
 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

387 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

░ABSTRACT- Due to an increased scalability, flexibility, and reduced cost complexity, the dynamic memory allocation

models are highly preferred for the real-time embedded systems. For this purpose, the different types of dynamic models have

been developed in the conventional works, which are highly focused on allocating the memory blocks with increased searching

capability. However, it faced some of the problems and issues related to the factors of complex operations, high time

consumption, memory overhead, and reduced speed of processing. Thus, this research work objects to design an advanced and

intelligent dynamic memory allocation mechanism for the real-time embedded systems. Here, a Classy Memory Management

System (CyM2S) is developed by using an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) algorithm for efficiently

allocating the memory blocks with simple searching. The CyM2S helps to reduce the fragmentation rate and time consumption by

optimally allocating the memory blocks. In this model, the small buffer has been maintained for surplus pointers, and the allocated

blocks comprise the metadata and payload data. During evaluation, the performance of the proposed CyM2S- ID2LMA technique

is validated and compared by using the measures of memory allocation time, release time, execution, and processing speed.

Keywords: Dynamic Memory Management, Classy Memory Management System (CyM2S), Isolated Dynamic Two-Level

Memory Allocation (ID2LMA), Embedded Systems, Memory Fragmentation, and Optimal Memory Allocation.

░ 1. INTRODUCTION
In recent days, the modern embedded systems [1, 2] have been

increasingly used in different types of application systems like

mobile, networking, multimedia, and etc due to its efficient

features and characteristics. Typically, embedded systems [3,

4] are considered as the kind of computers mainly designed for

performing the specialized functions. Among the other

domains, it plays a vital role in the digital vision technology

[5], and its general architecture model is shown in Fig 1. The

modern embedded systems are developed based on the

combination of software and hardware components, which

performs certain functions according to the requirements. In

embedded systems, memory management is one of the most

crucial and essential task need to be addressed, because which

are mainly used to ensure the better system performance.

Generally, the memory management techniques [6, 7] are

classified into the following types. Static memory

management and Dynamic memory management.

The static memory management [8] solutions are considered

as the worst-case solutions for the embedded systems, because

it requires to store the large amount of data in the storage

medium. Hence, it requires more memory for processing the

application at the initial stage [9], and for every time, the data

is required to be stored. In the software applications [10, 11],

the memory blocks could not be de-allocated during the

execution time, so the data requests are not processed on the

same embedded systems. Moreover, the static memory

allocation models [12] cannot predict the required amount of

memory for the real time applications, which results in an

increased memory overhead.

Due to these facts, the dynamic memory management

techniques [13] are highly preferred for the modern embedded

systems, since it efficiently allocates the memory blocks for

execution. The main reason of using the dynamic memory

allocation models is, it ensures the flexibility of memory

acquisition during the run time. The different types of dynamic

memory allocation models [14, 15] developed in the

conventional works are as follows: Sequential fit, Buddy

allocator, Indexed fit, Bitmapped fit, Doug Lead

(DLmalloc),Half-fit, Two-Level Segregated Fit

(TLSF),TCmalloc. These techniques are mainly developed for

dynamically allocating the memory spaces [16, 17] for

A Classy Memory Management System (CyM2S) using an

Isolated Dynamic Two-Level Memory Allocation (ID2LMA)

Algorithm for the Real Time Embedded Systems

K. Siva Sundari1, R. Narmadha2 and S. Ramani3

1Research Scholar, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119
2Professor, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu-600119, narmadha1109@gmail.com
3Associate Professor, Department of Electronics and Communication Engineering, Sreenidhi Institute of Science & Technology,

Hyderabad-501301, Telangana, ramanis@sreenidhi.edu.in

*Corresponding Author: K. Siva Sundari; E-mail: sivasundari2029@gmail.com

ARTICLE INFORMATION
Author(s): K. Siva Sundari, R. Narmadha and S. Ramani

Special Issue Editor: Dr. S. Gopalakrishnan ;

Received: 10/05/2022; Accepted: 20/06/2022; Published: 30/06/2022;
E- ISSN: 2347-470X;

Paper Id: 0422SI-IJEER-2022-28;

Citation: 10.37391/IJEER.100254
Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100254.html

This article belongs to the Special Issue on Intervention of Electrical,

Electronics & Communication Engineering in Sustainable

Development

Publisher’s Note: FOREX Publication stays neutral with regard to

jurisdictional claims in Published maps and institutional affiliations.

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/
https://doi.org/10.37391/IJEER.100254
https://ijeer.forexjournal.co.in/archive/volume-10/si-ieee-sd.php
https://ijeer.forexjournal.co.in/archive/volume-10/si-ieee-sd.php
https://ijeer.forexjournal.co.in/archive/volume-10/si-ieee-sd.php

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

388 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

executing the applications with an efficient memory and

resource utilization. However, it limits the major issues [18,

19] of increased processing time, execution time, complexity

in bitmapping operations, overhead, and memory

fragmentation. Hence, the proposed work objects to develop

an intelligent dynamic memory allocation model for the real-

time embedded systems.

The other portions of this paper are segregated into the

followings: Section 2 reviews the conventional dynamic

memory allocation strategies used for the embedded systems,

which also discusses about the pros and cons of each

mechanism according to its characteristics. Then, Section 3

provides the detailed explanation about the proposed CyM2S

dynamic memory allocation model with its working model and

illustration. Section 4 presents the simulation and comparative

analysis of both existing and proposed techniques based on

various performance measures. Finally, the overall paper is

summarized with its obtainments and future scope in Section

5.

░2. RELATED WORKS
This section investigates the conventional dynamic memory

management mechanisms for optimally allocating the tasks in

embedded systems. Also, it examines the advantages and

disadvantages of each technique according to its operational

characteristics and functions. Ouyang, et al [20] implemented

a wait free dynamic memory management scheme for

enhancing the performance of embedded systems. From this

study, it was analyzed that wait free memory allocation

mechanism provides the better results for the real time

embedded systems. Kloda, et al [21] implemented a

deterministic hierarchy based memory management

mechanism for a high-end embedded systems. The proposed

technique incorporates the functionalities of Invalidation

Driven Allocation (IDA) mechanism. Here, the memory

mapping and virtualization processes have been performed for

optimizing the memory with minimal processing time. In

addition to that, the coloring-based partitioning was performed

to segregate the resources, and to obtain the temporal isolation.

However, this framework limits with the major problems of

increased overhead, and computational complexity, which

degrades the performance of entire system. David, et al [22]

suggested a tiny machine learning technique for performing an

efficient dynamic memory management in embedded systems.

This work developed an interpreter-based approach for

reducing the hardware requirements and avoiding other

external dependencies. The tensor flow model was mainly

used to increase the robustness and scalability of network.

During memory optimization, the meta-data could be stored in

the persistent memory to run the model with the run time

tensors. Zhou, et al [5] deployed a deep learning networks

model for task allocation, and memory management in

embedded systems. This paper mainly objects to ensure the

security, and reduce the complexity of embedded systems by

using a dynamic integrity measurement algorithm. In addition

to that, the Rate Monotonic Scheduling (RMS) mechanism

was developed to schedule the tasks according to its priority

and memory usage. Rodriguez, et al [23] introduced a new

framework, named as, ARTICo3 for increasing the

performance of embedded system by optimizing the utilization

of memory. The key characteristics of this framework were

hardware based, supports task and data level parallelism, high

performance embedding, and dynamic adaptability. Moreover,

an automated tool chain methodology was employed to handle

the computing resources with better memory management.

However, it has the limitations of increased execution time,

complex processing, and ineffective solution space. Wang, et

al [24] implemented a training Deep Neural Network (DNN)

algorithm for dynamic GPU memory management. This paper

objects to apply the dynamic strategy for efficiently

optimizing the available workspace with cost consumption.

The key benefits of this work were maximized system

performance, reduced training time, and complexity.

Almatary, et al. developed a lightweight

compartmentalization-based architecture for ensuring the

scalability, compatibility, and availability of embedded

systems. This architecture includes the components of

Memory Protection Unit (MPU), and Memory Management

Unit (MMU) for optimizing the memory usage. Alaswad, et al.

suggested a direct memory management mechanism for

increasing the performance of low power embedded micro-

controllers. This paper intends to develop the next generation

embedded technology for the current industrial relevant

application systems. Armijos, et al. object to monitor the

memory usage of FPGA systems, where the memory was

optimized during the task scheduling and execution. After

executing all the buffers, the memory plan could be re-

executed for recycling the non-persistent buffers, which

increases the lifetime of embedded systems.

According to this review, it is analyzed that the existing

dynamic memory management methodologies are mainly

developed for optimizing the memory usage of embedded

systems. But, it faced the challenges related to the following

factors: Increased storage overhead, High time consumption

for processing, Difficult to handle the bags, Wastage of

memory, Complexity in memory optimization. Hence, the

proposed work objects to implement an advanced optimization

mechanism for optimally allocating the memory space for an

embedding operation.

░3. PROPOSED METHODOLOGY
This section presents the detailed description about the

proposed dynamic memory allocation algorithm used for

optimizing the memory usage of embedded systems. The main

contribution of this work is to satisfy the high level memory

requirements of embedded systems with minimal time

consumption, and optimized fragmentation rate. For this

purpose, a Classy Memory Management System (CyM2S) is

developed in this paper, which incorporates the following

procedures for an efficient memory handling: Isolated

Dynamic Two-Level Memory Allocation (ID2LMA)

algorithm and Programmable Large Free Memory Slots

Creation. The proposed CyM2S is mainly used to enhance the

searching rate of available free memory blocks with increased

speed of processing. This is a kind of dynamic memory

allocation model that highly improves the efficiency of

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

389 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

memory allocation, and reduces the fragmentation rate.

Typically, the embedded systems are more space constrained

and small in nature, hence it is highly essential to optimize the

memory utilization for better performance of the system. In

this framework, the memory usage has been maximized by

separately defragmenting the blocks, which includes the

operations of memory allocation, and move of defragmented

blocks. The memory organization model of the proposed

CyM2S is shown in Fig 1.

In this model, the memory is structured into data

blocks and points, where multiple points can be used to

construct the complex data structures. Then, the small buffer

has been maintained for surplus pointers, and the allocated

blocks comprises the metadata and payload data. Here, the

optimization of blocks help to increase the system

performance with reduced time consumption. When compared

to the conventional techniques, the proposed CyM2S has an

increased ability to handle the complex system functions,

hence it is suitable for the embedded application systems.

Figure 1: Typical memory allocation scheme

The main API functions used in this model are as follows:

memory allocation, memory de-allocation, and pointer

operations.

Figure 2: Memory organization of CyM2S

The ID2LMA algorithm is mainly used to quickly allocate the

available memory blocks based on the best-fit principle. The

key benefits of using this approach are as follows:

 It efficiently minimizes the time complexity of operations.

 It enables the simple searching process.

 Dynamic memory allocation with increased efficiency.

Figure 3: Data structure model of ID2LMA

In this model, the two-level segregated list array has been

maintained to link the available free memory blocks with

varying sizes. During the first level, the free memory blocks

are split into the order of 2n, where n = 4, 5 … 31. According

to the specifications of users, the second level can segment the

memory blocks of first level. During this process, the related

bitmap is constructed for each list of array, where the

segregated list comprises the free memory blocks. If the free

blocks are available, the bitmap is represented as 1; otherwise,

it can be represented as 0. The data structure model of

ID2LMA algorithm is shown in Fig 4.

The main factor of using this ID2LMA technique is, it

identifies the free memory blocks with minimal time

consumption by segregating the list index as shown in below:

SIL1 = ⌊(log2(s)⌋ (1)

SIL2 = (s − 2SIL1)
2NoSL

2SIL1 (2)

Where, SIL1 and SIL2 are the first and second segregated list

index respectively, s indicates the size, and NoSL is the number

of intervals in the second segregated list. If there is any

available free block in the first list indexSIL1, it can be

identified based on the value of SIL2 and is allocated to the

application. If there is no available free blocks, the position of

index is updated and the searching is enabled at the position

of SIL1 + 1. If it comprises the available free blocks, the

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

390 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

corresponding block can be allocated; otherwise, the searching

can be continued until identifying the available free blocks.

The ID2LMA can easily locate the available free memory

blocks with minimal time consumption, which is the key

benefit of using this technique. Here, a memory access statistic

table has maintained for task allocation, which includes the

attributes of size of memory, number of applications, releases,

interval of reentering, and operational memory time as shown

in Fig 5.

Figure 4: Memory accessing table

In this data structure memory model, the bitmap value is

considered as consistent, where the value of bits are

represented according to the type of memory block and class

size. During the system execution, the proposed model

frequently allocates and releases the memory blocks, and the

memory blocks that are executed for a long period are

identified with its block information. Based on this

information, the memory blocks having different size are

updated for allocation. Here, the memory type determination is

also performed for simplifying the process of memory

allocation, and its working model is illustrated in Fig 6.

Figure 5: Flow of memory determination process

The proposed memory management operations could satisfy

the following constraints:

1. The memory blocks having the status as occupied are not

reallocated again, which is illustrated in below:

∀𝑀𝐵, 𝑆 ∙ 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑀𝐵) = 1 (3)

𝑎𝑙𝑙𝑜𝑐 (𝑆) ≠ 𝑀𝐵 (4)

2. The available and free memory blocks are not released,

and is represented as follows:

∀𝑀𝐵, 𝑆 ∙ 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑀𝐵) = 0 (5)

𝑓𝑟𝑒𝑒 (𝑀𝐵) ≠ 𝐹𝑎𝑙𝑠𝑒 (6)

3. The adjacent two memory blocks are not overlapped,

which is represented in below:

∀𝑀𝐵, [𝑀𝐵, 𝑀𝐵 + 𝑠𝑖𝑧𝑒(𝑀𝐵)) ∩ [𝑟(𝑀𝐵), 𝑟(𝑀𝐵) +

𝑠𝑖𝑧𝑒 (𝑟(𝑀𝐵))] = ∅ (7)

4. Here, minimum one non-free block can exist between two

free blocks as represented below:

∀𝑀𝐵, 𝐹 ∙ 𝑆𝑡𝑎𝑡𝑢𝑠(𝑀𝐵) = 𝑆𝑡𝑎𝑡𝑢𝑠 (𝐹) = 0 ∧ 𝑀𝐵 < 𝐹 (8)

𝑟(𝑀𝐵) < 𝐹 ∧ 𝑆𝑡𝑎𝑡𝑢𝑠(𝑟(𝑀𝐵)) = 1 (9)

5. The free blocks are not adjacent, which is expressed as

follows:

∀𝑀𝐵 ∙ 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑀𝐵) = 0 (10)

𝑆𝑡𝑎𝑡𝑢𝑠 (𝑟(𝑀𝐵)) = 1 ∧ 𝑆𝑡𝑎𝑡𝑢𝑠(𝑙𝑒𝑓𝑡(𝑀𝐵)) = 1 (11)

6. The free memory spaces can be allocated as shown in

below:

∀𝑀𝐵 ∙ ∃𝑆. 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑀𝐵) = 0 (12)

𝑎𝑙𝑙𝑜𝑐 (𝑆) = 𝑀𝐵 (13)

7. The allocated memory space is released after execution,

which is represented as follows:

∀𝑀𝐵. 𝑆𝑡𝑎𝑡𝑢𝑠 (𝑀𝐵) = 1 (14)

𝑓𝑟𝑒𝑒 (𝑀𝐵) = 𝑡𝑟𝑢𝑒 (15)

During initialization, the searching table, dynamic memory

area, and memory pool have been initialized. Then, the pool is

treated as the large memory block, where the relevant

attributes are initialized with its index structure. After

initialization, the memory allocation has been performed for

allocating the memory space according to the blocks of users.

In this process, the index structure of memory is updated for

further operations, which helps to minimize the execution time

of processing. An efficiently memory allocation performed in

this system is illustrated in Fig 7, where N indicates the

number of times the memory block is updated, P indicates the

count of memory block is released, K is the interval rate, and

D denotes the duration of memory occupation. Then, the

parameters N’, P’, K’, and D’ are the thresholds of the

corresponding attributes.

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

391 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

Figure 6: Memory allocation

Consequently, the available memory blocks can be searched

from the next list of free block list. During the implementation

process, the parameter of the largest memory block has been

inserted in the index structure. The memory management

system of the ID2LMA identifies the appropriate memory

blocks based on the updated memory size of task and index

structure. After that, the memory block MB is identified and

removed from the index structure S for updating the complete

indexing structure. The memory split, memory free, memory

insert, and merge operations have been performed for enabling

the proper utilization of memory in the embedded systems.

The primary advantages of the proposed CyM2S dynamic

memory allocation model are as follows: simple to implement,

optimized memory utilization rate, minimal complexity, speed

of processing, and reduced time consumption.

░ 4. RESULTS AND DISCUSSION
This section validates the results of proposed CyM2S dynamic

memory allocation model in embedded systems by using

various evaluation metrics. It includes the parameters of as

memory allocation time, release time, execution time, and

processing speed. For evaluating the performance of the

proposed system, the four different real time embedded

applications have been considered in this analysis. It includes

3D Path Planning (3DPP), Histogram of Oriented Gradients

(HoG), Space Time Adaptive Processing (STAP), and Infrared

H2RG Detector (ESA). Fig 7 and Table 2 shows the speedup

performance of the proposed CyM2S dynamic memory

allocation model for the four different real time embedded

applications. Here, the speedup is estimated with respect to the

pre-allocated task data structures. From the results, it is

analyzed that the proposed CyM2S model could efficiently

increase the speedup performance for all kinds of applications.

Figure 7: Pre-allocated tasks Vs speedup

Figure 8 evaluates the memory allocation time of conventional

TLSF, bitmapped TLSF, and proposed CyM2S- ID2LMA

techniques with respect to varying memory block size.

Typically, the memory allocation time is mainly estimated to

validate the efficiency of allocation methodologies, which is

calculated according to the average time spent for the memory

allocation process. It is calculated as shown in below:

𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑙𝑜𝑡𝑖𝑚𝑒 =
∑ 𝑇𝑇𝑖

𝑁𝑀
 (16)

Where, 𝑇𝑇𝑖 is the time taken for allocating the memory blocks,

and 𝑁𝑀 indicates the total number of allocated blocks of

memory. From the obtained results, it is evaluated that the

proposed CyM2S- ID2LMA outperforms the other approaches

with reduced allocation time.

Figure 8: Allocation time Vs memory block size

Similarly, the memory release time of existing and proposed

dynamic memory allocation models are validated and

compared with respect to varying memory block size as shown

in Figure 9. The memory release time is also considered as one

of the most essential parameter used for validating the memory

allocation efficiency and performance of the models.

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

392 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

Moreover, it is estimated based on the amount of time required

to insert into the memory or the time taken for merging the

adjacent memory blocks during the release operation. It is

calculated as follows:

𝑀𝑒𝑚𝑜𝑟𝑦𝑟𝑒𝑙𝑡𝑖𝑚𝑒 =
∑ 𝑅𝑇𝑖

𝑁𝑀
 (17)

Where, 𝑅𝑇𝑖 indicates the release time of ith block. Based on

this evaluation, it is observed that the proposed CyM2S-

ID2LMA technique overwhelms the other approaches with

minimal release time for processing blocks of memory.

Figure 9. Average release time Vs memory block size

Figure 10 validates the execution time of standard dynamic

memory allocation, and proposed CyM2S- ID2LMA models

with respect to the number of requests. Normally, the

performance of entire memory allocation system is determined

based on the time of processing the requests. According to this

analysis, it is observed that the proposed technique overcomes

the standard model with reduced execution time for processing

all requests.

Figure 10: Execution time Vs Number of requests

░ 5. CONCLUSION
This paper presents an intelligent and advanced dynamic

memory allocation model, named as, CyM2S- ID2LMA for the

real time embedded systems. The main purpose of this work is

to to satisfy the high level memory requirements of embedded

systems with minimal time consumption, and optimized

fragmentation rate. Also, it objects to perform an efficient

memory handling by incorporating an ID2LMA algorithm with

the programmable large free memory slots creation model.

Here, the utilization of memory is maximized by separating

the defragmented memory blocks, and it includes the

operations of memory allocation, and move of defragmented

blocks. In the proposed work, the main purpose of using the

CyM2S model is to handle the complex system functions with

simple memory management operations. Moreover, the

ID2LMA algorithm is deployed for increase the speed of

processing with minimal time complexity, simple searching,

and ensured efficiency of memory handling. Also, it helps to

increase the searching rate of available free memory blocks by

using the best-fit principle. During evaluation, the

performance of the proposed technique is validated and

compared by using various evaluation measures such as

memory allocation time, release time, execution time, and

processing speed.

░REFERENCES
[1] Z. Shen, K. Dharsee, and J. Criswell, "Fast Execute-Only Memory for

Embedded Systems," in 2020 IEEE Secure Development (SecDev),
2020, pp. 7-14.

[2] S.-H. Park, J.-H. Lee, S.-W. Cho, and S.-H. Kim, "A Flash Memory

Management Method for Enhancing the Recovery Performance,"
IEMEK Journal of Embedded Systems and Applications, vol. 13, pp.

235-243, 2018.

[3] M. Bazzaz, A. Hoseinghorban, and A. Ejlali, "Fast and predictable non-
volatile data memory for real-time embedded systems," IEEE

Transactions on Computers, vol. 70, pp. 359-371, 2020.

[4] M. Strobel and M. Radetzki, "Design-time memory subsystem
optimization for low-power multi-core embedded systems," in 2019

IEEE 13th international symposium on embedded multicore/many-core

systems-on-chip (MCSoC), 2019, pp. 347-353.
[5] J. Zhou, "Real-time task scheduling and network device security for

complex embedded systems based on deep learning networks,"

Microprocessors and Microsystems, vol. 79, p. 103282, 2020.
[6] I. Georgiev and I. Georgiev, "Some Analysis of the Timing Parameters

in Real-time Embedded Systems," in 2020 International Conference on

Information Technologies (InfoTech), 2020, pp. 1-4.
[7] Y.-P. Liang, Y.-T. Fang, S.-H. Chen, Y.-T. Chen, T.-Y. Chen, W.-L.

Wang, et al., "Brief Industry Paper: An Energy-Reduction On-Chip

Memory Management for Intermittent Systems," in 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2021, pp. 429-432.

[8] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A.
Chatzigeorgiou, and D. Soudris, "Interrelations between software

quality metrics, performance and energy consumption in embedded

applications," in Proceedings of the 21st International Workshop on
software and compilers for embedded systems, 2018, pp. 62-65.

[9] R. Wittig, M. Hasler, E. Matus, and G. Fettweis, "Queue based memory
management unit for heterogeneous MPSoCs," in 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2019,

pp. 1297-1300.
[10] V. Venkataramani, M. C. Chan, and T. Mitra, "Scratchpad-memory

management for multi-threaded applications on many-core

architectures," ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, pp. 1-28, 2019.

[11] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer,
"{ACES}: Automatic compartments for embedded systems," in 27th

USENIX Security Symposium (USENIX Security 18), 2018, pp. 65-

82.
[12] T. Poggi, P. Onaindia, M. Azkarate-askatsua, K. Grüttner, M. Fakih, S.

Peiró, et al., "A hypervisor architecture for low-power real-time

embedded systems," in 2018 21st Euromicro Conference on Digital
System Design (DSD), 2018, pp. 252-259.

[13] S. Branco, A. G. Ferreira, and J. Cabral, "Machine learning in resource-

scarce embedded systems, FPGAs, and end-devices: A survey,"
Electronics, vol. 8, p. 1289, 2019.

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 2 | Pages 387-393 | e-ISSN: 2347-470X

393 Website: www.ijeer.forexjournal.co.in A Classy Memory Management System (CyM2S) using

an Isolated Dynamic Two-Level Memory Allocation (ID2LMA) Algorithm for the Real Time Embedded Systems

[14] M. Labbé and F. Michaud, "Long-term online multi-session graph-

based SPLAM with memory management," Autonomous Robots, vol.
42, pp. 1133-1150, 2018.

[15] K. Maeng and B. Lucia, "Adaptive dynamic checkpointing for safe

efficient intermittent computing," in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp.

129-144.

[16] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo, "A
real-time scratchpad-centric OS with predictable inter/intra-core

communication for multi-core embedded systems," Real-Time

Systems, vol. 55, pp. 850-888, 2019.
[17] L. Shaofeng, Q. Lei, and Y. Mengfei, "Verification of a TLSF

Algorithm in Embedded System," in Formal Methods and Software

Engineering: 22nd International Conference on Formal Engineering
Methods, ICFEM 2020, Singapore, Singapore, March 1–3, 2021,

Proceedings, 2020, p. 331.

[18] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R.
Sadeghi, "TIMBER-V: Tag-Isolated Memory Bringing Fine-grained

Enclaves to RISC-V," in NDSS, 2019.

[19] R. Zeng, "Embedded Linux Operating System Network Accelerated
Operation Method Based on ARM Processor," in 2021 Asia-Pacific

Conference on Communications Technology and Computer Science

(ACCTCS), 2021, pp. 315-319.
[20] X. Ouyang and Y. Zhu, "wfspan: wait-free dynamic memory

management," ACM Transactions on Embedded Computing Systems

(TECS), 2022.
[21] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M.

Bertogna, "Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems," in 2019 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2019,

pp. 1-14.
[22] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, et al.,

"TensorFlow lite micro: Embedded machine learning for tinyml

systems," Proceedings of Machine Learning and Systems, vol. 3, pp.
800-811, 2021.

[23] A. Rodríguez, J. Valverde, J. Portilla, A. Otero, T. Riesgo, and E. De la

Torre, "Fpga-based high-performance embedded systems for adaptive
edge computing in cyber-physical systems: The artico3 framework,"

Sensors, vol. 18, p. 1877, 2018.

[24] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, et al.,
"Superneurons: Dynamic GPU memory management for training deep

neural networks," in Proceedings of the 23rd ACM SIGPLAN

symposium on principles and practice of parallel programming, 2018,
pp. 41-53.

[25] S. Munaf, Dr. A. Bharathi, Dr. A. N. Jayanthi (2016), Double Pumping

Low Power Technique for Coarse - Grained Reconfigurable
Architecture. IJEER 4(1), 10-15. DOI: 10.37391/ijeer.040103.

http://ijeer.forexjournal.co.in/archive/volume-4/ijeer-040103.php

[26] Victoria Satuluri, Ratna Babu Yellamati (2015), Design of Middleware
and Software Embedded Development Kit For Area Based Distributed

Mobile Cache System. IJEER 3(3), 44-49. DOI:

10.37391/ijeer.030301. http://ijeer.forexjournal.co.in/archive/volume-
3/ijeer-030301.php

© 2022 by K. Siva Sundari, R. Narmadha and

S. Ramani. Submitted for possible open access

publication under the terms and conditions of

the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://forexjournal.co.in/
https://www.ijeer.forexjournal.co.in/

