
 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 335-340 | e-ISSN: 2347-470X

Website: www.ijeer.forexjournal.co.in Implementation of Elliptical Curve Cryptography 335

░ ABSTRACT- Wireless Sensor Networks have gradually upgraded to Internet of Things (IoT) of embedded devices wherein

the constrained devices have been connected directly onto the Internet. This transformation has not only facilitated the expansion in

connectivity and accessibility of the sensor network but has also enabled one sensor network to interact with other through Internet.

Security of IoT devices has been researched extensively. The challenge to transform the complex cryptographic algorithms into

lighter and faster has kept researchers on their toes. Contiki-OS is one of the purest implementations of 6LoWPAN and IEEE

802.15.4. That makes Contiki-OS lightest and therefore preferred OS for implementation on ultra-low power sensor nodes. Elliptical

Cryptography has proved to be the choice of most of the security researchers for constrained devices. However, there is very limited

literature available on implementation of Elliptical Cryptography on Contiki-OS. The open-source libraries available for security

implementation have not found to be supporting Cooja simulator of Contiki-OS. In this research work we demonstrate improved

results in processing the Elliptical Cryptography Based implementation of Diffie-Hellman Key exchange mechanism in Contiki-OS

using Cooja simulator. SECP160K1 curve has been implemented and the results in terms of ECDH computational time have been

compared with previously published research works. This research demonstrates improved results in Cooja simulator than previous

known results on hardware providing a leap ahead in efficiency of implementation.

Keywords: Internet of Things, IEE802.15.4, Security, Contiki-OS, Elliptic Curve Cryptography, Diffie Hellman Key Exchange.

░ 1. INTRODUCTION
Smart devices like Kitchen Electronics, Security cameras and

fences, Health Monitoring Systems, Connected Vehicles and

Industrial Automation are latest trends in the field of Internet of

Things currently and planned in near future. However, the IoT

devices used in such applications are predominantly powered

and therefore can afford to use IEEE 802.11 protocol for

connecting to the Internet. Whereas, there are ultra-low power

IoT devices which have bare minimum power to sustain the

constrained requirement of resources so as to accomplish a

considerable life. Such IoT devices / motes / constrained nodes

have minimal resources to be consumed by security protocol.

There are numerous lightweight libraries implementing

symmetric cryptography and hash functions specifically

designed for embedded devices. However the keys for

asymmetric cryptographic functions are large integers and

demand large memory and processing cycles for deployment.

This makes the implementation of protocols difficult in an

efficient way.

A well-known example for a 16-bit platform targeted towards

IoT applications is the MSP430 family of ultra-low power

microcontrollers from Texas Instruments [1]. The C standard

mathematical library of MSP430 includes mathematical

functions defined in <math.h>. This library is widely used for

microcontrollers as it is part of C compiler. It provides only

basic math functions like trigonometric, exponentiation and

logarithmic functions [2].

Our literature survey indicates that there are very few attempts

to build numerical computation libraries that can perform heavy

computations on microcontrollers. Texas Instruments provide

IQMath and QMath libraries for its MSP430 and MSP432

devices. These libraries contain a collection of mathematical

routines for C programmers. However, this collection is

restricted only to basic mathematical functions such as

trigonometry and algorithmic functions [3].

Another peculiarity among the libraries is that they have limited

support to Contiki-OS. Tiny ECC [4] utilizes C code of large

integer operations in RSAREF 2.0 [5] by porting it to NesC

code on TinyOS for implementation. TinyDTLS [6] is

implementation of Elliptic Curve Cryptography (ECC) on an 8-

bit microcontroller but the implementation on GitHub is only

for 32-bit architecture and with pre-shared key mode. Other

Implementation of Elliptical Curve Cryptography Based

Diffie-Hellman Key Exchange Mechanism in Contiki

Operating System for Internet of Things

Prateek Thapar1 and Usha Batra2

1Research scholar, SOES, GD Goenka University, Gurugram, Haryana, India prateekthapar@yahoo.com
2 Dean, SOES, GD Goenka University, Gurugram, Haryana, India Dr.ushabatra@gmail.com

*Correspondence: Prateek Thapar Email: prateekthapar@yahoo.com

ARTICLE INFORMATION

Author(s): Prateek Thapar and Usha Batra;

Special Issue Editor: Dr. S. Gopalakrishnan ;

Received: 01/05/2022; Accepted: 09/06/2022; Published: 30/06/2022;

e-ISSN: 2347-470X;
Paper Id: 0422SI-IJEER-2022-20;

Citation: 10.37391/IJEER.100245

Webpage-link:
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100245.html

This article belongs to the Special Issue on Intervention of Electrical,

Electronics & Communication Engineering in Sustainable Development

Publisher’s Note: FOREX Publication stays neutral with regard to

jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
mailto:prateekthapar@yahoo.com
https://doi.org/10.37391/IJEER.100245
https://ijeer.forexjournal.co.in/archive/volume-10/si-ieee-sd.php
https://ijeer.forexjournal.co.in/archive/volume-10/si-ieee-sd.php
https://orcid.org/0000-0002-5453-9947

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 335-340 | e-ISSN: 2347-470X

Website: www.ijeer.forexjournal.co.in Implementation of Elliptical Curve Cryptography 336

libraries that are available online are NanoECC [7], BearSSL

[8], FlexibleECC [9], MicroECC[10], WolfSSL [11] and

PolarSSL [12].

This research work is focused on implementation of our

mathematical engine on ultra-low power microcontroller

MSP430 using WisMote of Cooja simulator in Contiki-OS.

Diffie Hellman Key Exchange is discussed in Section 2. Section

3 comprises of elliptic curves and mathematical operations on

elliptic curves in finite field. The experimental setup and results

are thereafter explained in Section 4 and the research work is

concluded in Section 5.

░ 2. DIFFIE HELLMAN KEY EXCHANGE
A message in the pure form, without any alterations or

additions, conveying the intended meaning is known as

message in plain text. This plain text message, when in a coded

form, having worked upon with intentions to hide the message

from third party, is called cipher text. The process of conversion

of plain text to cipher text is call encryption and the reversal

from cipher text to plain text is called decryption. The study of

algorithms or schemes used for encryption and decryption is

called cryptography. The encryption algorithms have been

developed through research and are publicly known. However,

the key used for encryption is the guarded secret that prevents

unauthorized decryption of the cipher text.

The knowledge of encryption algorithm used and the key can

expose the cipher text to third party. Since the computational

power of computers is so high, the brute force programs use

almost all the encryption algorithms to convert the cipher text

to plain text if the key is known. This process would not even

take minutes. Therefore, key management is one of the most

focused research topic under cryptography.

Whitfield Diffie and Martin E. Hellman under a paper “New

Directions in Cryptography” [13] introduced the concept of key

exchange that is popularly known as Diffie-Hellman key

exchange mechanism.

Typically to the cryptographic texts, considering Alice (A) as

source or first party and Bob (B) as destination or second party,

where A needs to communicate with B in form of a message

(m). The message m in plain text is converted to cipher text

using a cryptographic algorithm and a secret key (k). The

challenge now is to communicate the cipher text along with the

secret key. In case, both are communicated on same line or

method of communication, there is high probability of the third

party or eavesdropper Eve (E) to get both cipher text and secret

key. Such communications required a separate secure

communication line for transmission of secret key for keeping

the message secure.

Diffie-Hellman introduced the concept of Public Key

Cryptosystem and public key distribution system to handle the

requirement of a separate secure line for communication of

secret key. The public key cryptosystem works with two keys

with each party known as his private key and public key. The

private key as the name suggests is not shared with anyone

while the public key is freely distributed to public. The set of

keys have following properties:

(a) It is feasible to compute inverse pairs of keys known as

private and public key.

(b) Text encrypted by using public key can be decrypted by only

using private key and vice a versa.

(c) It is not feasible to derive private key from known public

key and the algorithm.

Diffie-Hellman proposed that the private key is the secret key

that remains with the owner of the key while the public key is

freely distributed among others. The key pair as per the

properties is such that anything encrypted by private key can

only be decrypted by use of its paired public key and vice a

versa. Therefore, this scheme provides not only the

confidentiality of the message but also serves the purpose of

authentication due to its property. The key pair is also used as

digital signature for the purpose of authentication in client

server architecture.

░ 3. ELLIPTICAL CURVES
An elliptic curve over a field (K) is a nonsingular cubic curve

in two variables, f (X,Y)=0, with a K-rational point (which may

be a point at infinity). The field K is usually taken to be the

complex numbers (C), reals (R), rationals (Q), algebraic

extensions of (Q), p-adic numbers (Q_p), or a finite field [14].

The curve is defined by a math function and is symmetric along

X-Axis. The curve is described by following equation:-

y2=x3+ax+b

Where 4a3+27b2≠0 (1)

Figure 1: Adding Point (P and Q) on an Elliptic Curve

This equation is called Weierstrass normal form for elliptic

curves and the condition is required to exclude singular curves.

Additionally, negative of a point is defined as the reflection of

that point on the curve in x-axis. Since, the equation of elliptic

curve has only two solutions for any given x value, the resultant

of addition of a point and its reflections is Zero. This Zero (0)

denotes the Point at Infinity, also known as Identity Element.

Hence the solution to the equations now may be written as:-

E = {(x, y): y2= x3+ ax + b} ∪ {O} (2)

The points on elliptic curve form an Abelian group as following

groups of mathematics are applicable to them:

CLOSURE: If a, b are members of group then a+b is also

member of group.

P
Q

R

P + Q

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 335-340 | e-ISSN: 2347-470X

Website: www.ijeer.forexjournal.co.in Implementation of Elliptical Curve Cryptography 337

ASSOCIATIVITY: (a + b) + c = a + (b + c)

IDENTITY ELEMENT: a + 0 = a = 0 + a

INVERSE: a + b = => b= -a

COMMUTATIVITY: a+b = b+a

In event of three aligned points on an elliptic curve, their sum is

Zero. Hence:

P+Q+R=0 => P+Q= -R (reflection of R) (3)

This equation enables us to derive the sum of two points on the

curve. Elliptical Curve cryptography requires to perform below

mentioned two basic arithmetic operations on the points on

curve (P and Q to get R):-

1. Algebraic Addition: This addition is carried out using

following formulae:-

P = (𝒙𝒑, 𝒚𝒑) Q = (𝒙𝒒, 𝒚𝒒) R = (𝒙𝒓, 𝒚𝒓)

Slope m =
𝒚𝒑−𝒚𝒒

𝒙𝒑−𝒙𝒒
 if P and Q are distinct

m =
3𝑥2+𝑎

2𝑦
 if P = Q

𝒙𝒓 = 𝒎𝟐 − 𝒙𝒑 − 𝒙𝒒 (4)

𝒚𝒓 = 𝒎(𝒙𝒓 − 𝒙𝒑) − 𝒚𝒑 (5)

‘or’ 𝒚𝒓 = 𝒎(𝒙𝒓 − 𝒙𝒒) − 𝒚𝒒

2. Scalar Multiplication: This function is multiplication of a

natural number with a point on the curve. Scalar multiplication

of nP(n times point P) can be performed by n times algebraic

addition of point P. But this would result in order O(2K) which

is computationally heavy. Hence, in order to reduce the

computational load we use Double-and-Add method [15].

3.1 Double and Add Algorithm for Point Multiplication
In order to use Elliptic Curve for implementation of Diffie-

Hellman Key Exchange, we require the private key to be large

integer of the order of 256 bits. This integer is multiplied to the

primitive element that raises its complexity exponentially. An

efficient method of performing this multiplication is Double

and Add algorithm as explained here under:

Step 1: Convert integer into Binary format.

𝑚𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃 ∈ 𝐸(𝐹𝑝)

Step 2: Start from right most bit to the left most bit in steps of

one bit.

𝑚 = 𝑚0 + 𝑚1. 2 + 𝑚2. 22 + ⋯ + 𝑚𝑟 . 2𝑟 𝑤ℎ𝑒𝑟𝑒 𝑚0, … , 𝑚𝑟 ∈
{0,1}.

Step 3: Double the point in each step.

Step 3(a): In addition to step 3, Add the point when the

encountered bit value is 1.

𝑚𝑃 = 𝑚0𝑃 + 𝑚1. 2𝑃 + 𝑚2. 22𝑃 + ⋯ + 𝑚𝑟 . 2𝑟𝑃

Result: At the end of the loop, resultant multiplicative is

achieved.

Through use of Double and Add method to compute multiples

of a point, we perform log2(𝑚) doublings and
1

2
log2(𝑚)

additions.

3.2 Hasse’s Theorem
Given an Elliptic Curve E modulo p, the number of points on

the curve is denoted by #E and is bounded by:-

𝑝 + 1 − 2√𝑝 ≤ #𝐸 ≤ 𝑝 + 1 + 2√𝑝 (6)

Since we are dealing with large prime number p, the value 1 −

2√𝑝 or 1 + 2√𝑝 is too small to be considered. Hence, it can be

easily considered that the no. of points on curve are

approximately equal to the range of prime p. Consequently, in

order to select a curve of this 2256 elements, a prime number

having 256 bits is required.

3.3 Elliptic Curve Based Discrete Logarithmic

Problem (ECDLP)
Authors in [13] were the first to propose use of Discrete

Logarithmic Problem as a One Way Function in pursuit of

creation of a secure connection over a public channel. One way

function may be considered such a function f: X->Y in which it

is feasible to compute f(x) given x, however, it is infeasible to

calculate x with f(x) =y. Hence its use in public key

cryptosystem where the public key can be shared along with the

cipher text on a public channel without compromising the

security as the private key is secure with the owner.

In terms of Elliptic Curve Cryptography, the Discrete

Logarithmic Problem is to find the integer ‘d’ where

1 ≤ 𝑑 ≤ #𝐸 (E being the Elliptic Curve)

Integer ‘d’ is the one used to compute a point ‘T’ on the curve

by performing the group operation on primitive point ‘P’ such

that

𝑑𝑃 = 𝑇

ECDLP when applied in Public Key Cryptosystem represents

‘d’ as private key (integer) and ‘T’ as the point on Elliptic Curve

(E) whose equation and primitive point ‘P’ is shared on the

public channel.

3.4 Elliptic Curve Over Finite Field
Finite Field is a set of finite elements like set of integers modulo

p, where p is a prime number denoted as 𝔽𝑝. Implementation of

public key cryptosystem uses a pair of algorithms constituting

Discrete Logarithmic problem over a finite field of elements. A

finite field with modulo p, where p is a prime number, consists

of all integers from 0 to p-1.

Addition and multiplication are the two binary operations that

are applicable on finite field. These operations are associative

and commutative. These operations follow ‘Clock Arithmetic’

as the remainder (modulo) starts from 0 and increments till p-1

and repeats thereafter.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 335-340 | e-ISSN: 2347-470X

Website: www.ijeer.forexjournal.co.in Implementation of Elliptical Curve Cryptography 338

The formulae for the algebraic addition or doubling of points

under finite fields may be represented as hereunder:

Slope:

if P ≠ Q m =
𝒚𝒑−𝒚𝒒

𝒙𝒑−𝒙𝒒
 mod p (7)

if P = Q m =
3𝑥2+𝑎

2𝑦
 mod p (8)

Resultant Point Coordinates:

𝒙𝒓 = 𝒎𝟐 − 𝒙𝒑 − 𝒙𝒒 𝒎𝒐𝒅 𝒑 (9)

𝒚𝒓 = 𝒎(𝒙𝒓 − 𝒙𝒑) − 𝒚𝒑 𝒎𝒐𝒅 𝒑 (10)

or 𝒚𝒓 = 𝒎(𝒙𝒓 − 𝒙𝒒) − 𝒚𝒒 𝒎𝒐𝒅 𝒑 (11)

However, the division in a finite field is not a simple operation.

In order to perform a ÷ b in 𝔽𝑝 , we need to first find the

multiplicative inverse of b over 𝔽𝑝 and then multiply it with a

as in a ÷ b = a.b -1

The multiplicative inverse of a number in finite field can be

found using the Extended Euclidean Algorithm.

3.5 Extended Euclidean Algorithm
Extended Euclidean Algorithm [16] aims to find two integers

‘u’ and ‘v’ which fulfill

gcd(𝑎, 𝑏) = 𝑢𝑎 + 𝑣𝑏

Recursive iterations of this down till you get a = 1

and then the reverse substitution gets the value
𝑎

𝑏
 (𝑚𝑜𝑑 𝑝)

Since we have calculated till a = 1

Hence equations forms as
1

𝑏
 (𝑚𝑜𝑑 𝑝) => b-1(mod p) (12)

3.5.1 Function Extended Euclidean

Input:

a Positive integer argument. 

b Positive integer argument.

Output:

k The greatest common divisor of a and b

3.6 Mathematical Implementation

Contiki-OS is a pure ‘C’ language implementation so as to keep

the minimum footprint in the flash memory of constrained

nodes. The constrained nodes have very limited memory and

processing power. Therefore, in order to keep the program

implementation light and use minimum power while operation,

C programming language is used. This limits the use of heavy

mathematical operations on the constrained node. However, the

mathematical operations involved in cryptographic

implementations are quite bulky in terms of utilization of large

prime numbers and also programming complex mathematical

equations. Python programming language is high level and fast

programming language, which is generally used for solving the

cryptographic problems, but it requires much higher

computational power and corresponding memory, which is not

available in constrained nodes. Hence, usage of python

programming language is not recommended.

Therefore, the using pure C operations are mandatory in

programming the functionalities in constrained nodes. C

programming language supports only two byte integers with a

limitation till 65,535 in case of unsigned integer. However, the

cryptographic operations require prime numbers ranging from

128 bits to 2048 bits or higher. This necessitates the requirement

of usage of an efficient cryptographic implementation, which

would provide higher complexity in solving the cryptographic

equations with shorter prime numbers as keys.

Hence the merit of using Elliptic Curve cryptography in

constrained nodes. Still, the issue of programming the

mathematical operations remains a challenge. This challenge is

mitigated through use of structures of integers posing as

building blocks for large numbers used in these cryptographic

operations. The operations are performed using Hex values in

form of strings as input and output. These hex values are there

after converted into structures having array of integers

representing the values.

The inbuilt mathematical functions of addition, subtraction,

multiplication, division, modulo etc. cannot be used due to the

large numbers being represented as array of integers. Due to this

limitation all the basic functions, over and above the other

necessary equations, have to be programmed in this

implementation. Hence, a major portion of the implementation

of ECDH is actually implementation of mathematical functions

using large numbers as array of integers. This increases the

difficulty of programming by multifold, still keeping the

memory footprint low and lower requirement of computational

power and hence low usage of battery and thereby increasing

the life of a constrained sensor node.

░4. EXPERIMENTAL SETUP AND

RESULTS
The mathematical engine has been programmed in C language

so as to work as a shared library in the Contiki operating system

for experimental purpose. The mathematical engine along with

the code for ECDH can be used in other operating systems for

IoT as most of the operating systems are implemented using C

language.

Algorithm:

(u,v) Integers such that ua+vb=k.

assert a ≥ 0 ∧ b ≥ 0

(c, d) ← (a, b)

(uc,vc,ud,vd) ← (1,0,0,1)

while c ̸= 0

do

Invariant:

 uca+vcb=c∧ uda+vdb=d

 q ← ⌊ d/c⌋  (c, d) ← (d − qc, c)

(uc,vc,ud,vd)←(ud −quc,vd −qvc,uc,vc)

 od

return d, (ud, vd)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 335-340 | e-ISSN: 2347-470X

Website: www.ijeer.forexjournal.co.in Implementation of Elliptical Curve Cryptography 339

MSP430 is a 16-bit RISC processor containing 16 fully

addressable single-cycle CPU registers. However, four of

sixteen registers are special purpose registers i.e. program

counter, stack pointer, status register and constant generator.

Therefore, only twelve register can be used for implementation.

Additionally, MSP430 does not have multiplication instruction

that poses a huge disadvantage in attaining processing time in

this processor especially in a simulator.

We have chosen SECP160K1 curve [17] for our

experimentation with standard parameters as shown in Table 1.

░ Table 1: Parameters of SECP160K1

We have carried out the experiment in Contiki-OS version 2.7.

Contiki-OS has a simulator Cooja which emulates the motes

and we have tested the ECDH on WisMote. WisMote is a

MSP430 series 5 microcontroller with 16-bit RISC architecture

having RAM of 16Kb and ROM of 256Kb.

The mathematical engine was run as a shared library and the

code for ECDH was embedded in the broadcast example. c

program available in prime examples of Contiki-OS version

2.7. The time taken for running the ECDH function was

compared with other similar implementation of ECDH in

previous researches and comparison is shown below as Table 2.

░ Table 2: Comparison of Execution Time in Clock Cycles

We determined the time in clock cycles as is available on Cooja

simulator. Two nodes of WisMote were taken in this network

with 100% visibility to each other so that no packets are

dropped in the communication. As shown in the Table 2, the

results in this research work are faster than the previous

published researches available with the authors.

However, it is pertinent to note that the experimentation has

been carried out in simulator which is run at 1000% speed for

10 times at a random time gap. Additionally, a disclaimer,

Contiki-OS version 2.7 is not fully tested at maximum clock

rate. It can run stably under Low Power Mode 1 (LPM 1). In

case version of Contiki-OS, which is stable for full

computational speed, is used then much better results can be

seen.

░ 5. CONCLUSION
This paper brings out implementation of ECDH using

SECP160K1 curve on ultra-low power microcontroller mote i.e

WisMote on Cooja simulator of Contiki-OS version 2.7. The

research work has demonstrated high speed computation of

ECDH by improving the total time consumed. This research

work is focused on achieving higher and efficient security for

constrained nodes of IoT device network.

░ REFERENCES
[1] D.Dang, M. Plant and M. Poole. Wireless connectivity for the Internet of

Things (IoT) with MSP430 microcontrollers (MCUs). Texas Instruments

white paper at
https://www.ti.com/lit/wp/slay028/slay028.pdf?ts=1638301587285&ref_

url=https%253A%252F%252Fwww.google.com%252F

[2] Sanchez, J.; Canton M.P. Microcontrollers: High Performance Systems

and Programming; CRC Press: Boca Raton, FL, USA, 2018.

[3] Texas Instruments Incorporated. MSP430 IQMathLib user guide, Texas

Instruments Incorporated: Dallas, Tx, USA, 2015.

[4] A. Liu and P. Ning, "TinyECC: A Configurable Library for Elliptic Curve

Cryptography in Wireless Sensor Networks," 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008),

2008, pp. 245-256, doi: 10.1109/IPSN.2008.47.

[5] RSA Laboratories. RSAREF: A cryptographic toolkit (version 2.0) March

1994.

[6] Ismail, M. Aiman, and Thomas C. Schmidt. "A DTLS Abstraction Layer

for the Recursive Networking Architecture in RIOT." arXiv preprint

arXiv: 1906.12143 (2019).

[7] Szczechowiak, Piotr, et al. "NanoECC: Testing the limits of elliptic curve
cryptography in sensor networks." European conference on Wireless

Sensor Networks. Springer, Berlin, Heidelberg, 2008.

[8] Silde, Tjerand. "Comparative study of ECC libraries for embedded

devices." Norwegian University of Science and Technology, Tech. Rep

(2019).

[9] Wenger, E., Unterluggauer, T., Werner, M.: FLECC GitHub repository.

https://github.com/IAIK/flecc_in_c. Last accessed November 30, 2021.

[10] MacKay, K.: Micro-ECC GitHub repository.

https://github.com/kmackay/micro-ecc. Last accessed November 30,

2021.

[11] WolfSSL: GitHub repository. https://github.com/wolfSSL/wolfssl. Last

accessed November 30, 2021.

[12] ARMmbed: mbed TLS GitHub repository.

https://github.com/ARMmbed/mbedtls. Last accessed November 30,
2021.

[13] Whitfield Diffie and Martin Hellman. New directions in cryptography.

IEEE transactions on Information Theory, IT-22(6):644-654, November

1976.

[14] Weisstein, Eric W. "Elliptic Curve." From MathWorld--A Wolfram Web

Resource. http://mathworld.wolfram.com/EllipticCurve.html

[15] Silverman, J. H. (2006). An introduction to the theory of elliptic curves.

link:
http://www.math.brown.edu/jhs/Presentations/WyomingEllipticCurve.

Pdf

[16] Iliev, Anton, and Nikolay Kyurkchiev. "The faster extended Euclidean

algorithm." Collection of scientific works from conference. 2018.

Parameter Value

a 0

b 7

p
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FEFFFFAC73

g

0x3B4C382CE37AA192A4019E763036F4F

5DD4D7EBB,0x938CF935318FDCED6BC2

8286531733C3F03C4FEE

n
0x100000000000000000001B8FA16DFAB9

ACA16B6B3

h 1

Author [Reference] Clock Cycles

Liu and Ning [18] 25,290,000
Wenger and Werner [19] 17,559,862
Hinterwa ̈lder et al [20] 12,625,570
Szczechowiak et al [21] 11,520,000

Wenger [22] 11,442,840
This work 10,810,680

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 335-340 | e-ISSN: 2347-470X

Website: www.ijeer.forexjournal.co.in Implementation of Elliptical Curve Cryptography 340

[17] SEC2: Recommended Elliptic Curve Domain Parameters. Certicom

Research. https://www.secg.org/SEC2-Ver-1.0.pdf. Last visited on

November 30, 2021.

[18] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In Proceedings of the 7th

International Conference on Information Processing in Sensor Networks

(IPSN 2008), pp. 245–256. IEEE Computer Society, 2008.

[19] E. Wenger and M. Werner. Evaluating 16-bit processors for elliptic curve

cryptography. In Smart Card Research and Advanced Applications —
CARDIS 2011, vol. 7079 of Lecture Notes in Computer Science, pp. 166–

181. Springer Verlag, 2011.

[20] G. Hinterwa ̈lder, C. Paar, and W. P. Burleson. Privacy preserving

payments on computational RFID devices with application in intelligent

transportation systems. In Radio Frequency Identification Security and

Privacy Issues — RFIDSec 2012, vol. 7739 of Lecture Notes in Computer

Science, pp. 109–122. Springer Verlag, 2012.

[21] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab.

NanoECC: Testing the limits of elliptic curve cryptography in sensor
networks. In Wireless Sensor Networks — EWSN 2008, vol. 4913 of

Lecture Notes in Computer Science, pp. 305–320. Springer Verlag, 2008.

[22] E. Wenger. Hardware architectures for MSP430-based wireless sensor

nodes performing elliptic curve cryptography. In Applied Cryptography

and Network Security — ACNS 2013, vol. 7954 of Lecture Notes in
Computer Science, pp. 290–306. Springer Verlag, 2013.

© 2022 by Prateek Thapar and Usha Batra.

Submitted for possible open access publication

under the terms and conditions of the Creative

Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

