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░ ABSTRACT- Wireless Sensor Networks have gradually upgraded to Internet of Things (IoT) of embedded devices wherein 

the constrained devices have been connected directly onto the Internet. This transformation has not only facilitated the expansion in 

connectivity and accessibility of the sensor network but has also enabled one sensor network to interact with other through Internet. 

Security of IoT devices has been researched extensively. The challenge to transform the complex cryptographic algorithms into 

lighter and faster has kept researchers on their toes. Contiki-OS is one of the purest implementations of 6LoWPAN and IEEE 

802.15.4. That makes Contiki-OS lightest and therefore preferred OS for implementation on ultra-low power sensor nodes. Elliptical 

Cryptography has proved to be the choice of most of the security researchers for constrained devices. However, there is very limited 

literature available on implementation of Elliptical Cryptography on Contiki-OS. The open-source libraries available for security 

implementation have not found to be supporting Cooja simulator of Contiki-OS. In this research work we demonstrate improved 

results in processing the Elliptical Cryptography Based implementation of Diffie-Hellman Key exchange mechanism in Contiki-OS 

using Cooja simulator. SECP160K1 curve has been implemented and the results in terms of ECDH computational time have been 

compared with previously published research works. This research demonstrates improved results in Cooja simulator than previous 

known results on hardware providing a leap ahead in efficiency of implementation.  
 

Keywords: Internet of Things, IEE802.15.4, Security, Contiki-OS, Elliptic Curve Cryptography, Diffie Hellman Key Exchange. 

 

 

 

░ 1. INTRODUCTION   
Smart devices like Kitchen Electronics, Security cameras and 

fences, Health Monitoring Systems, Connected Vehicles and 

Industrial Automation are latest trends in the field of Internet of 

Things currently and planned in near future. However, the IoT 

devices used in such applications are predominantly powered 

and therefore can afford to use IEEE 802.11 protocol for 

connecting to the Internet. Whereas, there are ultra-low power 

IoT devices which have bare minimum power to sustain the 

constrained requirement of resources so as to accomplish a 

considerable life. Such IoT devices / motes / constrained nodes 

have minimal resources to be consumed by security protocol. 
 

There are numerous lightweight libraries implementing 

symmetric cryptography and hash functions specifically 

designed for embedded devices. However the keys for 

asymmetric cryptographic functions are large integers and 

demand large memory and processing cycles for deployment. 

This makes the implementation of protocols difficult in an 

efficient way. 
 

A well-known example for a 16-bit platform targeted towards 

IoT applications is the MSP430 family of ultra-low power 

microcontrollers from Texas Instruments [1]. The C standard 

mathematical library of MSP430 includes mathematical 

functions defined in <math.h>. This library is widely used for 

microcontrollers as it is part of C compiler. It provides only 

basic math functions like trigonometric, exponentiation and 

logarithmic functions [2].  
 

Our literature survey indicates that there are very few attempts 

to build numerical computation libraries that can perform heavy 

computations on microcontrollers. Texas Instruments provide 

IQMath and QMath libraries for its MSP430 and MSP432 

devices. These libraries contain a collection of mathematical 

routines for C programmers. However, this collection is 

restricted only to basic mathematical functions such as 

trigonometry and algorithmic functions [3].  
 

Another peculiarity among the libraries is that they have limited 

support to Contiki-OS. Tiny ECC [4] utilizes C code of large 

integer operations in RSAREF 2.0 [5] by porting it to NesC 

code on TinyOS for implementation. TinyDTLS [6] is 

implementation of Elliptic Curve Cryptography (ECC) on an 8-

bit microcontroller but the implementation on GitHub is only 

for 32-bit architecture and with pre-shared key mode. Other 
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libraries that are available online are NanoECC [7], BearSSL 

[8], FlexibleECC [9], MicroECC[10], WolfSSL [11] and 

PolarSSL [12]. 
 

This research work is focused on implementation of our 

mathematical engine on ultra-low power microcontroller 

MSP430 using WisMote of Cooja simulator in Contiki-OS. 

Diffie Hellman Key Exchange is discussed in Section 2. Section 

3 comprises of elliptic curves and mathematical operations on 

elliptic curves in finite field. The experimental setup and results 

are thereafter explained in Section 4 and the research work is 

concluded in Section 5.  
 

░ 2. DIFFIE HELLMAN KEY EXCHANGE 
A message in the pure form, without any alterations or 

additions, conveying the intended meaning is known as 

message in plain text. This plain text message, when in a coded 

form, having worked upon with intentions to hide the message 

from third party, is called cipher text. The process of conversion 

of plain text to cipher text is call encryption and the reversal 

from cipher text to plain text is called decryption. The study of 

algorithms or schemes used for encryption and decryption is 

called cryptography. The encryption algorithms have been 

developed through research and are publicly known. However, 

the key used for encryption is the guarded secret that prevents 

unauthorized decryption of the cipher text.  
 

The knowledge of encryption algorithm used and the key can 

expose the cipher text to third party. Since the computational 

power of computers is so high, the brute force programs use 

almost all the encryption algorithms to convert the cipher text 

to plain text if the key is known. This process would not even 

take minutes. Therefore, key management is one of the most 

focused research topic under cryptography.  
 

Whitfield Diffie and Martin E. Hellman under a paper “New 

Directions in Cryptography” [13] introduced the concept of key 

exchange that is popularly known as Diffie-Hellman key 

exchange mechanism.  
 

Typically to the cryptographic texts, considering Alice (A) as 

source or first party and Bob (B) as destination or second party, 

where A needs to communicate with B in form of a message 

(m). The message m in plain text is converted to cipher text 

using a cryptographic algorithm and a secret key (k). The 

challenge now is to communicate the cipher text along with the 

secret key. In case, both are communicated on same line or 

method of communication, there is high probability of the third 

party or eavesdropper Eve (E) to get both cipher text and secret 

key. Such communications required a separate secure 

communication line for transmission of secret key for keeping 

the message secure. 
 

Diffie-Hellman introduced the concept of Public Key 

Cryptosystem and public key distribution system to handle the 

requirement of a separate secure line for communication of 

secret key. The public key cryptosystem works with two keys 

with each party known as his private key and public key. The 

private key as the name suggests is not shared with anyone 

while the public key is freely distributed to public. The set of 

keys have following properties: 
 

(a) It is feasible to compute inverse pairs of keys known as 

private and public key. 

(b) Text encrypted by using public key can be decrypted by only 

using private key and vice a versa.  

(c) It is not feasible to derive private key from known public 

key and the algorithm. 
 

Diffie-Hellman proposed that the private key is the secret key 

that remains with the owner of the key while the public key is 

freely distributed among others. The key pair as per the 

properties is such that anything encrypted by private key can 

only be decrypted by use of its paired public key and vice a 

versa. Therefore, this scheme provides not only the 

confidentiality of the message but also serves the purpose of 

authentication due to its property. The key pair is also used as 

digital signature for the purpose of authentication in client 

server architecture. 
 

░ 3. ELLIPTICAL CURVES  
An elliptic curve over a field (K) is a nonsingular cubic curve 

in two variables, f (X,Y)=0, with a  K-rational point (which may 

be a point at infinity). The field K is usually taken to be the 

complex numbers (C), reals (R), rationals (Q), algebraic 

extensions of (Q), p-adic numbers (Q_p), or a finite field [14]. 

The curve is defined by a math function and is symmetric along 

X-Axis. The curve is described by following equation:- 

 

y2=x3+ax+b     

Where 4a3+27b2≠0 (1) 

 

 
Figure 1: Adding Point (P and Q) on an Elliptic Curve 

 

This equation is called Weierstrass normal form for elliptic 

curves and the condition is required to exclude singular curves. 

Additionally, negative of a point is defined as the reflection of 

that point on the curve in x-axis. Since, the equation of elliptic 

curve has only two solutions for any given x value, the resultant 

of addition of a point and its reflections is Zero. This Zero (0) 

denotes the Point at Infinity, also known as Identity Element. 

Hence the solution to the equations now may be written as:- 
 

E = {(x, y): y2= x3+ ax + b} ∪ {O}     (2) 
 

The points on elliptic curve form an Abelian group as following 

groups of mathematics are applicable to them: 
 

CLOSURE: If a, b are members of group then a+b is also 

member of group. 

P 
Q 

R 

P + Q 

https://www.ijeer.forexjournal.co.in/
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ASSOCIATIVITY: (a + b) + c = a + (b + c) 

IDENTITY ELEMENT: a + 0 = a = 0 + a 

INVERSE: a + b = => b= -a 

COMMUTATIVITY: a+b = b+a 

 

In event of three aligned points on an elliptic curve, their sum is 

Zero. Hence: 
 

P+Q+R=0   =>    P+Q= -R (reflection of R)           (3) 

 

This equation enables us to derive the sum of two points on the 

curve. Elliptical Curve cryptography requires to perform below 

mentioned two basic arithmetic operations on the points on 

curve (P and Q to get R):- 

 

1. Algebraic Addition: This addition is carried out using 

following formulae:- 

 

P = (𝒙𝒑, 𝒚𝒑)    Q = (𝒙𝒒, 𝒚𝒒)    R = (𝒙𝒓, 𝒚𝒓) 

 

Slope m =  
𝒚𝒑−𝒚𝒒

𝒙𝒑−𝒙𝒒
     if P and Q are distinct 

 

m =     
3𝑥2+𝑎

2𝑦
    if P = Q 

 

𝒙𝒓 =  𝒎𝟐 − 𝒙𝒑 −  𝒙𝒒              (4) 

𝒚𝒓 =  𝒎(𝒙𝒓 − 𝒙𝒑)  − 𝒚𝒑               (5) 

‘or’ 𝒚𝒓 =  𝒎(𝒙𝒓 −  𝒙𝒒) −  𝒚𝒒  

 

2. Scalar Multiplication: This function is multiplication of a 

natural number with a point on the curve. Scalar multiplication 

of nP(n times point P)  can be performed by n times algebraic 

addition of point P. But this would result in order O(2K) which 

is computationally heavy. Hence, in order to reduce the 

computational load we use Double-and-Add method [15]. 
 

3.1 Double and Add Algorithm for Point Multiplication 
In order to use Elliptic Curve for implementation of Diffie-

Hellman Key Exchange, we require the private key to be large 

integer of the order of 256 bits. This integer is multiplied to the 

primitive element that raises its complexity exponentially. An 

efficient method of performing this multiplication is Double 

and Add algorithm as explained here under: 
 

Step 1:  Convert integer into Binary format. 

𝑚𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃 ∈  𝐸(𝐹𝑝) 

Step 2: Start from right most bit to the left most bit in steps of 

one bit. 

𝑚 = 𝑚0 + 𝑚1. 2 + 𝑚2. 22 + ⋯ + 𝑚𝑟 . 2𝑟  𝑤ℎ𝑒𝑟𝑒 𝑚0, … , 𝑚𝑟 ∈
{0,1}. 
 

Step 3:    Double the point in each step. 

Step 3(a): In addition to step 3, Add the point when the 

encountered bit value is 1.  

𝑚𝑃 = 𝑚0𝑃 + 𝑚1. 2𝑃 + 𝑚2. 22𝑃 + ⋯ + 𝑚𝑟 . 2𝑟𝑃  
 

Result:   At the end of the loop, resultant multiplicative is 

achieved. 
 

Through use of Double and Add method to compute multiples 

of a point, we perform log2(𝑚)  doublings and 
1

2
log2(𝑚) 

additions.  
 

3.2 Hasse’s Theorem 
Given an Elliptic Curve E modulo p, the number of points on 

the curve is denoted by #E and is bounded by:- 

 

𝑝 + 1 − 2√𝑝 ≤ #𝐸 ≤ 𝑝 + 1 + 2√𝑝               (6) 

 

Since we are dealing with large prime number p, the value 1 −

2√𝑝 or 1 + 2√𝑝 is too small to be considered. Hence, it can be 

easily considered that the no. of points on curve are 

approximately equal to the range of prime p. Consequently, in 

order to select a curve of this 2256 elements, a prime number 

having 256 bits is required. 
 

3.3 Elliptic Curve Based Discrete Logarithmic 

Problem (ECDLP) 
Authors in [13] were the first to propose use of Discrete 

Logarithmic Problem as a One Way Function in pursuit of 

creation of a secure connection over a public channel. One way 

function may be considered such a function f: X->Y in which it 

is feasible to compute f(x) given x, however, it is infeasible to 

calculate x with f(x) =y. Hence its use in public key 

cryptosystem where the public key can be shared along with the 

cipher text on a public channel without compromising the 

security as the private key is secure with the owner. 
 

In terms of Elliptic Curve Cryptography, the Discrete 

Logarithmic Problem is to find the integer ‘d’ where 

 

1 ≤ 𝑑 ≤ #𝐸 (E being the Elliptic Curve) 

 

Integer ‘d’ is the one used to compute a point ‘T’ on the curve 

by performing the group operation on primitive point ‘P’ such 

that 

𝑑𝑃 = 𝑇 

 

ECDLP when applied in Public Key Cryptosystem represents 

‘d’ as private key (integer) and ‘T’ as the point on Elliptic Curve 

(E) whose equation and primitive point ‘P’ is shared on the 

public channel. 
 

3.4 Elliptic Curve Over Finite Field 
Finite Field is a set of finite elements like set of integers modulo 

p, where p is a prime number denoted as 𝔽𝑝. Implementation of 

public key cryptosystem uses a pair of algorithms constituting 

Discrete Logarithmic problem over a finite field of elements. A 

finite field with modulo p, where p is a prime number, consists 

of all integers from 0 to p-1. 
 

Addition and multiplication are the two binary operations that 

are applicable on finite field. These operations are associative 

and commutative. These operations follow ‘Clock Arithmetic’ 

as the remainder (modulo) starts from 0 and increments till p-1 

and repeats thereafter. 

 

https://www.ijeer.forexjournal.co.in/
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The formulae for the algebraic addition or doubling of points 

under finite fields may be represented as hereunder: 
 

Slope: 

if P ≠ Q     m =     
𝒚𝒑−𝒚𝒒

𝒙𝒑−𝒙𝒒
    mod p                            (7) 

if P = Q       m =     
3𝑥2+𝑎

2𝑦
    mod p           (8) 

 

Resultant Point Coordinates: 

𝒙𝒓 =  𝒎𝟐 − 𝒙𝒑 −  𝒙𝒒 𝒎𝒐𝒅 𝒑           (9) 

𝒚𝒓 =  𝒎(𝒙𝒓 − 𝒙𝒑)  − 𝒚𝒑  𝒎𝒐𝒅 𝒑          (10) 

or 𝒚𝒓 =  𝒎(𝒙𝒓 −  𝒙𝒒) − 𝒚𝒒 𝒎𝒐𝒅 𝒑         (11) 

 

However, the division in a finite field is not a simple operation. 

In order to perform a ÷ b in 𝔽𝑝 , we need to first find the 

multiplicative inverse of b over 𝔽𝑝 and then multiply it with a 

as in a ÷ b = a.b -1 

 

The multiplicative inverse of a number in finite field can be 

found using the Extended Euclidean Algorithm. 
 

3.5 Extended Euclidean Algorithm 
Extended Euclidean Algorithm [16] aims to find two integers 

‘u’ and ‘v’ which fulfill 
 

gcd(𝑎, 𝑏) =  𝑢𝑎 + 𝑣𝑏 

 

Recursive iterations of this down till you get a = 1 

and then the reverse substitution gets the value  
𝑎

𝑏
 (𝑚𝑜𝑑 𝑝) 

Since we have calculated till   a = 1 

Hence equations forms as
1

𝑏
 (𝑚𝑜𝑑 𝑝) => b-1(mod p)    (12) 

 

3.5.1 Function Extended Euclidean 

 

Input: 

a  Positive integer argument.  

b  Positive integer argument. 

Output: 

k  The greatest common divisor of a and b 

 
3.6 Mathematical Implementation  

Contiki-OS is a pure ‘C’ language implementation so as to keep 

the minimum footprint in the flash memory of constrained 

nodes. The constrained nodes have very limited memory and 

processing power. Therefore, in order to keep the program 

implementation light and use minimum power while operation, 

C programming language is used. This limits the use of heavy 

mathematical operations on the constrained node. However, the 

mathematical operations involved in cryptographic 

implementations are quite bulky in terms of utilization of large 

prime numbers and also programming complex mathematical 

equations. Python programming language is high level and fast 

programming language, which is generally used for solving the 

cryptographic problems, but it requires much higher 

computational power and corresponding memory, which is not 

available in constrained nodes. Hence, usage of python 

programming language is not recommended.  
 

Therefore, the using pure C operations are mandatory in 

programming the functionalities in constrained nodes. C 

programming language supports only two byte integers with a 

limitation till 65,535 in case of unsigned integer. However, the 

cryptographic operations require prime numbers ranging from 

128 bits to 2048 bits or higher. This necessitates the requirement 

of usage of an efficient cryptographic implementation, which 

would provide higher complexity in solving the cryptographic 

equations with shorter prime numbers as keys.  
 

Hence the merit of using Elliptic Curve cryptography in 

constrained nodes. Still, the issue of programming the 

mathematical operations remains a challenge. This challenge is 

mitigated through use of structures of integers posing as 

building blocks for large numbers used in these cryptographic 

operations. The operations are performed using Hex values in 

form of strings as input and output. These hex values are there 

after converted into structures having array of integers 

representing the values. 

  

The inbuilt mathematical functions of addition, subtraction, 

multiplication, division, modulo etc. cannot be used due to the 

large numbers being represented as array of integers. Due to this 

limitation all the basic functions, over and above the other 

necessary equations, have to be programmed in this 

implementation. Hence, a major portion of the implementation 

of ECDH is actually implementation of mathematical functions 

using large numbers as array of integers. This increases the 

difficulty of programming by multifold, still keeping the 

memory footprint low and lower requirement of computational 

power and hence low usage of battery and thereby increasing 

the life of a constrained sensor node. 
 

░4. EXPERIMENTAL SETUP AND 

RESULTS 
The mathematical engine has been programmed in C language 

so as to work as a shared library in the Contiki operating system 

for experimental purpose. The mathematical engine along with 

the code for ECDH can be used in other operating systems for 

IoT as most of the operating systems are implemented using C 

language. 
 

Algorithm: 

(u,v) Integers such that ua+vb=k. 

assert a ≥ 0 ∧  b ≥ 0 

(c, d) ← (a, b) 

(uc,vc,ud,vd) ← (1,0,0,1) 

while c ̸= 0  

do 

Invariant:  

        uca+vcb=c∧ uda+vdb=d 

        q ← ⌊ d/c⌋  (c, d) ← (d − qc, c) 

(uc,vc,ud,vd)←(ud −quc,vd −qvc,uc,vc) 

       od 

return d, (ud, vd) 

 

https://www.ijeer.forexjournal.co.in/
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MSP430 is a 16-bit RISC processor containing 16 fully 

addressable single-cycle CPU registers. However, four of 

sixteen registers are special purpose registers i.e. program 

counter, stack pointer, status register and constant generator. 

Therefore, only twelve register can be used for implementation. 

Additionally, MSP430 does not have multiplication instruction 

that poses a huge disadvantage in attaining processing time in 

this processor especially in a simulator. 
 

We have chosen SECP160K1 curve [17] for our 

experimentation with standard parameters as shown in Table 1. 
 

░ Table 1: Parameters of SECP160K1 

 

We have carried out the experiment in Contiki-OS version 2.7. 

Contiki-OS has a simulator Cooja which emulates the motes 

and we have tested the ECDH on WisMote. WisMote is a 

MSP430 series 5 microcontroller with 16-bit RISC architecture 

having RAM of 16Kb and ROM of 256Kb. 
 

The mathematical engine was run as a shared library and the 

code for ECDH was embedded in the broadcast example. c 

program available in prime examples of Contiki-OS version 

2.7. The time taken for running the ECDH function was 

compared with other similar implementation of ECDH in 

previous researches and comparison is shown below as Table 2. 
 

░ Table 2: Comparison of Execution Time in Clock Cycles 
 

 

We determined the time in clock cycles as is available on Cooja 

simulator. Two nodes of WisMote were taken in this network 

with 100% visibility to each other so that no packets are 

dropped in the communication. As shown in the Table 2, the 

results in this research work are faster than the previous 

published researches available with the authors.  
 

However, it is pertinent to note that the experimentation has 

been carried out in simulator which is run at 1000% speed for 

10 times at a random time gap. Additionally, a disclaimer, 

Contiki-OS version 2.7 is not fully tested at maximum clock 

rate. It can run stably under Low Power Mode 1 (LPM 1). In 

case version of Contiki-OS, which is stable for full 

computational speed, is used then much better results can be 

seen. 
 

░ 5. CONCLUSION 
This paper brings out implementation of ECDH using 

SECP160K1 curve on ultra-low power microcontroller mote i.e 

WisMote on Cooja simulator of Contiki-OS version 2.7.  The 

research work has demonstrated high speed computation of 

ECDH by improving the total time consumed. This research 

work is focused on achieving higher and efficient security for 

constrained nodes of IoT device network.  
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