the image does not fit the specified 

size—128x128, an error message is shown. At this stage, the 

connect button is clicked to establish a UART connection with 

the proposed integrated cryptographic SoC core. Upon 

successful connection, the text on the connect button changes 

to “disconnect” and the start button is enabled otherwise the 

text remains “connect” on the connect button and the start 

button remains disabled [32]. The start button is clicked to 

initialize data transfer. Since this is only a one-half test, the 

FPGA is regarded as the sender and the test GUI as the 

receiver. Hence, a randomly generated public key of the 

receiver is always generated when the test GUI is executed 

and is transferred to the processor. Once the processor gets the 

public key into a buffer, it sends this public key to the ECDH 

+ HKDF module. The PicoRV32 then programs the 

appropriate registers are to start the operation of the ECDH. 

This first generates a TRNG—Secret Key. This secret key is 

then sent to the ECSM to compute the sender’s public key—

Tx PUBLIC KEY. Next, the receiver’s public key—Rx 

PUBLIC KEY and the sender’s secret key are passed to the 

ECSM to compute the Shared Key. The shared key pair—

SHARED KEYX and SHARED KEYY—are passed through 

the CubeHash based HKDF to generate the derived key—

DERIVED KEY—that is used for the encryption of data. 

Whiles computing all of these keys, the selected image’s byte 

data are extracted and transferred through the DMA block, to 

be stored to SRAM on the test board via the UART. Upon 

completion of the derived key computation, the sender’s 
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public key, the shared key pair, and the derived key are all 

respectively updated on the Test GUI application through the 

PicoRV32 processor. This is done only for visualization of the 

keys during testing and may not be the case for a real-world 

implementation. The processor then sends the derived key 

based on the selected algorithm to the appropriate core for 

encryption/decryption. The processor then hands over control 

to the DMA where the image byte streams are read from the 

SRAM to the appropriate core and back to the SRAM after the 

processing is done 512-bits at a time for the 

AEAD_ChaCha20_Poly1305 but all in 32-bit chunks since the 

word size of the system is 32-bit. Figure 19 shows the 

successful reconstruction of the .jpg encrypted image data that 

is written back to the GUI test application and displayed in the 

lower right corner of the image. Keeping the same set of 

generated key parameters, the encrypted image’s byte data are 

sent to the same selected cryptographic algorithm—

AEAD_ChaCha20_Poly1305—and its successful decryption 

is shown in the bottom right corner of Figure 20. This 

validates the successful encryption and decryption crypto 

functionalities of the proposed integrated cryptographic SoC. 

It can be noted that the mode of operation in Figure 20 is 

“Encryption” as seen in Figure 19. This is because the 

AEAD_ChaCha20_Poly1305 does not require an encryption 

or decryption mode as the block cipher does. With the same 

encryption key, nonce, and initialization vector, an input 

plaintext will always result in its cipher and vice versa. 
 

░ 6. CONCLUSION AND FUTURE WORK 
This paper proposed an integrated cryptographic encryption 

SoC architecture. The proposed SoC architecture integrated a 

RISC-V-based PicoRV32 synthesizable processor, a binary 

field domain elliptic curve Diffie-Hellman Key exchange and 

management algorithm, AEAD_ChaCha20_Poly1305, DMA 

controller, SRAM controller, and hardware peripherals 

including UART and 7-segment LED into a single core that 

interoperates seamlessly to provide security for IoT and 

ubiquitous devices that are resource-constrained. The proposed 

SoC was tested on the Virtex-4 IPD FPGA test board 

manufactured by Hanback Electronics. Of the FPGA resources 

available to the Virtex-4 device, the proposed architecture 

utilized 57% of the 768 available IO pins representing 7.42%. 

It also utilized 1 out of the 32 available global buffers, 27387 

out of the 71680 available LUTs, and 13694 out of the 35840 

available CLB Slices, both representing 38.21%. Not all, the 

Register utilization for the proposed integrated SoC was 

26.76% representing 19185 out of the available 71680. 

Additionally, the architecture utilized 31 of the 200 Block 

RAMs. The proposed SoC architectures operation was verified 

on the Virtex-4 FPGA board by generating derived keys using 

the ECDH + HKDF core and encrypting the standard Lena 

image file (128x128) using the AEAD core. The proposed 

architecture operates at a maximum frequency of 273 MHz. 

Regarding subsequent work, the architectures will further be 

tested on two different boards, each acting and sender and 

receiver respectively and exchanging communication over 

Bluetooth protocol. 
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