
 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 230 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

░ ABSTRACT- One of the active research areas in recent years that has seen researchers from numerous related fields

converging and sharing ideas and developing feasible solutions is the area of hardware security. The hardware security discipline

deals with the protection from vulnerabilities by way of physical devices such as hardware firewalls or hardware security modules

rather than installed software programs. These hardware security modules use physical security measures, logical security

controls, and strong encryption to protect sensitive data that is in transit, in use, or stored from unauthorized interferences.

Without mechanisms to circumvent the ever-evolving attacking strategies on hardware devices and the data that they process or

store, billions of dollars will always be lost to attackers who ply their trade by targeting such vulnerable devices. This paper,

therefore, proposes an integrated cryptographic SoC architecture solution to this menace. The proposed architecture provides

security by way of key exchange, management, and encryption. The proposed architecture is based on a True Random Number

generator core that generates secret keys that are used in Elliptic Curve Diffie-Hellman Key Exchange to perform elliptic curve

scalar multiplication to obtain public and shared keys after the exchange of the public keys. The proposed architecture further

relies on a Key Derivation Function based on the CubeHash algorithm to obtain Derived Keys that provide the needed security

using the ChaCha20_Poly1305 Authenticated Encryption with Associated (AEAD) Data Core. The proposed Integrated SoC

architecture is interconnected by AMBA AHB-APB on-chip bus and the system is scheduled and controlled using the PicoRV32

opensource RISC-V processor. The proposed architecture is tested and verified on the Virtex-4 FPGA board using a custom-

designed GUI desktop application.

General Terms: SoC, Cryptography, Hardware Security, RISC-V et. al.

Keywords: PicoRV32, ECC, FPGA, TRNG, AEAD_ChaCha20_Poly1305.

░ 1. INTRODUCTION
According to research by Statista in 2019, It is estimated that

by 2025, up to about 75 billion devices will be connected to

the internet [1]. This has been made possible due to IoT

capability-extending technologies and platforms such as the

5G and the gigabit-fiber deployment. These IoT or ubiquitous

devices have brought an enormous amount of flexibility and

comfort to the lives of individuals. For instance, in a smart

home, people can now sit in the comfort of their offices or

place of work and turn on the air conditioning system in their

homes to get the place well-conditioned before they arrive at

home. Not all, smart homes can sense when their occupants

are present and adjust the level of lightning in the home

accordingly [29]. In the area of healthcare and fitness,

connected IoT devices are constantly gathering data that opens

a host of possibilities by way of an early and more accurate

diagnosis of an ailment for better and effective treatment

[2][30][31].

Although numerous benefits come with these IoT systems,

devices, and platforms, certain key factors among many others

are negatively influencing the growth and adoption of these

systems. Three of these key factors are security, standards, and

skill [3]. If the data being collected cannot be secured, then it

becomes a challenge to adopt these devices. There are several

implementation standards. Some are highly developed, others

are conflicting and overlapping, and the rest are yet to be

developed. Choosing the right standard for a particular

purpose makes it a challenge. The final key inhibitor is Skill.

The availability of adequately skilled and knowledgeable

programmers. With all these sensors and their collected and

processed data comes the highest need for securing these data

which now translates to human lives. IoT security is becoming

a major concern in recent years. The world has outgrown

malware that steal private information. It now poses physical

threats to its subscribers should these security barriers be

breached.

Design of an Integrated Cryptographic SoC Architecture

for Resource-Constrained Devices

Guard Kanda1

 and Kwangki Ryoo2

1Department of Info, and Comm. Engineering, Hanbat National University, Daejeon, South Korea, guardkanda@gmail.com
2Department of Info, and Comm. Engineering, Hanbat National University, Daejeon, South Korea, kkryoo@gmail.com

*Correspondence: Kwangki Ryoo; kkryoo@gmail.com; Tel.: +82-10-5234-0569 (F.L.)

ARTICLE INFORMATION

Author(s): Guard Kanda and Kwanki Ryoo

Received: 11/04/2022; Accepted: 19/05/2022; Published: 10/06/2022;

e-ISSN: 2347-470X;
Paper Id: IJEER22TK406;

Citation: 10.37391/IJEER.100231

Webpage-link:
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100231.html

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

http://www.ijeer.forexjournal.co.in/
https://orcid.org/0000-0002-3009-9860
https://orcid.org/0000-0001-8574-7418
https://doi.org/10.37391/IJEER.100231
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100231.html

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 231 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

Figure 1: Overview of an Integrated Encryption Scheme

The greatest problem with these devices is that most of the

manufacturers rolling out these devices have little to no

measures in place to handle these device-related security risks

and issues which increases at an alarming rate. Lack of

security for these IoT devices can result in potentially

catastrophic situations that can cost an individual, an

organization, or a nation at large several fortunes.

Having such an exponential increase in the number of

connected devices has led to a host of new and evolving highly

sophisticated cybersecurity threats and attacks leading to

information insecurity [4]. This has led to manners of such

systems being on high alert and hardware security becoming

one of the most critical parts of System-on-chip (SoC) design

because of its usage for the internet of things (IoT) devices,

cyber-physical systems, and embedded computing systems.

This is the case because hackers will always try to find and

exploit a hardware or software system that allows unrestricted

access to assets or services mainly for financial gains. Since

connected devices attacks are on the rise and are evolving by

the day, it has left all interested parties vulnerable, that is both

the consumer of these devices to the service providers and

manufacturers. The ever-increasing complexity of on-chip

components and long supply chain make SoCs vulnerable to

hardware and software attacks. These attacks can be initiated

either from inside the chip or from malicious software

components.

Therefore, this paper presents an integrated cryptographic SoC

architecture with operations similar to that of Figure 1 and can

provide an alternative solution to securing connected devices.

In Section 2, a general discussion and brief overview of an

integrated encryption scheme are presented. Details on the

standardized Elliptic Curve Integrated Encryption Scheme

(ECIES) are also presented. Section 3 discusses the proposed

integrated cryptographic System-on-a-Chip and its constituent

IP cores. In Section 4, the simulation result of the proposed

SoC together with its synthesis results are presented. The

paper ends with the conclusion and future works in Section 5.

░ 2. OVERVIEW OF ELLIPTIC CURVE

INTEGRATED ENCRYPTION SCHEME
Discrete Logarithm Augmented Encryption Scheme (DLAES)

[5] was initially presented in 1997 by Bellare Mihir and

Rogaway Philip Diffie-Hellman. In the year 1998, it was

jointly renamed the Augmented Encryption Scheme (DHAES)

[6] by Michel Abdella and the authors in [5]. To avoid

confusing the name in [6] with the Advanced Encryption

Standard (AES), it was finally renamed Diffie-Hellman

Integrated Encryption Scheme (DHIES) [7] in 2001, and, the

integrated encryption scheme was proposed. The DHIES

which was an extension of the ElGamal encryption protocol

[8], integrated security primitives which included public and

symmetric-key cryptographic algorithms and Message

Authentication Code hash functions. DHIES was standardized

in 2001 and was included in the ANSI X9.63 standard [9] with

its subsequently modified versions in the 2004 IEEE 1363a

standard [10].

Fu
n

ct
io

n
s

G
en

er
at

e
In

pu
t

O
ut

p
ut

Message
Recipients
Public Key

Generate Keys

Encrypt

Create Shared
Secret

Key Derivation
Funtion

MAC

Ciphertext

Ephemeral
Senders

public key
MAC_tag

public

private

hashE.g AES

K. encrypt

Eg. HMAC

Fu
n

ct
io

n
s

G
en

er
at

e
In

pu
t

O
ut

p
ut

Ciphertext

Generate Keys

Decrypt

Create Shared
Secret

Key Derivation
Funtion

MAC

Message

private

hash
E.g AES

Eg. HMAC

TRNG/PRNG TRNG/PRNG

MAC_tag
Ephemeral

Senders
public key

=?

ENC DEC

public

K. decrypt

Recipients
Public Key

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 232 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

Figure 2: Proposed Cryptographic SoC Architecture

The ECIES is an amalgamation of encryption schemes [11]

that interoperates to result in unified security. The integrated

scheme comprises of the following functionalities:

1. Key Agreement Function such as ECDH is the

function used to generate shared keys for

communicating parties.

2. Key Derivation Function such as HKDF is used to

generate a set of multiple keys for other functions in

the encryption scheme.

3. Block Cipher such as AES, which is used for the

actual encryption of data/information.

4. Hash Function such as SHA-1 is a function that

always produces a fixed length of output data from

any given input data.

5. Message Authentication Code is a code used for

authentication by the various communicating parties

░3. PROPOSED CRYPTOGRAPHIC SOC

ARCHITECTURE
Figure 2 shows the proposed integrated cryptographic SoC

architecture to equip hardware devices with secured means of

communication and information exchange. The proposed

architecture is based on a PicoRV32 RISC-V synthesizable

processor as the embedded system processor that performs the

system scheduling and control of the proposed integrated

cryptographic SoC platform. The proposed architecture is an

integration of previous works on ECC [12], TRNG [13], and

AEAD_Chacha20_Poly1305 [14].

3.1 PicoRV32 Synthesizable Processor
PicoRV32 is an open-source hardware synthesizable CPU core

that implements the RISC-V RV32IMC Instruction Set.

PicoRV32 can be configured as RV32E, RV32I, RV32IC,

RV32IM, or RV32IMC core, with an optionally built-in

interrupt controller. PicoRV32 is core designed with

optimization regarding the hardware area or size and the

maximum operating frequency. For this reason, the PicoRV32

lacks any multi-stage pipelines and operates at maximum

frequencies that range between 250-450 MHz based on test on

the 7-Series of the FPGAs by Xilinx [15]. The input ports of

the PicoRV32 shown in Figure 3 include the system clock—

clk, active low reset—resetn, memory ready strobe signal—

mem_ready, and a 32-bit wide mem_rdata, which is data

read from the memory to the processor.

Figure 3: PicoRV32 RISC-V Simplified Block Architecture

PicoRV32’s output ports include trap strobe signal which is

asserted when the processor encounters an unfamiliar

instruction, mem_addr, mem_wdata, a 3-bit byte strobe

signal—mem_wstrb, and a valid data indication signal

mem_valid. The PicoRV32I’s area was further reduced by

taking out the hardware multipliers and dividers that were

designed as part of the original architecture since the proposed

integrated SoC did not have use for them.

3.2 Elliptic Curve Diffie-Hellman (ECDH)
Two parties interested in exchanging communication based on

a key agreement scheme are required to each provide some

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 233 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

form of input or information to be used in creating a shared

session key. The anonymous key agreement protocol allows

two parties—popularly referred to as Alice and Bob—to both

agree on an elliptic curve septuple (m, f(x), a, b, G, n, h).

From the septuple and using algorithm from Table 1, the

ECDH shared key [16]—which is a variant of the Diffie-

Hellman key exchange [17]—can then be computed in 4 main

stages. To generate the public key for each party involved in

the communication requires the elliptic curve point

multiplication computation discussed earlier. The following

section introduces the proposed architecture of the ECSM

processor core based on the doubling and additions of points

discussed. The elliptic curve cryptography-based key

possesses the advantage of shorter-length key size compared

to other public-key cryptography such as RSA and the base of

its security which is the discrete logarithm problem (DLP)

which make the ECC a trapdoor function. Figure 4 shows us

the various layers of abstraction involved in a single ECC

protocol computation. At the very top of the layer is where we

find the various implementation or usage of ECC. This layer,

therefore, encompasses every layer beneath it. Beneath this

layer is the scalar point multiplication layer which consists of

the group operations of the point-double and point additions—

the third layer from the top.

░ Table 1. ECDH Key Exchange Scheme

Steps ECDH Action to Perform

1: Receiver (Rx) and Transmitter (Tx) randomly generate random

numbers between 1 and n (subgroup order—n) and (private
keys) respectively

2: Alice (Rx) and Bob (Tx) then generate individual public keys with

the expression below

 = (x P)

 = (x P) where P is the base point (G) of the elliptic curve

3: Alice (Rx) and Bob (Tx) can now exchange their public keys

and over an unsecured channel

4: Alice (Rx) and Bob (Tx) can now independently compute the

agreed or shared key as follows

 = x = x (x P)

 = x = x (x P)

i.e. =

The point doubling and point additions operations also intern

consist of the finite field arithmetic operation—this is the final

layer in the stack—which performs the finite field addition,

multiplication, and square and operations. The Elliptic Curve

Scalar Multiplier (ECSM) architecture performs three key

computations, these are transforming the coordinates from

affine to projective domain, computing the doubling and

additions, and then finally converting back to affine coordinate

and extracting the resulting coordinates as shown in Figure 5.

Based on the algorithm in Figure 5, the architecture in Figure

6 was proposed. As already stated, the key modular arithmetic

modules that are utilized in this architecture are the finite field

adder, multiplier, squarer, and divider. The finite field

multiplication core is the most important module in the design

of an ECC scalar point multiplication hardware architecture.

Figure 4: Abstraction Layers of ECC Protocols

Figure 5: Montgomery Ladder Scalar Multiplication Over GF(2m)

Algorithm

Figure 6: Montgomery Ladder Scalar Multiplication Over GF(2m)

Algorithm

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 234 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

The bit-serial approach implemented in this proposed

architecture requires larger amounts of clock cycles to perform

the field multiplication compared to the digit-serial approach.

However, the area required for the digit-serial implementation

is lesser than that of the combinational circuit but more than

that of a bit-serial-based architecture. The ESCM architecture

proposed was based on three (3) finite-field multipliers to

improve the efficiency of the proposed architecture. As shown

in the proposed scheduler for the controller, which is shown in

Figure 7, the proposed ECSM core completes its point

addition and doubling only in a time of 2M + 3 clock cycles

where M is the number of bits in the largest-sized operand.

Figure 7: Proposed ECSM Controller Schedule

Figure 8: Proposed Multi-Edge Multi-Array Sampling TRNG Architecture

3.3 True Random Number Generator (TRNG)
As shown in the steps required to locally generate the same

shared keys required for secured communication between

parties, there is the need for a secret key generation in the first

step of the algorithm in Table 1. In the proposed integrated

cryptographic system. To achieve this, this paper proposes a

true random number generator that uses basic and standard

logic cells. The entropy source is based on a novel design of a

multi-edge multi-mode ring-oscillator architecture shown in

Figure 8. Each oscillator chain is made up of 3-multi-edge

rings that are combined to form the oscillator chain. The use of

the ring oscillators to build the architecture of the multi-edge

entropy source as shown in Figure 8, increases the instability

introduced into the bits sampled. The proposed architecture

also includes a proposed multi-sampling unit that is simple to

implement and is based on flip-flops. The proposed TRNG is

cryptographically post-processed to obtain the final true

random numbers. This paper opted for the cryptographic post-

processing of bits because with this approach when the source

of entropy ceases to function, the TRNG automatically

becomes a pseudo-random number generator. A total of 1 GiB

of data was generated based on the proposed TRNG

architecture on a Spartan-6 FPGA equipped test board. The

random samples were generated at 25MHz and 50MHz of

sampling clock frequencies () each. Since the proposed

architecture does not embed an online test architecture, the

sampled results were evaluated through NIST’s statistical test

suites[18] to establish if the generated bits possess the qualities

that make them fit for use as TRNGs. The minimum pass rate

for each statistical test except for the random excursion test

was approximately 96 for the 100 binary sequences sample

size. And from the results obtained success rates of above 0.96

were recorded. Not all, the P-values recorded are greater than

0.001, indicating that the bit sequences from the proposed

TRNG passed using a significance level of alpha. In the

ECDH module, the TRNG core generates either a 163-bit or

233-bit long secret key for the computation of the shared key

process.

3.4 CubeHash-based HMAC KEY Derivation

Function (HKDF) Core

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 235 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

The CubeHash is a collection of hash functions proposed and

designed by Daniel J. Bernstein [19]. This set of hash

functions was one of NIST’s SHA-3 competition candidates

that were eliminated in the second round although it is yet to

be broken [20]. A key advantage of this algorithm is its

simplicity. This hash algorithm uses a uniform structure for

processing message digests of lengths of up to 512 bits, using

a tweakable number of rounds and message block sizes. Six

parameters namely parameters i, f, h, r, b, and m specify the

exact tweak or setup of the CubeHash algorithm. The i-

parameter specifies the number of rounds of the compression

function to be executed to obtain the initialization vector. This

parameter spans the range of 1 up to ∞ but is typically 16. The

CubeHash notation is written as CubeHashi+r/b+f-h(m) to

describe a specific variant of the algorithm. The parameter: i

represents the number of rounds of compression to obtain the

initialization vector, f denotes the number of round

computations for the final message block, h denotes the width

of the message digest which is typically between 8-bits to 512-

bits. The parameter r represents the round compression for

each message block, b determines the number of bytes per

block of a message. Finally, m represents the length of the

message that can be processed. The variant of CubeHash

implemented in this research is the CubeHash160+16/64+32-

512. Figure 9 shows the top module of the implemented

CubeHash message hashing function. The compression

algorithm of the CubeHash shown in the drawn-out image to

the right in Figure 9 consists of 2 addition modulo-232

operations, 2 XOR operations, 2 rotation operations, and 4

swapping operations. The round compression function—

Figure 9—operates on the 1024-bit internal state, organized as

32 long words. Each of these 32 long words is 32-bits wide.

The State is divided into two halves, each of size 512 bits and

labeled as X and Y. This division is performed because the

compression function only performs 10 simple operations on

half of the internal state which is (512-bits) during each of the

10 compression rounds. At the end of each compression round

the outputs X’ and Y’ are obtained from their respective X and

Y halves. The X’ and Y’ outputs are fed back to X and Y if

multiple rounds of the compression are required. Aside from

being used as the cryptographic post-processing of the TRNG,

the CubeHash algorithm was also employed in the derivation

of keys that are used in the encryption of data or the

generation of message authentication codes (MAC).

Figure 9: CubeHash Architecture for used in the Proposed TRNG and HMAC

The key derivation function employed is the HMAC-based

Key Derivation Function (HKDF). This is a simple key

derivation function that is based on the HMAC message

authentication code. HKDF (RFC 5869) [21] follows the

“extract-then-expand” phases. The first stage takes the keying

material which is the shared key generated from ECDH and

extracts from it a fixed-length pseudorandom key R. The

second phase then expands the key R into several additional

pseudorandom keys which become the output of the key

derivation function. For the implemented HKDF in this paper,

the hash algorithm that was used is the CubeHash shown in

Figure 9. The value of info used for this HKDF is 163-bit

0x7deedefefeefededeedefefeefededeedefefeefe. The salt and

input keying material (IKM) are the ECDH’s generated y and

x coordinates, respectively. As shown in Figure 10, the input

key is padded to a 255-bit long key and used to extract the first

key that is subsequently used in the “Expand Phase” of the

HKDF. The final derived key is an addition of the previously

generated output while the number of iterations is not realized.

Figure 10: Proposed Implementation of HMAC-based Key

Derivation Function

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 236 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

3.5 AEAD ChaCha20_Poly1305 Stream Cipher

Architecture
The Cryptographic algorithms – ChaCha20 stream cipher [22]

and Poly1305 [23] enhance security margins and achieve

higher performance measures on a wide range of software

platforms and have proven superior to its counterpart, the

AES, in the software domain. This new stream cipher,

compared to the benchmark AES, has recently been

standardized but their implementations in hardware have had

extraordinarily little to not very desirable results particularly in

terms of area. In this paper, a compact, low-area, and high

throughput ChaCha20-Poly1305 Authenticated Encryption

with Associated Data (AEAD) architecture consisting of the

ChaCha20 and Poly1305 algorithms are investigated and

presented. The key area of improvement for the proposed

hardware architecture is the simplified quarter-round design

approach. This architecture uses the addition, rotation, and

exclusive-or algorithms operators (gates).

Figure 11: ChaCha20 Encryption Pseudo-Code Listing

Figure 12: Initial State Matrix Setup for the ChaCha20 Stream

Cipher

The ChaCha20 algorithm, shown in the listing of Figure 11, is

composed of the main core round algorithm, known as the

Quarter-Round operation. This algorithm works on a 4x4

matrix each of 32-bits shown in Figure 12, resulting in a total

of 512-bit data. The upper-left of the matrix is marked index-0

and the bottom right is marked index-15. The ChaCha20—as

can be deduced from the name—requires a total of 20 rounds

to obtain the final keystream used to create the stream cipher.

The rounds are executed as column and diagonal rounds

alternatively. The upper 128-bits of the initial state matrix

setup shown in Figure 12 is filled with the constant of the

ASCII converted sentence “expand 32-byte k.” The next 256-

bits which form the middle section of the initial state matrix

contain the key for the encryption or decryption of data. This

is followed by a 32-bit block counter. This block counter

uniquely identifies every 64-byte (512-bit) block of data. With

the 32-bit count value, a maximum of 256-gigabyte of data can

be encrypted. The nonce which is the last 96-bit of the state

matrix block is a unique number that is used to encrypt each

block.

Figure 13: Proposed Hardware Architecture for ChaCha20 4xQR

Figure 14: Proposed Hardware Architecture for ChaCha20 4xQR

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 237 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

That is, the nonce should not be repeated for the same key. In

other words, the nonce and the counter can be combined to

perform the same purpose. This means that, effectively, a 128-

bit nonce encrypts data of sizes above 256-gigabyte. To obtain

a cipher using the ChaCha20 algorithm, the rounds are

executed as column and diagonal rounds alternatively as

shown in Figure 11. A total of twenty (20) rounds are

required. The proposed architecture computes one diagonal

and one column round in a cycle. In a pipeline fashion, the

proposed architecture shown in Figure 13 computes the

ChaCha20 cipher in twenty (20) clock cycles rather than in

eighty (80) The 256-bit input key and the nonce are passed

through a little-endian serializer to convert the bits into little-

endian form before being recombined into the initial state

matrix. The initial state matrix then computes the final matrix

which is also known as the keystream when the initial state

matrix has been added after the twenty (20) clock cycles being

controlled by the controller shown in Figure 13. At the end of

the twenty (20) clock cycles, the plaintext is XORed with the

keystream to obtain the stream cipher for the specified block

of 64-bytes of data. If the data is larger than the 64-bytes, the

count is increased by 1 to generate a unique set of the nonce

that is used to identify each block of 64-bytes of data. The

nonce is also increased changed for every key that is used to

encrypt or decrypt data. Poly1305 module takes as input, 256-

bit key, and an arbitrary-length message.

The 256-bit key to this module is partitioned into two halves

as can be seen from the algorithm in Figure 14. The lower half

of the key is assigned to the variable ‘r’ and the upper half is

assigned to the‘s’ variable. The value of ‘r’ is clamped. The

matrix for the clamping is a 4x4 matrix. Each vector location

is an 8-bit value occupying 16 indexes to result in a total of

128 bits, the size of ‘r’. The upper left corner is indexed 15

and the lower right corner is indexed 0. The term OC

represents Odd Clamp which is performed to clear the top four

bits of that particular vector or matrix index to a value zero.

The NC—No Clamp, represents the areas of the ‘r’ vector that

is not affected by the clamp. The final term which is the EC

represents Even Clamp. The Even Clamp is performed to clear

the bottom two bits of the value at that vector index or

location. This clearing will make the value evenly divisible by

4. In the 4x4 matrix of r, r[3], r[7], r[11] and r[15] fall under

the Odd Clamp, the r[4], r[8], r[12] fall under the Even

Clamp. To perform the clamp, A straightforward bitwise AND

is performed on the vector r with the value 128-bit

0x0ffffffc0ffffffc0ffffffc0ffffff. The value of the prime number

(P), used to perform the modulo computations, can be

computed directly by performing a left shift of 130 on the

value 1 and then subtracting 5 from the resulting value. This

result is the 131-bit long hexadecimal number:

0x3fffffffffffffffffffffffffffffffb.

The Hardware Implementation of these algorithms focuses on

improving these two core algorithms in terms of area, speed,

and throughput. The ChaCha20 is employed to generate a

keystream which is the result obtained after adding the initially

constructed state matrix to the resulting matrix after the rounds

of computation—this is 20 cycles for the 4xQR architecture or

80 cycles for the 1xQR architecture for this research. This

keystream is then combined with the plaintext to obtain the

ciphertext. At the core of ChaCha20’s computation is what is

known as the quarter-round computations. This structure can

be implemented in several ways. Examination of the design in

both pipeline and parallel architectures was performed. The

design that used the pipeline approach reported a larger

hardware area while improving operating frequency

drastically. This is due to the reduction in the critical path of

the architecture.

There are three main approaches to executing authenticated

encryption. The form involves encrypting the data and then

using portions of the encrypted data to generate a MAC tag

known as the Encrypt-then-MAC. The other form is

generating a MAC from the plaintext or data to be encrypted.

This MAC is then sent in addition to the encrypted plaintext

(ciphertext) in what is known as the Encrypt-and-MAC. The

final is where the MAC is generated from the plaintext. The

MAC and the plaintext are then combined to form new

intermediate data. This intermediate data is then encrypted to

form a ciphertext. This form is termed the MAC-then-

Encrypt. The ChaCha20-Poly1305 [24] implements a variant

of this form of authenticated encryption used in TLS and its

predecessor the SSL [25] [26]. The Associated Data that is

appended to this form of authenticated encryption is to ensure

it is contextually accurate. What this means is that moving a

portion of a valid ciphertext to another portion will turn out to

be invalid and cause its detection. The remaining architecture

shown in Figure 15, was implemented using the two modules

the ChaCha20 stream cipher and the Poly1305 authenticator is

presented in this sub-section. The main components modules

of the overall architecture use the individually built modules.

Since this is a variant of MAC-then-Encrypt, the key for the

authentication is generated using the ChaCha20. For this key

generation, the block_count is kept at zero. After the done

signal is asserted, the keystream that is generated will be used

to form the key to the Poly1305. The highest 256-bits of the

keystream is captured and used as the poly1305 one-time key.
The keys are clamped as explained in the section above and

the Poly1305 module is enabled to begin execution. When the

poly_done signal is asserted, we have a 128-bit value which

will serve as our authentication tag for the specified batch of

data being encrypted. The Main_Controller unit shown in

Figure 15 asserts the signal for the ChaCha20 module to be

executed again to now encrypt the data. The same key, nonce

but with the block_count now set to one and increases for each

block. The increment can be linear or randomly generated this

ensures that the effective nonce is different for each block of a

512-bit chunk of data to be encrypted. After this has been

completed, the module AEAD_Recon_Data is enabled for a

data reconstruction for the tag generation. The data is

reconstructed by first placing the AAD data from bit zero

upwards. This is followed by the 64-bit size of the AAD

(AAD_size). Next in the concatenation is the ciphertext that

has been generated and then finally the 64-bit little-endian

integer representing the size of the ciphertext. The design can

be parameterized to manage variable sizes. For this design, the

message length used is 512-bit and the AAD utilized is 96-

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 238 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

bits. This implies that a reconstructed cipher data of size 736-

bit long for the Poly_CSA. The total clock cycles required to

generate the authentication tag and the ciphertext is 1350

cycles. This number of cycles is broken down as follows: 20

clock cycles required for generating the one-time-key for

authentication, 20 clock cycles to generate the ciphertext, and

about 1310 cycles required for the modulo reduction

arithmetic.

Figure 15: Block Diagram of the Proposed

AEAD_ChaCha20_Poly1305 Architecture.

3.6 On-Chip Bus Communication Protocols
On-chip buses are not physical buses yet perform the function

of interconnecting modules to enhance smooth communication

and information interchange. Different SoC bus architectures

exist. Some of these buses include the AMBA (Advanced

Microcontroller Bus Architecture) from ARM. AMBA is a

leading on-chip bus architecture that guarantees high

performance for design. Bus arbitration techniques such as

priority, round-robin, Time Division Multiple Access

(TDMA), Code Division Multiple Access (CDMA). Three

different bus architectures are defined under the AMBA

specification. These are the Advanced High-Performance Bus

(AHB), Advanced Systems Bus (ASB), and the Advanced

Peripheral Bus (APB). AHB is suitable for high-performance

designs, supports multiple bus-master operations, burst and

split transfers, and wide data and address configuration. The

APB is a peripheral bus used to connect low-speed

peripherals. Between these two is the ASB. This is a cost-

effective bus that allows multiple bus master operations and

burst and pipelined transactions. The most current bus

architecture is the Advanced eXtensible Interface (AXI) also

from the ARM. The AXI is specifically intently designed for

high-speed, high-performance, and high-frequency SoC

designs. Notable features are the separate data and address

phases, support for the unaligned transfer of data, and burst

transfers. Multiple outstanding addressing and out-of-order

transactions are equally supported. Arbitration schemes

supported are the same as those supported by AMBA. In this

paper, the bus communication protocol designed is the AHB

bus for the system modules and then the APB for the

peripheral communication with the UART, 7-Segment, and

LEDs. The bus designed for the proposed SoC architecture has

a data width of 32-bit and does not support all the modes of

data transfers.

3.7 Additional SoC Architecture Components
The Direct Memory Access (DMA) controller is a simple

module designed to perform the functionality of data read-

write without the involvement of the system processor. The

designed DMA accesses the on-chip bus to read and write data

to the SRAM core. The DMA core has both master and slave

bus interfaces. It operates as a bus master after the system

processor hands over read-write functionalities to it through its

slave interface. The DMA controller modeled in this paper has

a direct connection to the UART core. This allows the DMA

to transfer large data files between the SRAM and UART

cores. The bus master hands over control of read-write data to

the DMA by sending information regarding the start address of

the transfer, the total amount of data to be transferred, and the

transaction type which includes reading of plaintext from the

UART to the SRAM, sending of plaintext or raw data to the

AEAD core and writing the ciphertext back to SRAM and

finally reading the ciphertext from the SRAM and sending it to

UART. The UART core utilized in this SoC is the

UART16550D [27] which is compatible with the industry-

standard National Semiconductors’ 16550A device. The

UART core operates in either 8-bit or 32-bit data bus modes

and operates in the FIFO-only mode. The UART core is also

equipped with register level and functionality which is

compatible with the NS16550A allowing the possibility of

baud rate programing and FIFO size programming. The 7-

Segment array is also added to the SoC architecture to display

the bottom 32-bits of the Message Authentication Code Tag

that is generated from the Poly1305.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 239 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

Figure 16: Floorplan of the Proposed Integrated Cryptographic SoC on a Zync-7000 FPGA Device.

░ 4. HARDWARE SYNTHESIS RESULTS

AND ANALYSIS
The elliptic curve-based integrated cryptographic SoC was

designed using Verilog HDL. The proposed cryptographic

SoC was synthesized using Precision RTL Synthesis Tool

from Mentor Graphics. The proposed SoC architecture and its

sub-IPs were simulated for both functional and timing

correctness using the ModelSim 64-bit 10.6d standard edition.

Synthesis results of the proposed integrated cryptographic SoC

architecture are summarized in Table 2. The results are

compared to a similar cryptographic core designed in [28].

Comparing the hardware resources required for similar

modules in both implementations, it was observed that the

proposed integrated cryptographic SoC, synthesized on similar

Vertix-5 FPGA occupied about 80% fewer Slices compared to

the TLS designed in [28]. Table 4 summarizes the hardware

resources required by [28] and Table 3 summarizes the

hardware resources required by similar algorithms or modules

in the proposed SoC architecture. Except for the HMAC, the

common modules in both designs occupied fewer resources in

the proposed integrated cryptographic SoC architecture. The

HMAC for the proposed integrated cryptographic SoC

required more hardware resources because it was based on the

CubeHash hashing function rather than the SHA-256 used by

[28]. Additionally, the proposed SoC utilized no DSP blocks

because all elliptic curve computations were not based on

generic multiplies that were used in [28]. The results of the

proposed cryptographic SoC architecture on the FPGA it was

implemented and evaluated are shown in Table 2. It was

observed that the proposed integrated cryptographic SoC

architecture occupied 36.22% of the available 6822 Slices,

78.7% of the 27288 available LUTs, 36.21% of the 54576 total

available Slice registers, and 28.42% of the 116 total available

BRAM blocks. The design was implemented using 57 IO pins

and 1 global buffer. Figure 16 shows the proposed SoC

architecture’s implementation on the Zynq-7000

xc7vx485tffg1153-3 device alongside the colour scheme

showing the area resources utilized by the individual IP cores

and how much area the proposed integrated core occupies

relative to the FPGA resources available to the device.

Additionally, Figure 17 shows the hierarchical view of the

proposed cryptographic SoC architecture, illustrating the sub-

cores or logics that make up the main core. Figure 17’s colour

scheme is based on the same colour scheme as that in Figure

16.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 240 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

Figure 17: Hierarchical View of the Proposed Integrated Cryptographic SoC

Figure 18: Proposed Integrated Cryptographic SoC FPGA-GUI Test Setup

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 241 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

░ Table 2. Summary of Synthesis of Proposed Integrated Cryptographic SoC on Virtex-4 FPGA Test Board

Proposed Designs Area (Slices) LUTs Regs. BRAM DSP48E

PicoRV32I 843 1686 888 30 0

DMA Controller 310 619 542 0 0

ECDH + HKDF (ECC, TRNG, HMAC) 9370 18740 13137 1 0

SRAM_Controller 56 72 112 0 0

AMBA_AHB_APB 220 493 166 0 0

Seven-Segment Controller 31 54 62 0 0

UART 319 638 272 0 0

ChaCha20_Poly1305 540 4585 4320 0 0

Integrated Cryptographic SoC Top 13649 27298 19158 31 0

░ Table 3. Summary of Virtex-5 Synthesis Result for Similar Modules of TLS [28] Utilized in the Proposed Integrated

Cryptographic SoC Architecture
Design Area (Slices) LUTs Regs. BRAM DSP48E

TRNG 658 2301 2629 1 0

HMAC 267 852 1068 0 0

CubeHash 518 2168 2070 0 0

ECC 1171 7096 4684 0 0

Proposed Integrated Cryptographic SoC 4988 22240 19949 33 0

░ Table 4. Summary of Virtex-5 Synthesis Result of TLS Coprocessor [28]
Design Area (Slices) LUTs Regs. BRAM DSP48E

TRNG 1170 3217 1700 0 1

HMAC 73 20 267 0 0

CubeHash 638 2325 1035 0 0

ECC 4624 12117 8234 13 0

Full TLS system with µP 14145 39052 29014 75 5

Figure 19: Test GUI Showing Key Generation and Encryption of Image

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 242 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

Figure 20: Test GUI Showing Successful Decryption of Encrypted Image with Same Keys

░ 5. THE PROPOSED CRYPTOGRAPHIC

SOC’S EXPERIMENTAL SETUP AND

TEST
The FPGA test board—HBE-SoC-IPD— used in this research

is equipped with the Virtex-4 FPGA device and was utilized in

the test and verification process of the proposed.

Cryptographic SoC design alongside all the available

peripheral components that aided in the testing of the proposed

integrated cryptographic SoC architecture. The setup for

evaluating the proposed Integrated Cryptographic SoC is

shown in Figure 18. The setup consists of the FPGA test

board, a PC for running the test GUI to monitor the internal

workings of the SoC, and finally a UART cable that

interconnects the test GUI program and the FPGA test board.

After the setup is completed, the user selects from the list of

comm ports on the test GUI, the appropriate port on which the

GUI communicates with the proposed cryptographic SoC.

After all these selections, an image of size 128-by-128 pixels

is selected and is displayed in the upper right corner of the

Test GUI application. If the image does not fit the specified

size—128x128, an error message is shown. At this stage, the

connect button is clicked to establish a UART connection with

the proposed integrated cryptographic SoC core. Upon

successful connection, the text on the connect button changes

to “disconnect” and the start button is enabled otherwise the

text remains “connect” on the connect button and the start

button remains disabled [32]. The start button is clicked to

initialize data transfer. Since this is only a one-half test, the

FPGA is regarded as the sender and the test GUI as the

receiver. Hence, a randomly generated public key of the

receiver is always generated when the test GUI is executed

and is transferred to the processor. Once the processor gets the

public key into a buffer, it sends this public key to the ECDH

+ HKDF module. The PicoRV32 then programs the

appropriate registers are to start the operation of the ECDH.

This first generates a TRNG—Secret Key. This secret key is

then sent to the ECSM to compute the sender’s public key—

Tx PUBLIC KEY. Next, the receiver’s public key—Rx

PUBLIC KEY and the sender’s secret key are passed to the

ECSM to compute the Shared Key. The shared key pair—

SHARED KEYX and SHARED KEYY—are passed through

the CubeHash based HKDF to generate the derived key—

DERIVED KEY—that is used for the encryption of data.

Whiles computing all of these keys, the selected image’s byte

data are extracted and transferred through the DMA block, to

be stored to SRAM on the test board via the UART. Upon

completion of the derived key computation, the sender’s

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 243 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

public key, the shared key pair, and the derived key are all

respectively updated on the Test GUI application through the

PicoRV32 processor. This is done only for visualization of the

keys during testing and may not be the case for a real-world

implementation. The processor then sends the derived key

based on the selected algorithm to the appropriate core for

encryption/decryption. The processor then hands over control

to the DMA where the image byte streams are read from the

SRAM to the appropriate core and back to the SRAM after the

processing is done 512-bits at a time for the

AEAD_ChaCha20_Poly1305 but all in 32-bit chunks since the

word size of the system is 32-bit. Figure 19 shows the

successful reconstruction of the .jpg encrypted image data that

is written back to the GUI test application and displayed in the

lower right corner of the image. Keeping the same set of

generated key parameters, the encrypted image’s byte data are

sent to the same selected cryptographic algorithm—

AEAD_ChaCha20_Poly1305—and its successful decryption

is shown in the bottom right corner of Figure 20. This

validates the successful encryption and decryption crypto

functionalities of the proposed integrated cryptographic SoC.

It can be noted that the mode of operation in Figure 20 is

“Encryption” as seen in Figure 19. This is because the

AEAD_ChaCha20_Poly1305 does not require an encryption

or decryption mode as the block cipher does. With the same

encryption key, nonce, and initialization vector, an input

plaintext will always result in its cipher and vice versa.

░ 6. CONCLUSION AND FUTURE WORK
This paper proposed an integrated cryptographic encryption

SoC architecture. The proposed SoC architecture integrated a

RISC-V-based PicoRV32 synthesizable processor, a binary

field domain elliptic curve Diffie-Hellman Key exchange and

management algorithm, AEAD_ChaCha20_Poly1305, DMA

controller, SRAM controller, and hardware peripherals

including UART and 7-segment LED into a single core that

interoperates seamlessly to provide security for IoT and

ubiquitous devices that are resource-constrained. The proposed

SoC was tested on the Virtex-4 IPD FPGA test board

manufactured by Hanback Electronics. Of the FPGA resources

available to the Virtex-4 device, the proposed architecture

utilized 57% of the 768 available IO pins representing 7.42%.

It also utilized 1 out of the 32 available global buffers, 27387

out of the 71680 available LUTs, and 13694 out of the 35840

available CLB Slices, both representing 38.21%. Not all, the

Register utilization for the proposed integrated SoC was

26.76% representing 19185 out of the available 71680.

Additionally, the architecture utilized 31 of the 200 Block

RAMs. The proposed SoC architectures operation was verified

on the Virtex-4 FPGA board by generating derived keys using

the ECDH + HKDF core and encrypting the standard Lena

image file (128x128) using the AEAD core. The proposed

architecture operates at a maximum frequency of 273 MHz.

Regarding subsequent work, the architectures will further be

tested on two different boards, each acting and sender and

receiver respectively and exchanging communication over

Bluetooth protocol.

░ REFERENCES
[1] “Number of IoT devices 2015-2025,” Statista.

https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/ (accessed May 08, 2022).

[2] “Five ways IoT can make your life easier.”

https://www.metrikus.io/blog/five-ways-iot-can-make-your-life-easier
(accessed May 08, 2022).

[3] “The 3 Biggest Factors in IoT Technology Success.”

https://www.samsungsds.com/la/insights/IoT-success-factors-eng.html
(accessed May 08, 2022).

[4] “Top Cybersecurity Threats in 2021,” University of San Diego Online

Degrees, Sep. 13, 2016. https://onlinedegrees.sandiego.edu/top-cyber-
security-threats/ (accessed May 08, 2022).

[5] M. Bellare and P. Rogaway, “Minimizing the use of random oracles in

authenticated encryption schemes,” in Information and
Communications Security, Berlin, Heidelberg, 1997, pp. 1–16. doi:

10.1007/BFb0028457.

[6] M. Abdalla, M. Bellare, and P. Rogaway, “DHAES: An Encryption

Scheme Based on the Diffie-Hellman Problem,” Feb. 1970.

[7] M. Abdalla, M. Bellare, and P. Rogaway, “The Oracle Diffie-Hellman

Assumptions and an Analysis of DHIES,” in Topics in Cryptology —
CT-RSA 2001, Berlin, Heidelberg, 2001, pp. 143–158. doi: 10.1007/3-

540-45353-9_12.

[8] T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Transactions on Information Theory,

vol. 31, no. 4, pp. 469–472, Jul. 1985, doi:

10.1109/TIT.1985.1057074.
[9] American National Standards Institute, “ANSI X9.63, (2001). Public

Key Cryptography for the Financial Services Industry: Key

Agreement and Key Transport Using Elliptic Curve Cryptography,”
Nov. 2001, [Online]. Available:

https://standards.globalspec.com/std/26827/X9.63

[10] “IEEE Standard Specifications for Public-Key Cryptography -
Amendment 1: Additional Techniques,” IEEE Std 1363a-2004

(Amendment to IEEE Std 1363-2000), pp. 1–167, Sep. 2004, doi:

10.1109/IEEESTD.2004.94612.
[11] V. G. Martínez, F. H. Álvarez, L. H. Encinas, and C. S. Ávila,

“Analysis of ECIES and Other Cryptosystems Based on Elliptic

Curves,” p. 9.
[12] G. Kanda, A. O. A. Antwi, and K. Ryoo, “Hardware Architecture

Design of AES Cryptosystem with 163-Bit Elliptic Curve,” in

Advanced Multimedia and Ubiquitous Engineering, Singapore, 2019,
pp. 423–429. doi: 10.1007/978-981-13-1328-8_55.

[13] G. Kanda and K. Ryoo, “Efficient Implementation of Digital Standard

Cells-Based True Random Number Generator for Securing FPGA
Designs,” TEST Engineering & Management, vol. 83, pp. 3996–4007,

Mar. 2020.

[14] G. Kanda and K. Ryoo, “High-Throughput Low-Area Hardware
Design of Authenticated Encryption with Associated Data

Cryptosystem that Uses ChaCha20 and Poly1305,” IJRTE, vol. 8, no.

2S6, pp. 86–94, Sep. 2019, doi: 10.35940/ijrte.B1017.0782S619.
[15] PicoRV32 - A Size-Optimized RISC-V CPU. Yosys Headquarters,

2022. Accessed: May 08, 2022. [Online]. Available:
https://github.com/YosysHQ/picorv32

[16] “Elliptic-curve Diffie–Hellman,” Wikipedia. Apr. 29, 2022. Accessed:

May 08, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Elliptic-

curve_Diffie%E2%80%93Hellman&oldid=1085310059

[17] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov.

1976, doi: 10.1109/TIT.1976.1055638.

[18] A. Rukhin et al., “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications,”

p. 131.

[19] D. J. Bernstein, “CubeHash specification (2.B.1),” p. 4.
[20] “Announcing Request for Candidate Algorithm Nominations for a

New Cryptographic Hash Algorithm (SHA-3) Family,” Federal

Register, Nov. 02, 2007.
https://www.federalregister.gov/documents/2007/11/02/E7-

21581/announcing-request-for-candidate-algorithm-nominations-for-

a-new-cryptographic-hash-algorithm-sha-3 (accessed May 08, 2022).
[21] H. Krawczyk, “Cryptographic Extraction and Key Derivation: The

HKDF Scheme,” in Advances in Cryptology – CRYPTO 2010, vol.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 230-244 | e-ISSN: 2347-470X

 244 Website: www.ijeer.forexjournal.co.in Design of an Integrated Cryptographic SoC Architecture

6223, T. Rabin, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 631–648. doi: 10.1007/978-3-642-14623-7_34.
[22] D. J. Bernstein, “ChaCha, a variant of Salsa20,” p. 6.

[23] D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,”

in Fast Software Encryption, Berlin, Heidelberg, 2005, pp. 32–49. doi:
10.1007/11502760_3.

[24] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF

Protocols,” Internet Engineering Task Force, Request for Comments
RFC 7539, May 2015. doi: 10.17487/RFC7539.

[25] A. O. Freier, P. Karlton, and P. C. Kocher, “The Secure Sockets Layer

(SSL) Protocol Version 3.0,” Internet Engineering Task Force,
Request for Comments RFC 6101, Aug. 2011, doi:

10.17487/RFC6101.

[26] M. Bellare and C. Namprempre, “Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm,”

J Cryptol, vol. 21, no. 4, pp. 469–491, Oct. 2008, doi:

10.1007/s00145-008-9026-x.
[27] J. Gorban, “UART IP Core Specification,” p. 18.

[28] “Implementation of a secure TLS coprocessor on an FPGA,”

Microprocess. Microsyst., vol. 40, no. C, pp. 167–180, Feb. 2016, doi:
10.1016/j.micpro.2015.10.009.

[29] T. David, B. Johan, and C. Lin, (2021), "Research on Real-time Data

Transmission between IoT Gateway and Cloud Platform based on
Two-way Communication Technology," International Journal of

Smartcare Home, vol. 1, no. 1, pp. 61-74, Jun. 2021.

[30] I. S. Fathi, M. A. Ahmed, M. A. Makhlouf, and E. A. Osman,
"Compression Techniques of Biomedical Signals in Remote

Healthcare Monitoring Systems: A Comparative Study," International
Journal of Hybrid Information Technologies, vol. 1, no. 1, pp. 33-50,

Sep. 2021, doi: 10.21742/IJHIT.2021.1.1.03.

[31] S. Y. Lee, "Blockchain-based Medical Information Sharing Service
Architecture," International Journal of IT-based Public Health

Management, vol. 8, no. 1, pp.27-32, Sep. 2021, doi:

10.21742/IJIPHM.2021.8.1.04.
[32] S. A. Alhumrani and Jayaprakash Kar, "Cryptographic Protocols for

Secure Cloud Computing", International Journal of Security and Its

Applications, NADIA, ISSN: 1738-9976 (Print); 2207-9629 (Online),
vol.10, no.2, February (2016), pp. 301-310,

http://dx.doi.org/10.14257/ijsia.2016.10.2.27.

© 2022 by the Guard Kanda and Kwanki

Ryoo. Submitted for possible open access

publication under the terms and conditions of

the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://www.ijeer.forexjournal.co.in/

