
 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 245-249 | e-ISSN: 2347-470X

 245 Website: www.ijeer.forexjournal.co.in 128-Bit LEA Block Encryption Architecture

to Improve the Security of IoT Systems with Limited Resources and Area

░ ABSTRACT- The LEA block encryption algorithm is an architecture suitable for IoT systems with limited resources and

space. It was developed by the National Security Technology Research Institute in 2013 and established as an international

standard for cryptography by the International Electrotechnical Commission in 2019, drawing much attention from developers. In

this paper, the 128-bit LEA block encryption algorithm was light weighted and implemented in a hardware environment. All

modules share and reuse registers and are designed and implemented in a bottom area through the resource sharing function. As a

result of synthesis using Xilinx ISE 14.7 Virtex-5 as a design environment, the maximum frequency achieved 190.88 MHz and

has a processing speed of up to 128 Mbps. Compared to the previously designed architecture, we present a bottom-level hardware

design with a 128-bit LEA algorithm implemented with a 49.8% reduction in Flip-Flop, 18.8% reduction in LUTs, and 67.6%

reduction in Slices.

Keywords: 128-bit LEA, IoT, Hardware Design, Lightweight, Cryptography Algorithm.

░ 1. INTRODUCTION
Data has become a vital commodity in the era of the Fourth

Industrial revolution. As the Fourth Industrial Revolution

broke out, most of the information and documents stored as

data [1]. Accordingly, data exchange takes place online, and

data has become an important resource [2,3]. Therefore, data

has commercial value, such as being used for e-commerce,

personal information, and cryptocurrency. Several encryption

technologies are applied to protect this important data [4,5,16].

Furthermore, various encryption technologies are evolving or

are securing developed. Currently, ubiquitous technologies

such as IoT are applied in various fields such as healthcare,

education, energy, and smart home [6,7,17]. As the domestic

and industrial consumption of these technology increase,

network attacks on IoT technologies are also increase [8]. To

solve this problem, when applying existing SPN-structured

cryptographic algorithms such as AES [9] or ARIA [10] in

software, the code size increases, and problems such as large

memory usage and decreased speed occur, and lightweight

cryptographic algorithms such as HIGHT [11] and LEA [12]

of ARX structure were developed. The algorithm realized

weight reduction by applying the concept of the Feistel

structure and applying Addition, Rotation, and XOR

operations with low computational costs. To reduce the

hardware area of the LEA algorithm architecture, an

architecture using minimal operational function maintenance,

register reuse, and resource sharing is proposed.

░ 2. LEA ALGORITHM

2.1 Feistel Structure
The LEA algorithm is a block cipher algorithm based of the

Feistel structure [13]. The Feistel structure is a type of block

cipher that alternately performs substitution and permutation.

Since the Feistel structure uses the same components for

encryption and decryption, it is not necessary to configure

different algorithms, so it is suitable for area reduction. The

encryption method of the Feistel structure divides the

information to be encrypted into two half’s of information of

the same bit length (L0, R0). A secret key used in each round is

defined as Ki, and a function performed in each round is

defined as F. In each round, the following operations are

named R0 of the first round is stored in L1 of the next round,

and R0 is substituted into the round function F using the key

K1. The calculated value is added to the value of L0 and then

stored in R1 of the next round. This is repeat until the last

round. After all rounds are finished, Li and Ri are finally

encrypted half values. Conversely, in decryption, Li and Ri are

calculated in reverse order of encryption, and when all rounds

are completed, L0, R0 becomes the decrypted half values.

Figure 1 shows the encryption/decryption flow of the Feistel

structure. It is a process of encrypting from round 1 to round i

and decrypting from round i to round 0 in reverse order. LEA

cipher security is further strengthened by applying the GFN-

Type3 structure that expanded the above Feistel structure.

128-Bit LEA Block Encryption Architecture to Improve the

Security of IoT Systems with Limited Resources and Area

Hyogeun An1, Sudong Kang2, Guard Kanda3 and Kwangki Ryoo4
1,2,3,4Department of Information and Communication Engineering Hanbat National University, Daejeon, South Korea

*Correspondence: Kwangki Ryoo; kkryoo@gmail.com; Tel.: (KR) +82-10-5234-0569

ARTICLE INFORMATION

Author(s): Hyogeun An, Sudong Kang, Guard Kanda and Prof. Kwangki

Ryoo
Received: 11/04/2022; Accepted: 19/05/2022; Published: 10/06/2022;

e-ISSN: 2347-470X;

Paper Id: IJEER22TK405;

Citation: 10.37391/IJEER.100232

Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100232.html

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

http://www.ijeer.forexjournal.co.in/
https://doi.org/10.37391/IJEER.100232
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100232.html

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 245-249 | e-ISSN: 2347-470X

 246 Website: www.ijeer.forexjournal.co.in 128-Bit LEA Block Encryption Architecture

to Improve the Security of IoT Systems with Limited Resources and Area

(a) Encryption (b) Decryption

Figure 1: Feistel-based Structure

2.2 128-bit LEA Algorithm Enc/Dec Process
The 128-bit standard LEA encryption process consists of a key

schedule function that generates 24 round keys for 192-bit

encryption with a 128-bit secret key and an encryption

function that converts 128-bit plaintext into 128-bit ciphertexts

using round keys and round functions. Figure 2 shows the

encryption/decryption architecture of LEA. The

encryption/decryption round key RKenc/dec is generated through

the key schedule function with the secret key, and Roundenc/dec

is performed with the generated round key and

plaintext/ciphertexts.

Figure 2: Architecture of Encryption/Decryption

░ 3. PROPOSED LEA 128-BIT BLOCK

ENCRYPTION ARCHITECTURE
3.1 Top Module
The top module is encapsulating module of the 128-bit sub

module. It has a round key generator, an encryption/decryption

module, a module controller, two 128-bit registers, and one

32-bit register. The length of key required for the round

function of the 128-bit LEA algorithm is 192-bit. However,

128-bit round keys are generated, and the remaining 64-bit is

rearranged and used. Therefore, the actual required register

size is 128-bit. The two 128-bit registers in the top module are

used as round key buffers and buffers that store a single round

of encryption/decryption data, respectively. One 32-bit register

is used to store the previous data required in the

encryption/decryption function. The select signal of the top

module functions to choose between encryption/decryption

mode of operation. In the top module, encryption/decryption is

performed by inputting plaintext or ciphertext. Two counters

are used within the top module. The first counter divides 128-

bit into 32-bit units and uses them to determine the bit address

of the divided round key and ciphertext to process. The second

counter is used to control the repetition of the round function

from the first round to the last round during

encryption/decryption. Figure 3 shows the internal

architecture and flow of data in which 128-bit plaintext blocks

are calculated in 32-bit units using a round key module, an

encryption/decryption module, and a counter. The top module

was able to recycle registers to generate round keys that

required 192-bit using only 128-bit of registers. As a result,

the area of the entire module is reduced. Round data is

controlled in 32-bit units, and data is rearranged in 8-bit units

in the first and last rounds.

Figure 3: Proposed Overall LEA Architecture

3.2 Round Key Generator Module
One round key is generated by dividing 128-bit round keys

into 32-bit (T[x]) through ARX operations during four clock

cycles.

The LEA algorithm uses the same master round key from the

first round to the 24th round for both encryption and

decryption. During encryption, 24 round keys are generated in

the encryption/decryption module using the expression in

Table 1, sequentially from the first round key to the 24th

round key. During decryption, 24 round keys are generated in

the encryption/decryption module using the expression in

Table 2 in reverse order from the 24th round key to the first

round key.

░ Table 1. LEA Encryption Key Generation Algorithm

Bit place Formula

T[0] ROL1(T[0]⊞ROLi([i mod 4]))

T[1] ROL3(T[1]⊞ROLi+1([i mod 4]))

T[2] ROL6(T[2]⊞ROLi+2([i mod 4]))

T[3] ROL11(T[3]⊞ROLi+3([i mod 4]))

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 245-249 | e-ISSN: 2347-470X

 247 Website: www.ijeer.forexjournal.co.in 128-Bit LEA Block Encryption Architecture

to Improve the Security of IoT Systems with Limited Resources and Area

░ Table 2. LEA Decryption Key Generation Algorithm

Bit place Formula

T[0] ROR1(T[0])⊟ROLi([i mod 4]))

T[1] ROR3(T[1])⊟ROLi+1([i mod 4]))

T[2] ROR6(T[2])⊟ROLi+2([i mod 4]))

T[3] ROR11(T[3])⊟ROLi+3([i mod 4]))

Figure 4 implements the expressions described in Tables 1 and

2 in hardware, and the 32-bit variables stored in the register

are selected according to round, and the selected variables are

generated 32-bit by calculating ROL/ROR, add, subtract, and

ROL/ROR according to encryption or decryption. The round

key generation module was implemented in a bottom area

using resource sharing, and the processing speed during

decoding was optimized by calculating the round key

generation function in reverse order.

Figure 4: Proposed Architecture of LEA Round Key Generator

3.3 Encryption/Decryption Module
The encryption/decryption module has functions that perform

encryption and decryption, and encryption or decryption is

determined according to the select signal. For each round, the

encryption/decryption module operates three times, and a total

of three clock cycles are required to encrypt 128-bit of data.

The encryption module performs encryption by receiving a

round key (RKi
enc/dec) divided into 32-bit and data under

encryption (Xi) divided into 32-bit. In the encryption process,

as shown in Table 3, two plaintext blocks divided into 32-bit

and two round key blocks divided into 32-bit are generated

through ARX operations

░ Table 3. LEA Encryption Function Algorithm

Bit place Formula

Xi+1[0] ROL9((Xi[0]⊕RKi
enc[0])⊞(Xi[1]⊕RKi

enc[1]))

Xi+1[1] ROL5((Xi[1]⊕RKi
enc[2])⊞(Xi[2]⊕RKi

enc[3]))

Xi+1[2] ROL3((Xi[2]⊕RKi
enc[4])⊞(Xi[3]⊕RKi

enc[5]))

Xi+1[3] Xi[0]

Figure 5 shows an encryption process of LEA in which the

encryption process of the ith round is sequentially performed

three times, and the previously calculated Xi[0] value is stored

in a 32-bit buffer in the third cycle, and Xi+1[0], Xi+1[1],

Xi+1[2] and Xi+1[3] values of the next round are stored.

In the decoding process, as shown in Table 4, two 32-bit

ciphertext blocks and two 32-bit round key blocks are

generated through ARX operations. Figure 6 shows a

decryption process of LEA in which the decryption process of

the i-th round is sequentially performed three times, and the

previously calculated Xi[3] value is stored in a 32-bit buffer in

the third cycle and Xi+1[0], Xi+1[1], Xi+1[2] and Xi+1[3] values

of the next round are stored.

Figure 5: Algorithm of the Proposed LEA Encryption Module

Figure 6: Algorithm of the Proposed LEA Decryption Module

░ Table 4. LEA Decryption Function Algorithm

Bit place Formula

Xi+1[0] Xi[3]

Xi+1[1] (ROR9(Xi[0])⊟(Xi+1[0]⊕RKi
dec[0]))⊕RKi

dec[1]

Xi+1[2] (ROR5(Xi[1])⊟(Xi+1[1]⊕RKi
dec[2]))⊕RKi

dec[3]

Xi+1[3] (ROR3(Xi[2])⊟(Xi+1[2]⊕RKi
dec[4]))⊕RKi

dec[5]

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 245-249 | e-ISSN: 2347-470X

 248 Website: www.ijeer.forexjournal.co.in 128-Bit LEA Block Encryption Architecture

to Improve the Security of IoT Systems with Limited Resources and Area

Figure 7 shows the internal architecture of the

encryption/decryption module that performs the

encryption/decryption process shown in Figure 5 and 6 and

the flow of data accordingly. The encryption/decryption

module performs encryption/decryption by receiving two 32-

bit plaintext/ciphertext and two 32-bit current round keys from

the top module.

Figure 7: Combined of Encryption/Decryption Module

░ 4. VERIFICATION AND ANALYSIS

OF PROPOSED ARCHITECTURE
The proposed ultra-lightweight LEA 128-bit LEA

encryption/decryption module was designed in Verilog HDL

using Xilinx ISE 14.7 and tested and implemented on a virtex-

5 FPGA device. To confirm the correct operation, Figure 8

shows the simulation results of the designed LEA module.

When 128-bit plaintext

“128’h10111213_14151617_18191a1b_1c1d1e1f” and 128-

bit secret key “128’h0f1e2d3c_4b5a6978_8796a5b4

c3d2e1f0” were input, 128-bit ciphertext

“128’h9fc84e35_28c6c618_5532c7a7_04648bfd” was output.

Conversely, when the 128-bit ciphertext

“128’h9fc84e35_28c6c618_5532c7a7_04648bfd” was

decrypted using the 128-bit secret key

“128’h0f1e2d3c_4b5a6978_8796a5b4 c3d2e1f0”, it was

confirmed that the 128-bit plaintext

“128’h10111213_14151617_18191a1b_1c1d1e1f” was

output, such as the plaintext before encryption.

The maximum operating frequency of the proposed ultra-

lightweight LEA encryption/decryption architecture is 190.88

MHz, requires 191 clock cycles during encryption as shown in

Table 5, and has a throughput of 128 Mbps. A 283 clock cycle

is required for decryption and has a throughput of 86 Mbps.

The encryption-only architecture of the ultra- lightweight LEA

module occupied or required 296 FFs, 501 LUTs, and 363

slices as shown in Table 5, and the encryption/decryption

architecture of the ultra-lightweight LEA module occupied

301 FFs, 1151 LUTs, and 485 slices. Compared to the data

analyzed in papers using Virtex-5 Xilinx FPGA, which is most

similar to the verification environment of the proposed design,

FF decreased by about 46% compared to the synthesis results

of Yoon et al. [14] as shown in Table 5. LUTs decreased by

about 18%, slice decreased by about 53%, and Sung et al. [15]

module results.

Figure 8: Simulation Result of Proposed LEA Architecture

░ Table 5. Synthesis Result of 128-bit LEA Module

Compared to Some Existing Designs

Cipher Core

Architecture
FF Result LUTs Result Slices Result

Encryption

Core
296

46.4%

Reduced

501
18.7%

Reduced

363
53.2%

Reduced

[14] 552 616 775

Enc/Dec

Core
301

49.8%

Reduced

1151
18.8%

Reduced

485
67.6%

Reduced

[15] 600 1418 1498

░ 5. CONCLUSION
Lightweight cryptographic technologies related to IoT are

rapidly emerging and evolving particularly in the era of the

fourth industrial revolution. Because IoT environments use

low power and low budget, computing performance and area

cannot be secured. To address this issue, we propose a

hardware design of the ultra-lightweight 128-bit LEA

algorithm by further reducing its size based on the LEA

algorithm that features low area implementation through the

use of low power and simple architecture operations. It was

verified that the 128-bit LEA block encryption/decryption

cipher architecture was implemented with a smaller area than

the existing proposed LEA encryption/decryption module by

reusing the internal register of the module and sharing

resources to make it lightweight. The proposed block

encryption/decryption module is capable of both encryption

and decryption and is designed to be ultra-lightweight and

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 245-249 | e-ISSN: 2347-470X

 249 Website: www.ijeer.forexjournal.co.in 128-Bit LEA Block Encryption Architecture

to Improve the Security of IoT Systems with Limited Resources and Area

suitable for IoT systems that require smaller sizes, low power,

and low cost. In the future, we will modify the LEA algorithm

to support 32-bit and 64-bit block encryption/decryption and

further conduct research on SoC design and verification of

encryption/decryption modules automatically using a

synthesizable hardware processor

░ REFERENCES

[1] Kishor M. D. 2017. Paperless Society in Digital Era. International
Journal of Library and Information Studies, 7(4), 317-319.

[2] Peterson, Z. N., Gondree, M., and Beverly, R. 2011. A position paper on

data sovereignty: The importance of geolocating data in the cloud. In 3rd

USENIX Workshop on Hot Topics in Cloud Computing.

[3] Ilmudeen A. 2020. Big Data, Artificial Intelligence, and the Internet of

Things in Cross-Border E-Commerce. Cross-Border E-Commerce

Marketing and Management. DOI:10.4018/978-1-7998-5823-2.ch011

[4] Mohan, D., Alwin, L., Neeraja, P., Deepak Lawrence K. and Vinod
Pathari. 2021. A private Ethereum blockchain implementation for

secure data handling in Internet of Medical Things. Journal of Reliable

Intelligent Environments. DOI:10.1007/s40860-021-00153-2

[5] Dijesh P., SuvanamSasidhar B. and Yellepeddi V. 2020. Enhancement of

e-commerce security through asymmetric key algorithm. Computer
Communications, 8, 125-134. DOI:10.1016/j.comcom.2020.01.033

[6] Ryoo H. G. and Ryoo K. K. 2019. Kindergarten school bus notification

service using IoT network. Journal of Next-generation Convergence

Technology Association, 3(1), 21-28.

DOI:10.33097/JNCTA.2019.03.01.21

[7] Akbar M. A., Rashid M. M. and Embong A. H. 2018. Technology Based
Learning System in Internet of Things (IoT) Education. 2018 7th

International Conference on Computer and Communication Engineering,

192-197. DOI: 10.1109/ICCCE.2018.8539334

[8] Tara S. 2021. IoT Attacks Skyrocket, Doubling in 6 Months. Threatpost.

https://threatpost.com/iot-attacks-doubling/169224/

[9] Daemen J. and Rijmen V. 1998. AES Proposal : Rijndael.

https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijnd
ael_doc_V2.pdf

[10] Kwon D. et al. 2003. New Block Cipher: ARIA. Information Security

and Cryptology, 2971, 432-445. DOI:10.1007/978-3-540-24691-6_32

[11] Hong D. et al. 2006. HIGHT: A New Block Cipher Suitable for Low-

Resource Device. Cryptographic Hardware and Embedded Systems,

4249, 46-59. DOI:10.1007/11894063_4

[12] Hong D. J., Lee J. K., Kim D. C., Kwon D. S., Ryu K, H. and Lee D. G.

2014. LEA: A 128-Bit Block Cipher for Fast Encryption on Common
Processors. The 14th International Workshop on Information Security

Applications, 8267, 3-27. DOI : 10.1007/978-3-319-05149-9_1

[13] Feistel Block Cipher. 2021. tutorialspoint.

https://www.tutorialspoint.com/cryptography/feistel_block_cipher.htm

[14] Yoon K. H. and Park S. M. 2015. A Study on Hardware Implementation

of 128-bit LEA Encryption Block. Smart Media Journal, 4(4), 39-46.

[15] Sung M. J., and Shin K. W. 2015. A Small-area Hardware Design of

128-bit Lightweight Encryption Algorithm LEA. Journal of the Korea
Institute of Information and Communication Engineering, 19(4), 888–

894. DOI : 10.6109/JKIICE.2015.19.4.888

[16] Lee, S. Y. (2020). Blockchain for Medical Information of Personal

Health Record System. Journal of Smart Technology Applications, 1(1),
13-20. DOI:10.21742/JSTA.2020.1.1.03

[17] Falah, A. A. (2021). Improving Learning Performance in Neural

Networks. International Journal of Hybrid Innovation Technologies,

1(2), 27-42. DOI:10.21742/IJHIT.2021.1.2.02

© 2022 by the Hyogeun An, Sudong Kang,

Guard Kanda and Prof. Kwangki Ryoo.

Submitted for possible open access publication under the terms and

conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://www.ijeer.forexjournal.co.in/

