
 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

651 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

░ ABSTRACT- Grid computing makes large-scale computations easier to handle. In heterogeneous systems like grid

computing, failure is inevitable. Because of the volume and diversity of the resources, scheduling algorithm is among the most

difficult challenges to overcome in grid computing. To reduce the make-span of the job to be executed a thorough understanding of

scheduling in grid is important. Say there are two computing nodes that aren't being used right now. The scheduler may choose the

node that has higher computing strength (for example, higher CPU speed, higher free memory), even though this node may also

have high potential of failure. High potential of failure refers to the possibility of the failure occurring at execution time, resulting

in the decrease of system performance. Therefore, awareness of failure is also very important in scheduling. This work proposes

and implements a failure-aware scheduling method to schedule the tasks which uses both performance factors and failure factors of

resources while making scheduling decision. The proposed algorithm is analyzed over various performance matrices and it shows

considerably improved performance over existing algorithm.

General Terms: Grid Computing, Large Scale Computing, Scheduling Algorithms.

Keywords: Checkpoint, Failure, Fault Tolerance, QoS, Recovery, Resource, Reliability, Scheduling.

░ 1. INTRODUCTION
The name Grid was used as a metaphor for a Power Grid, which

provides continuous, ubiquitous, dependable, and fair access to

electricity irrespective of starting point. Grids make it possible

to share, select, as well as aggregate a wide range of resources,

such as powerful computers, memory devices, sources of data,

and equipment, that are geographically dispersed and owned by

a variety of organizations. This allows grids to solve multiple

problems in the fields of science, engineering, and commerce.

In the beginning it link very high performance computers that

were located in different parts of the world, but now it has

grown to include much more than its initial remit [1]. Grid

computing is a new computing model that does large-scale

computations by connecting a network of connected processors

or resources. Multiple resources are required since multiple jobs

might execute at the same time or a grid system can solve

multiple types of problems which may require different type of

computing resources.

Fault tolerance becomes very important attribute in Grid

computing since individual Grid resource reliability cannot

always be guaranteed; additionally, as resources are used

outside of organizational bounds, it is more difficult to ensure

the behavior of resource. A system failure happens when the

behavior of the system deviates from its specification, which is

caused by system flaws [2].

Preventing system failures is one technique to increase system

reliability. Fault prevention is the name for this method.

Another approach is to provide the desired service

notwithstanding any flaws. Fault tolerance is the term for this.

Fault tolerance must be built into the system to guarantee

uninterrupted service because no amount of fault avoidance can

eliminate all possible failures [3].

The goal of fault tolerance is to ensure that expected services

are delivered irrespective of the existence of fault-caused

defects inside the system [7]. Failure, Faults and Errors are

identified and resolved while the system continues to provide

appropriate service [8]. Hence, the goal to deliver QoS (Quality

of Service) is achieved with the help of fault tolerant

mechanism.

When a work is submitted to the Grid for computation, the

Resource Management System breaks it into roughly equal-

sized subtasks. All of these subtasks are assumed to be

independent of one another here. Grid information server

maintains information of all resources into the system and

schedule task as per their availability and various performance

and failure related parameters. Figure 1 shows an environment

of Grid Computing System.

Designing and Implementation of Failure-Aware Based

Approach for Task Scheduling in Grid Computing

Manjeet Singh1, Javalkar Dinesh Kumar2

1Research Scholar, Department of Computer Science & Engineering, Lingaya’s Vidyapeeth, Faridabad, India,

19phcs05w@lingayasvidyapeeth.edu.in
2Assistant Professor, Department of Electronics & Communication Engineering, Lingaya’s Vidyapeeth, Faridabad, India,

javalkardinesh@gmail.com

*Correspondence: Manjeet Singh, Email: 19phcs05w@lingayasvidyapeeth.edu.in

ARTICLE INFORMATION

Author(s): Manjeet Singh and Javalkar Dinesh Kumar

Received: 03/08/2022; Accepted: 14/09/2022; Published: 18/09/2022:
E- ISSN: 2347-470X

Paper Id: IJEER-220737

Citation: 10.37391/IJEER.100339

Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100339.html

Publisher’s Note: FOREX Publication stays neutral with regard to

jurisdictional claims in Published maps and institutional affiliations.

http://www.ijeer.forexjournal.co.in/
https://doi.org/10.37391/IJEER.1003389
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100339.html

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

652 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

Figure 1: Grid Computing Environment [36]

Failure is inevitable in a heterogeneous system like the Grid.

Failures of system resources have adverse effects on

application’s performance [9]. Failures can make a process run

slower than normal or even stop it. A resource/node failure can

be caused by failure of any of the component in Grid which may

be a processor, memory, network connection and

application/software [21]. Thus, failure information, in addition

to other performance-related factors, should be taken into

account when making scheduling decisions. Several algorithms

have been proposed to maximize reliability and minimize

makespan. However, these objectives cannot be achieved

concurrently. There is a trade-off between reducing makespan

and improving reliability. Generally, improving reliability of

the system incurs some overheads, making applications take

more time to finish. Therefore, a strategy is to minimize

executing time of tasks under failure-prone condition.

░ 2. LITERATURE REVIEW
The Queen-bee algorithm is used by Zahra Pooranian et al. [11]

to solve the scheduling problem, as well as the comparison is

made to different meta-heuristic algorithms. Furthermore, as

compared to previous methods, the suggested algorithm

minimizes both computation time and makespan. A FI-based

scheduling strategy was presented by Jairam Naik K et al. [12],

which picks resources based on response time and fault

indicator. H. B. Prajapati et al. [13] provided an outline of Grid

computing and explain the numerous subsystems that make it

possible. In addition, the study looks at resource and application

scheduling concepts, as well as scheduling method

classification. In grid computing, Ritu Garg et al. [16] suggested

a scheduling technique for dependent tasks. P. Keerthika and P.

Suresh [19] presented a load-balancing-based scheduling

technique that improves resource efficiency. Rakesh Kumar et

al. [20] discussed Virtualization, Cloud, Grid, and Cluster

Computing along with their characteristics, advantages,

shortcomings, benefits, and downsides along with a comparison

of cloud, cluster, and grid computing, as well as a comparison

of grid and cluster computing.

A fault-tolerant scheduling technique with QoS constraints was

proposed by S. Haider et al. [25]. A job scheduling system for

Hadoop was developed by Mbarka Soualhia et al. [27]. Mark

Baker et al. [28] discussed the web based techniques for grid

environment. Muhanad et al. [31] have proposed two

metahuristic scheduler for job scheduling. P. Kathalkar and A.

V. Deorankar [33] discusses the checkpoint restore approach

and the many mechanisms offered by different authors to

increase the efficiency and performance of system. The main

reason behind this study is to learn more about the process of

check pointing and the classification of check pointing methods.

Ankita et al. [35] uses genetic algorithm to solve and optimize

a multi-objective GSP (Grid Scheduling Problem). Pranit Sinha

et al. [37] study proposes methods for boosting the grid system's

efficacy by combing two scheduling techniques. This hybrid

scheduler has the potential to speed up the grid system's

execution time. P. Kumari et al. [38] surveyed the fault tolerant

techniques H. Eluri et al. [39] develop an energy saving scheme

in Micro-Grid environment using fuzzy logic controller. L.

Jenila et al. [40] proposed a scheduling algorithm for wireless

multimedia sensor. S. Kulkarni et al. [41] have done the

performance analysis for fault tolerant operation of PMSM to

increase system reliability. N. Thapliyal et al. [42] developed a

load balance min-min scheduling algorithm for load balancing

in cloud computing inspired by the foraging activity of honey

bees.

░ Table 1: Comparison of Various Existing Scheduling

Approaches

Reference Description of Scheduling Approach

H. Sajedi
et al. [14]

offers the CUckoo-Genetic System (CUGA), a task
scheduling system for grids that reduces machine

completion times and is based on the cuckoo

optimization algorithm (COA) as well as the genetic
algorithm (GA)

J.

Shanthini

et al. [17]

developed a hybrid scheduling model for independent

task based on best gap search and apparent tardiness cost

indexing method.

M. K.

Bhatia [22]

Briefed about various scheduling algorithms like, OLB

(opportunistic load balancing), Min-Min algorithm,

Max-Min algorithm Surffrage algorithm, GA, SA, GSA
and Tabu search etc for grid computing environment.

M.T.

Younis et

al. [23]

Devised a scheduling approach for scheduling of

independent jobs in grid computing, which is based on

the genetic algorithm.

H. Idris et

al. [26]

suggested an algorithm for grid fault tolerance

scheduling which is based on ant colony optimization

technique

Sophiya

Sheikh et

al. [29]

Propose a method for resource load balancing that

commits advanced resource reservations to tasks in order

to reduce load imbalance on nodes with the smallest
makespan

J.

Natarajan

[30]

Proposed effective novel Backfilling technique to solve

the Task Scheduling problem. Tasks are split into

numerous threads for processing depending on their
duration. In the core concept of "gang scheduling,"

several thread jobs are processed

T. V. Long

et al. [32]

Described CAPE, is a checkpoint-based method for

seamlessly interpreting and performing OpenMP
programs on distributed applications

B. Anitha

et al. [34]

Proposed a new scheduling technique based on heuristic

approach for independent task.

The above comparison describes (see Table 1) various

scheduling approaches. The strategy proposed in this research

is based on failure factors and performance parameters both,

which is different from the above methods. Hence the method

devised is novel in nature.

░ 3. METHODOLOGY
Due to the occurrence of failures in the Grid computing

environment, a technique to determine faults and resolving the

consequences of fault is required. In grid computing settings,

fault tolerance mechanisms include check pointing, replication,

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

653 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

and so on. For fault tolerance, we use a comprehensive

checkpoint/restart mechanism. The Grid computing system

used is based on the following assumptions:

 Nodes in Grid System have varying performance and

failure related parameters.

 Jobs assigned are self-contained, meaning they can be

completed in any order.

 The Weibull distribution governs the time between Grid

node breakdowns.

 During the lifetime of the system, the failure rate of can

grow, drop, or remain same.

Grid System is made up of different resources with varying

failure rates and performance parameters, and the jobs to be

carried out are assumed to be free from one another. The

Weibull distribution is used to calculate the duration between

failures. A node's failure rate may grow or decrease during

execution, and can remain constant [6]. Several research [9-10,

18, 24] have looked at the period between failures and analyze

the failure distribution and get Weibull distribution fit where

failure rate is not constant i.e. increase or decrease with time.

Some discover falling hazard rates, while others find flat or

increasing hazard rates. There are two parameters (α and ß) in

the Weibull failure distribution: scale and shape parameter

respectively [10]. Symbol and notation used are given below in

table 1.

░ Table 2: Various Symbol/Notation

Symbol Details

α Scale Parameter

ß Shape Parameter

f(t) Probability function of Density

F(t) Function of Cumulative Distribution

OF Checkpoint Overhead

TRe Re-computation Cost

RF Time required to recover

k Coefficient of Time for Recomputing

n(t) Frequency function

ti ith checkpoint placement

E[W] Expected wasted time

R Total number of failures

During execution if a resource crashes all applications that are

in execution need to restart from scratch. In this work, the Full

Checkpoint Scheme (a fault-tolerant method) is used to provide

application reliability. Full checkpointing is the method that

saves the entire application state. The checkpoint/restart system

has two critical states: first one is checkpointing and second is

recovery. In first state a snapshot of running application is taken

that is utilised in second state in case of a failure for recovery

from the last execution point. Checkpoint overhead is the time

it takes to save a state (OF). The task execution is resumed when

we reload the saved snapshot. The recovery state has two costs:

the time spent loading the most recent snapshot (RF) and the

time spent in re-computing (TRe). As a result of the checkpoint

system, time can be saved by not re-computing task from

scratch after a failure. Figure 2 and Figure 3 show the behavior

of the whole checkpoint/restart paradigm [6].

Figure 2: Mechanism of Checkpoint/Restart as stochastic renewal

reward process

Figure 3: Behavior of Full Checkpoint/Restart Model

The fundamental concept is to determine the anticipated amount

of time lost as a result of errors, and then make use of this

information to recalculate the amount of processing power

actually available for resources. Later this new capacity/

processing power is used for making the scheduling decision.

The wasted time is calculated as follows:

𝑊𝑎𝑠𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 (𝑊(𝑇)) = (𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 +

𝑅𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡

The checkpointing frequency function is shown in Eq. (2) and

hence number of checkpoints to be taken during the execution

of an application can be computed with the help of Eq. (3) as

given below:


∫ 𝑛(𝑡). 𝑑𝑡
ti

ti−1
= 1

Where ti (i=1, 2 …) and t0 =0.

∫ 𝑛(𝑡). 𝑑𝑡
𝑇

0


Where, n(t) can be calculated by Eq. (4).

F(t) is Cumulative Distribution Function (CDF) given by Eq.

(5) and f(t) is Probability Density Function (PDF) given by Eq.

(6) for Weibull Distribution [6].

𝑛(𝑡) = √
𝑘

𝑂𝐹
 .

𝑓(𝑡)

1−𝐹(𝑡)
 

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

654 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing



𝐹(𝑡) = 1 − 𝑒−(𝑡/𝛼)𝛽




𝑓(𝑡) = (
𝛽

𝛼
) . (

𝑡

𝛼
)

𝛽−1

. 𝑒−(𝑡/𝛼)𝛽



Using Eq. (5) and (6), Eq. (4) can be written as Eq. (7) given

below:

𝑛(𝑡) = √
𝑘

𝑂𝐹
 . (

𝑡

𝛼
)

𝛽−1

2
 . √

𝛽

𝛼



Using number of checkpoint during execution of the application

(calculated by Eq. (3)) and overhead of one checkpoint OF, we

can calculate the total checkpoint overhead on the system, as

shown in Eq. (8) below:

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑂𝐹 ∫ 𝑛(𝑡). 𝑑𝑡
𝑇

0




The Re-computation time is calculated using Eq. (9), where k is

the coefficient for re-computing time and its, value varies from

0 to 1.

𝑇𝑅𝑒 ≈
𝑘

𝑛(𝑇)




Using Eq. (8) and Eq. (9) wasted time can be calculated as given

in Eq. (10). So, rewrite the Eq. (1) as Eq. (10) by putting these

values.

𝑊(𝑇) = 𝑂𝐹 ∫ 𝑛(𝜏). 𝑑𝜏
𝑇

0
+

𝑘

𝑛(𝑇)
+ 𝑅𝐹



Hence, the expected wasted time during execution of an

application can be written as in Eq. (11) below:

𝐸[𝑊] = ∫ [W(𝑇)]. 𝑓(𝑡). 𝑑𝑡
∞

0




Putting the value of Eq. (10), the Eq. (11) can be rewritten as

Eq. (12):

𝐸[𝑊] = ∫ [𝑂𝐹 ∫ 𝑛(𝜏). 𝑑𝜏
𝑡

0
+

𝑘

𝑛(𝑡)
+ 𝑅𝐹]

∞

0
. 𝑓(𝑡). 𝑑𝑡 (12)

Hence, Eq. (12) can be used for calculating the total expected

wasted time in case of failure and full checkpoint fault tolerant

mechanism.

░ 4. ALGORITHM
The algorithm will arrange T number of jobs among P

nodes/resources in order to achieve the shortest possible

makespan. The proposed algorithm is divided into two parts.

Part A of algorithm is used to calculate the new node capacity

of resources with respect to their failure and performance

factors. Part B of algorithm schedule task according to new

node capacity to minimize the job execution time. Figure 4

below demonstrates the flowchart of proposed algorithm.

Figure 4: Flowchart for Proposed Scheduling Algorithm

Various parameters used in algorithm are given as under:

 Assume that t[T] is an array, and that t(i) represents the

task's size.

 Let p[P] be an array, and p(i) be the node i's initial

computing capacity.

 Let EXT[T][P] be the execution time, and EXT[i][j]

denote the processing time for task i on resource j in

the absence of failures and fault tolerance.

 Let T*P order matrix EWT[T][P], with EWT[i][j]

denoting the Expected Wasted Time (additional time

necessary for job i on processor j) in the event of

failure.

 Let TXT[T][P] denote running time with faults and a

fault tolerant method.

 The T*P order matrix CF [T][P] specifies the Capacity

recomputing factor.

 Assume NC[P] is an array, and NC(k) is the node k's

recomputed capacity.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

655 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

Steps for Scheduling Algorithm:

Part A: Recalculating the Node Capacity-

1. Sort task/job in descending order of job size.

2. Calculate the EWT for all the tasks over all

nodes/processor.

 EWT=Check pointing Overhead + Re-computation

Time + Recovery Time

3. Now we can calculate the TET by adding EWT to EXT

(execution time of job without failure and without fault

tolerant system).

 TET=EXT + EWT

4. Calculate the CF (Capacity Decrement Factor):

 𝐶𝐹[𝑖][𝑗] =
𝑇𝐸𝑇[𝑖][𝑗]

𝐸𝑋𝑇[𝑖][𝑗]
 (13)

5. The first row will properly portrays the behavior of the

system and hence used for calculating new capacity.

6. Calculate new capacity NC(k) of each node k:

 𝑁𝐶[𝑘] =
𝑝[𝑘]

𝐶𝐹[1][𝑘]
 (14)

Part B: Scheduling of Task According to new node capacity-
Arrange resources/nodes in descending order of new computing

capacity

 j=1

 While (j <= T)

 For i =1 to P

 If resource/node i is not available or is

faulty, then

 i++

 Continue

 Else

Assign job t[j] to the resource/ node with

capacity NC[i]

 j++

 If (j > T)

 Break

 End if

 End if

 End for

 Wait delta time

End while

░ 5. RESULTS AND ANALYSIS
The Simulation is done with the help of Matrix Laboratory Tool

MATLAB. By randomizing node characteristics in simulation,

an 8-node grid computing system is developed. The number of

tasks ranges from four to twenty. The scale parameter (α) has a

value of 15 while the shape parameter (ß) has a value between

1 and 5. The job size ranges from [50, 1000]. The number of

minutes it takes to finish a job/task on a standard machine is the

size of the job/task. The coefficient k is considered to have a

value of 0.5. The snapshot time for each full snapshot is 2

minutes, and the full checkpoint recovery time is 0.5 minutes.

The data used for evaluating the performance of proposed

FABS method is system generated.

The suggested failure-aware based scheduling algorithm

(FABS) is compared to the Speed-only approach (SOSA) to see

how well it performs. While scheduling tasks, SOSA algorithm

considers only resource performance parameters. The below

given performance metrics are used to evaluate the suggested

algorithm's performance [4-5, 15].

Performance Ratio (PR): It's the ratio of the speed-only

method’s make-span to the make-span of the suggested

algorithm's. The proposed algorithm should have a shorter

make-span than the speed-only scheduling algorithm for better

performance i.e. the value of PR should come out to be greater

than 1.

Failure Ratio (FR): It's the proportion of total crashes in the

proposed method to total crashes in the existing technique. If

the value of FR is less than 1, the proposed failure-aware

scheduling approach will perform better.

Average Time to Respond (ATR): Let T be the number of task

in a system and TETi be the time system takes to complete work

ti, and Arrivali be the time taken for job i to arrive in system.

The system's average response time is defined as follows:

𝐴𝑇𝑅 = [∑ (𝑇𝐸𝑇𝑖 − 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑖)1≤𝑖≤𝑇] 𝑇⁄ (15)

The better performance of the system the ATR of Failure-aware

scheduling method should be lower than ATR of speed-only

scheduling approach.

Throughput: It's the number of task completed in a given time

span. Proposed method should have a higher throughput than

the speed-only scheduling approach. Throughput is a direct

indicator of improved and better system performance.

Performance Improvement Rate (PIR): It details the

percentage amount by which the suggested approach (FABS)

outperforms the other available algorithm (SOSA).

PIR(%)=(
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑆𝑂𝑆𝐴) − 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐹𝐴𝐵𝑆)

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐹𝐴𝐵𝑆)
) × 100 (16)

The various performance metrics parameter values such as

makespan, performance ratio, number of failures, failure ratio,

average response time, throughput and PIR are given below in

Table 3 to Table 6 and Figure 5 to Figure 11 shows the

performance comparison of FABS and SOSA.

░ Table 3: Makespan and Performance Ratio

Number

of Task

Make-

span

(SOSA)

Make-

span

(FABS)

PR

(FABS)

PIR

(FABS)

4 107.1152 80.4794 1.331 33.0964

8 113.9768 84.3085 1.3519 35.1902

12 174.0754 172.8185 1.0073 0.7273

16 263.9208 224.6135 1.175 17.5000

20 314.0572 295.6922 1.0621 6.2109

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

656 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

░ Table 4: Number of Failure and Failure Ratio

Number of

Task

No. of Failure

(SOSA)

No. of Failure

(FABS)
FR (FABS)

4 39.7355 32.7863 0.8251

8 68.028 61.0682 0.8977

12 132.2089 116.0461 0.8777

16 184.5777 172.1199 0.9325

20 264.9271 249.8278 0.943

░ Table 5: Average Response Time

Number of Task ART (SOSA) ART (FABS)

4 88.5548 76.3694

8 79.7817 78.1088

12 94.2157 92.9473

16 100.5566 99.3666

20 109.6399 108.8908

░ Table 6: Throughput

Number of Task Throughput (SOSA) Throughput (FABS)

4 0.1129 0.1309

8 0.1253 0.128

12 0.1061 0.1076

16 0.0994 0.1006

20 0.0912 0.0918

Figure 5: Makespan Comparison

Figure 6: Performance Ratio

Figure 7: Number of Failures Comparison

Figure 8: Failure Ratio

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

657 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

Figure 9: Average Response Time

Figure 10: Throughput

Figure 11: Performance Improvement Rate (PIR)

Figure 5 demonstrates that the FABS makespan is less than

those of SOSA, which means that average time taken by the

proposed algorithm is less than average time taken by the

existing scheduling algorithm, and hence the efficiency of

system is increased. Figure 6 shows that the new algorithm's

performance ratio (PR) is more than 1, means that FABS

outperforms SOSA method. It signifies that the proposed

algorithm takes less time to complete a task than the existing

SOSA approach. Figure 7 illustrates that the suggested

approach has less failures than the existing algorithm and hence

failure ratio (FR) of proposed algorithm is less than 1, as can be

seen from Figure 8. Less number of failures means that less

recovery and re-computing is required, hence saves the

execution time. It means FABS algorithm increases the

reliability of system by reducing the number of faults. Figure 9

shows the ATR and it always remains less than that for Speed-

only algorithm. It depicts that the process or task have to wait

for less time to start its execution in case of proposed algorithm.

Figure 10 show the throughput and it always remains higher for

FABS than that for SOSA i.e. FABS completes more number

of tasks in the same time frame. Figure 11 represents the

percentage improvement in performance (PIR) in term of

makespan. For instance when number of task is 8, FABS is

performing best and giving 35% better performance than

SOSA.

░ 6. CONCLUSION
Grid computing has considered system failure a significant

factor. In this paper, a solution for improving Grid computing

performance is provided, when a node/resource fails. The

approach is to employ a fault-tolerant environment and propose

a job scheduling approach that is aware of failures. Weibull

distribution is used to describe the duration between failures.

Full checkpointing/restart mechanism is used to provide a fault

tolerant environment. A task scheduling approach is designed

and implemented which consider both performance matrices

and failure matrices. Proposed algorithm recalculated the node

capacity and schedule tasks with that new capacity of nodes.

The performance analysis of purposed algorithm (FABS) is

done making comparison with existing approach (SOSA) which

considers only performance factors. Experimental data is

analyzed based on five performance metric’s which are PR, FR,

ART, Throughput and PIR. The result graph clearly shows that

the system performance is improved significantly where failure

rate of nodes is considerable. This research present a failure-

ware based scheduling method, in which failure information is

considered to make more effective scheduling decisions and the

objective to improve the system reliability while minimizing the

job execution time is achieved.

░ REFERENCES
[1] M. Baker, R. Buyya, and D. Laforenza, “Grids and Grid technologies for

wide-area distributed computing”, Software – Practice and Experience.
Vol. 32, No. 15, 2002.

[2] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve, “Faults in grids: why

are they so bad and what can be done about it?” In: Proc. of First Latin
American Web Congres, pp. 18-24, 2003.

[3] J. H. Abawajy, “Fault Detection Service Architecture for Grid Computing

Systems”, In: Proc. of ICCSA 2004, LNCS 3044, Springer-Verlag Berlin

Heidelberg, pp. 107–115, 2004.

[4] B. Nazir and T. Khan, “Fault Tolerant Job Scheduling in Computational

Grid”, In: Proc. of IEEE 2nd International Conference on Emerging

Technologies, Peshawar, pp. 708-713, 2006.

[5] T. Do, T. Nguyen, D. T. Nguyen, and H. C. Nguyen, “Failure-aware
scheduling in Grid computing environments”, In: Proc. of the

International Conference on Grid Computing and Application, 2009.

[6] M. Paun, N. Naksinehaboon, and R. Nassar, “Incremental Checkpoint

Scheme for Weibull Distribution”, International Journal of Foundations
of Computer Science, Oct. 2009.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 3 | Pages 651-658 | e-ISSN: 2347-470X

658 Website: www.ijeer.forexjournal.co.in Designing and Implementation of Failure-Aware Based Approach

for Task Scheduling in Grid Computing

[7] R. Garg and A. K. Singh, “Fault Tolerance in Grid Computing: State of

the Art and Open Issues”, International Journal of Computer Science &

Engineering Survey (IJCSES), Vol. 2, No. 1, pp. 88-97, 2011.

[8] P. Latchoumy and P. S. A. Khader, “Survey on Fault Tolerance in Grid

Computing”, International Journal of Computer Science & Engineering

Survey (IJCSES), Vol. 2, No. 4, pp. 97-110, 2011.

[9] M. Tiryakioglu and D. Hudak, “Guidelines for 2-Parameter Weibull

Analysis for Flaw-Containing Materials”, Metallurgical & Materials

Transactions, Vol. 41, pp. 1130-1147, 2011.

[10] Nielsen and A. Mark, “Parameter Estimation for the Two-Parameter

Weibull Distribution” https://scholarsarchive.byu.edu/etd/2509, Theses
and Dissertations, pp. 1-99, 2011.

[11] Z. Pooranian, M. Shojafar, and B. Javadi, “Independent Task Scheduling

in Grid Computing Based on Queen-Bee Algorithm”, IAES International
Journal of Artificial Intelligence (IJ-AI), Vol. 1, No. 4, pp. 171-181, 2012.

[12] J. K. Naik and N. Satyanarayana, “A Novel Fault-tolerant Task

Scheduling Algorithm for Computational Grids”, In: Proc. IEEE

Conference, ISBN 978-1-4673-2818-0/13, 2013.

[13] H. B. Prajapati, and V. A. Shah, “Scheduling in Grid Computing

Environment”. In: Proc. 2014 Fourth International Conference on

Advanced Computing & Communication Technologies, ISBN: 978-1-

4799-4910-6, DOI: 10.1109/ACCT.2014.32, 2014.

[14] H. Sajedi and M. Rabiee, “A Metaheuristic Algorithm for Job Scheduling

in Grid Computing”, I.J. Modern Education and Computer Science, Vol.

5, pp. 52-59, 2014.

[15] R. Garg and A. K. Singh, “Fault Tolerant Task Scheduling on

Computational Grid Using Checkpointing Under Transient Faults”,

Springer, Arab J Sci Eng, Vol. 39, pp. 8775–8791, 2014.

[16] R. Garg and A. K. Singh. “Adaptive workflow scheduling in grid

computing based on dynamic resource availability”, Engineering Science
and Technology, an International Journal, Vol. 18, pp. 256-269, 2015.

[17] J. Shanthini, T. Kalaikumaran, and S. Karthik, “Hybrid Scheduling Model

for Independent Grid Tasks”, Hindawi Publishing Corporation The
Scientific World Journal, pp. 1-9, 2015.

[18] P. Jiang, Y. Xing, X. Jia, and B. Guo, “Weibull Failure Probability

Estimation Based on Zero-Failure Data”, Hindawi Publishing

Corporation, Mathematical Problems in Engineering Volume , pp. 1-8,
2015.

[19] P. Keerthika and P. Suresh, “A Multiconstrained Grid Scheduling

Algorithm with Load Balancing and Fault Tolerance”, Hindawi
Publishing Corporation, The Scientific World Journal, pp. 1-10, 2015.

[20] R. Kumar and S. Charu, “Comparison between Cloud Computing, Grid

Computing, Cluster Computing and Virtualization”, IJMCSA, Vol. 3, No.

1, pp. 42-47, 2015.

[21] S. Haider and B. Nazir, “Fault tolerance in computational grids:

perspectives, challenges, and issues”, Springer Plus, Vol. 5, pp. 1-20,

2016.

[22] M. K. Bhatia, “Task Scheduling in Grid Computing: A Review”,
Advances in Computational Sciences and Technology, Vol. 10, No. 6,

pp.1707-1714, 2017.

[23] M. T. Younis and Shengxiang, “A Genetic Algorithm for Independent Job

Scheduling In Grid Computing” MENDEL- Soft Computing Journal, Vol.
23, No. 1, pp. 65-72, 2017.

[24] J. Liu, Z. Wu, J. Wu, J. Dong, Y. Zhao, and D. Wen, “A Weibull

distribution accrual failure detector for cloud computing”, PLoS ONE,

Vol. 12, No. 3, pp. 1-16, 2017.

[25] S. Haider and B. Nazir, “Dynamic and Adaptive Fault Tolerant

Scheduling, With QoS Consideration in Computational Grid”, IEEE

Access, Special Section On Emerging Trends, Issues, And Challenges In

Energy-Efficient Cloud Computing, Vol. 5, pp. 7853-7873, 2017.

[26] H. Idris, A. E. Ezugwu, S. B. Junaidu, and A. O. Adewumi, “An improved

ant colony optimization algorithm with fault tolerance for job scheduling

in grid computing systems”, PLOS ONE , pp. 1-24, 2017.
https://doi.org/10.1371/journal.pone.0177567.

[27] M. Soualhia, F. Khomh, and S. Tahar, “A Dynamic and Failure-aware

Task Scheduling Framework for Hadoop”, IEEE Transactions on Cloud

Computing, pp. 2168-7161, 2018.

[28] R. Buyya, and M. Baker, “Grids and Grid technologies for wide-area

distributed computing”, SP&E., 2018.

[29] S. Sheikh, A. Nagaraju, and M. Shahid, “Dynamic load balancing with

advanced reservation of resources for computational grid”, In: Proc.
International Conference in Computing, Analytics and Networking,

Springer, pp. 501–510, 2018.

[30] J. Natarajan, “Parallel queue scheduling in dynamic cloud environment

using backfilling algorithm”, Int. J. Intell. Eng. Syst., Vol. 11, No. 2, pp.

39–48, 2018.

[31] M. T. Younis and S. Yang, “Hybrid meta-heuristic algorithms for

independent job scheduling in grid computing”, Appl. Soft Comput., Vol.

72, pp. 498–517, 2018.

[32] V. L. Tran, E. Renault, V. H. Ha, and X. H. Do, “Time-stamp Incremental

Checkpointing and its Application for an Optimization of Execution

Model to Improve Performance of CAPE”, Informatica, Vol. 42, pp. 301–

311, 2018.

[33] P. Kathalkar and A. V. Deorankar, “Study of Checkpoint Restore

mechanism for Fault Tolerance in Cloud computing”. IJARSE, Vol. 7,

No. 4, pp. 237-243, 2018.

[34] B. Anitha and G. K. Kamalam, "Heuristic Algorithm for Independent
Task Scheduling In Grid Computing", IJRTE, Vol. 8, No. 4, pp. 12861-

12866, 2019.

[35] Ankita and S. K. Sahana, “Evolutionary based hybrid GA for solving

multi-objective grid scheduling problem”, Microsystem Technologies,
Springer Nature, 2019.

[36] M. Singh, “An Overview of Grid Computing”, In: Proc. IEEE ICCCIS-

2019, pp. 194-198, 2019.

[37] P. Sinha, G. Aeishel, and N. Jayapandian, "Computational Model for
Hybrid Job Scheduling in Grid Computing", In: Proc. ICICV 2019,

Lecture Notes on Data Engineering and Communications Technologies,

ISBN: 978-3-030-28364-3, LNDECT 33, pp. 387–394, 2020.

[38] P. Kumari and P. Kaur, "A survey of fault tolerance in cloud computing",

Journal of King Saud University – Computer and Information Sciences,

Vol. 33, pp. 1159–1176, 2021.

[39] H. Eluri and M. Gopichand, “Energy Management System and

Enhancement of Power Quality with Grid Integrated Micro-Grid using
Fuzzy Logic Controller” International Journal of Electrical and

Electronics Research (IJEER), Volume 10, Issue 2, Pages 256-263, e-
ISSN: 2347-470X, 2022.

[40] L. Jenila and R. Aroul Canessane, “Cross Layer Based Dynamic Traffic

Scheduling Algorithm for Wireless Multimedia Sensor”, International

Journal of Electrical and Electronics Research (IJEER), Volume 10, Issue
2, Pages 399-404, e-ISSN: 2347-470X, 2022.

[41] S. Kulkarni and A. Thosar, “Performance Analysis of Fault Tolerant

Operation of PMSM using Direct Torque Control and Fuzzy Logic

Control”, International Journal of Electrical and Electronics Research
(IJEER), Volume 10, Issue 2, Pages 297-307, e-ISSN: 2347-470X, 2022.

[42] N. Thapliyal and P. Dimri, “Load Balancing in Cloud Computing Based

on Honey Bee Foraging Behavior and Load Balance Min-Min Scheduling
Algorithm”, International Journal of Electrical and Electronics Research

(IJEER), Volume 10, Issue 1, Pages 1-6, e-ISSN: 2347-470X, 2022.

© 2022 by Manjeet Singh and Javalkar Dinesh

Kumar. Submitted for possible open access

publication under the terms and conditions of

the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://www.ijeer.forexjournal.co.in/

