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░ ABSTRACT- Electric vehicles (EVs) are seen as a necessary component of transportation's future growth. However, the 

performance of batteries related to power density and energy density restricts the adoption of electric vehicles. To make the transition 

from a conventional car to a pure electric vehicle (PEV), a Hybrid Electric Vehicle's (HEV) Energy Management System (EMS) is 

crucial. The HEVs are often powered with hybrid electrical sources, therefore it is important to select the optimal power source to 

improve the HEV performance, minimize the fuel cost and minimize hydrocarbon and nitrogen oxides emission. This paper presents 

the Grey Wolf Optimization (GWO) algorithm for the control of the power sources in the HEVs based on power requirement and 

economy. The proposed GWO-based EMS provides optimized switching of the power sources and economical and pollution free 

control of HEV.  
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░ 1. INTRODUCTION   
The massive growth in the global population and rising living 

standards in emerging nations have caused a spike in the 

number of automotive vehicles. Traditional diesel/petrol cars, 

on the other hand, are becoming less efficient and less popular 

as a result of the scarcity of fossil fuels and the rise in air 

pollution caused by the release of dangerous gases. CO2 is 

emitted by classic inter combustion engine-based cars, which is 

the primary cause of global warming and air pollution. Because 

of their pollution-free nature, cheaper cost, and efficiency, 

electric vehicles have seen a recent surge in popularity. Despite 

this, the adoption of a completely electric car is difficult due to 

its restricted range [26], [19], [14]. 
 

The present electric car can only drive 150-200 kilometres on a 

single charge of the battery, limiting the vehicle's long-distance 

capacity. To increase HEV outcomes in critical situations, 

hybrid electric vehicles employ a combination of the internal 

combustion engine (ICE) and electrical power sources to power 

the vehicle. Because battery size and quantity are key 

constraints in HEV, researchers have worked on allied small 

power sources for HEV in addition to batteries. By 

incorporating a plug-in rechargeable battery, plug-in hybrid 

electric vehicles (PHEVs) increase battery capacity. Both 

mechanical and electric power is required by PHEVs. As a 

result, in PHEVs, an EMS is required to maintain the operating 

states of the ICE and the battery. PHEVs are classified as series 

PHEVs, parallel PHEVs, or series-parallel PHEVs based on the 

different connection topologies between the ICE, the battery, 

and the electric motor (EM). Flexible operating modes in series-

parallel PHEVs can produce lower emissions and greater 

driving outcome than series or parallel PHEVs. An EMS for 

series-parallel PHEVs that is well-designed reduces emissions 

while enhancing fuel efficiency (FE). The goal of EMS design 

is to acquire minimum complexity while maintaining high 

efficiency [15], [20], [21]. 
 

In HEV, the primary purpose of an EMS is to fulfill power 

demand with the least amount of fuel, the least number of 

emissions, and the greatest potential vehicle outcome. HEVs are 

tough to EMS because of their intricate architecture. Because 

they can accurately estimate the power distribution of the 

engine and motors, EMSs are useful in measuring HEV fuel 

economy [16]. Fuzzy Rule-based EMSs are easy to set up and 

maintain. It can handle both spoken and statistical data at the 

same time. The parameters of fuzzy logic control (FLC) are 

simple to change, allowing for a lot of control flexibility. The 

three forms of fuzzy rule-based EMS are conventional fuzzy 

control, predictive fuzzy control, and adaptive fuzzy control 

[25]. Bathaee et al. [30] developed a fuzzy-based torque 

controller for parallel HEVs. The ICE operational points are 

determined by the required battery SOC and ICE torque. Li et 

al. [28] suggested an FLC-based method for calculating the 

power split between the ice and the battery, allowing the HEV 

engine to run more efficiently and generate fewer pollutants. 

The engine and motor operation points of the PHEV were also 

determined using a fuzzy logic-based EMS. It resulted in 

decreased fuel consumption and emissions of CO, CO2, HC, 

and NOx [24]. Akar et al. [23] introduced EMSs for 

battery/ultra-capacitor EVs with multi-objective converters 

using rate limiter and fuzzy controller.  
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The optimization algorithms have shown superior results for the 

EMS of HEVs because of their multi-objective constraints 

handling capability. Ramdan et al. [1] presented GWO and 

Artificial Bee Colony (ABC) for the energy management in the 

Fuel Cell HEV (FCHEV) based on the various driving 

conditions. The GWO based optimization provides better 

results in dynamic conditions whereas ABC provides more 

economical feasibility. In Plug-in HEV (PHEV) it is essential 

to switch efficiently from the conventional vehicle mode to pure 

EV mode. Ding et al. [10] explored a rule-based control strategy 

along with a Genetic Algorithm (GA) for the EMS of PHEV. 

The suggested method is used to minimize hydrocarbon and 

nitrogen oxides emissions. The environmental conditions and 

future driving conditions are highly unpredictable in real life 

scenario. Traditional EMS systems use predefined rules for 

energy management that fails to provide effective solution in 

real time conditions [22]. The reinforcement learning (RL) 

algorithms are capable of designing EMS systems based on real 

time driving conditions without any prior knowledge of driving 

and vehicle parameters. However, parametric study is vital to 

attain better fuel economy and design a generalized EMS model 

that can be adaptable to any type of HEV model [17]. The deep 

learning-based EMS for HEVs is slower because of its 

extensive training process and the complexity of the 

architectures. Lian et al. [18] explored deep deterministic policy 

gradient (DDPG) that utilizes the expert’s knowledge to 

minimize the training overheads of the EMS strategy. It 

provides better stable operation, fuel economy, faster training 

of EMS algorithm and a generalized approach that can be 

employed for any type of HEVs. The fuel cell can be seen as a 

reliable, efficient, and portable source of power under critical 

conditions; however, it increases the cost of the system if used 

regularly [29], [27]. Various optimization strategies have been 

employed for EMS of HEV in recent years which has given 

promising performance under different dynamic scenarios. 

Still, there is a need to focus on the faster control of EMS 

systems for HEVs with multiple power sources that provide 

maximum power, longer lifetime of the battery, lower cost, and 

can deal with dynamic driving conditions, road conditions, and 

environmental conditions [2-5], [11]. 
 

This paper presents energy control in HEV with hybrid 

electrical sources. The major contributions of the paper are 

summarized as follows: 

 Design of effective multi-objective Grey Wolf Optimization 

based energy management strategy for HEVs with hybrid 

electrical sources. 

 Performance evaluation of proposed optimization technique 

for different vehicle dynamics and constraints. 
 

The rest of the paper is organized as follows: Section 2 provides 

the proposed GWO based EMS for HEVs in detail. Section 3 

gives detailed description of the simulation results and 

discussions of various parametric variations and their effect on 

the proposed control strategy. Section 4 depicts the conclusions, 

merits and future planning for the improvement of the proposed 

EMS scheme.  
 

░ 2. SYSTEM MODEL 
The suggested GWO based control strategy is described in 

Figure 1. The considered HEV model consists of three hybrid 

electrical sources such as a battery bank, fuel cell and ultra-

capacitors to power the HEV. In the proposed model the ultra-

capacitor and fuel are connected to the DC link through an 

interleaved bidirectional buck-boost converter and 

unidirectional boost converter. It included a DC-AC converter 

and transmission model that transfer power to drive the vehicle. 

 
 

Figure 1: The configuration of the different power sources for HEV 

 

2.1 Modeling of Fuel Cell 
In this work, Proton Exchange Membrane Fuel Cell (PEMFC) 

model is considered that converts the reactant’s chemical 

energy into electricity. The general fuel cell stack model offered 

by the Fuel Cell Stack block may be used to represent the most 

widely used hydrogen and air-fueled fuel cell stacks. An 

electrical model of a fuel cell that relies on fuel flow rate is 

shown in the diagram below. The two building components of 

the stack model are a fundamental model and a comprehensive 

model. Select the level in the mask under Model detail level in 

the block dialogue box to switch between the two models. 

Figure 2 and 3 show the fuel cell equivalent circuit and 

SIMULINK model, respectively. 

 

https://www.ijeer.forexjournal.co.in/
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Figure 2: Simulink Modelling of Fuel cell 

 

 
 

Figure 3: Equivalent circuit of fuel cell 
 

The simulation of the voltage power relationship of the fuel cell 

is shown in the Figure 4.  

 
 

Figure 4: Outcome curve for single FC 

 

It is observed that the FC provides large efficiency at low 

current. For limited fuel flow rate, the current efficiency and 

fuel utilization is very low. Increase in current leads to reduction 

in voltage because of over potential, internal resistance and 

concentration effects. The parameter selected for the simulation 

of the FC are described in the table 1. The offered system 

consider stack of 8 fuel cell to fulfill the power requirement. 
 

░ Table 1: Fuel cell simulation parameters 
 

Parameter Specification 

Type of cell PEMFC 

Number of Cells 8 

Nominal Stack efficiency (%) 55 % 

Voltage range 98- 100 V 

Operating temperature (Celsius) 65 degree 

Nominal Air flow rate (lpm) 300 

Nominal fuel supply pressure (bar) 1.5 bar 

Nominal air supply pressure (bar) 1 bar 

H2 99.92 % 

O2 21 % 

H2O 1 % 

 

2.2 Modeling of Battery 
A general dynamic model that depicts the most common kinds 

of rechargeable batteries are implemented by the battery block. 

Table 2 lists the battery configurations. The charging and 

discharging equations for the Lithium battery are given in 

equation 1 and 2. 

 
 

  

https://www.ijeer.forexjournal.co.in/
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Discharge Model(𝑖∗ > 0): 

𝑓1(𝑖𝑡, 𝑖 ∗, 𝑖) = 𝐸0 − 𝐾
𝑄

𝑄 − 𝑖𝑡
𝑖 ∗ −𝐾

𝑄

𝑄 − 𝑖𝑡
𝑖𝑡 − 𝐴. 𝑒−𝐵.𝑖𝑡 

(1) 

 

Charging Model (i* < 0): 

𝑓1(𝑖𝑡, 𝑖 ∗, 𝑖) = 𝐸0 − 𝐾
𝑄

𝑄 − 0.1𝑄
𝑖 ∗ −𝐾

𝑄

𝑄 − 𝑖𝑡
𝑖𝑡 − 𝐴. 𝑒−𝐵.𝑖𝑡 

(2) 

 

The SIMULINK model for battery and output voltage and SOC 

for the Lithium battery considered for the modeling of proposed 

HEV EMS system are given in figure 5 and figure 6 

respectively. 

 
Figure 5: Simulink model for battery 

 

 
 

Figure 6: Simulation results for the battery - a) Battery voltage vs 

time b) Battery state of charging (SOC) vs time 
 

░ Table 2: Battery Specifications 
 

Parameter Value 

Rated Capacity 6.5 Ah 

Internal Resistance 2 mΩ 

Nominal Voltage 1.18 V 

Rated Capacity 6.5 Ah 

Maximum Capacity 7 Ah 

Fully Charged Voltage 1.39 V 

Nominal Discharge Current 1.3 A 

Capacity @ Nominal Voltage 6.25 Ah 

Exponential Voltage 1.28 V 

Exponential Capacity 1.3 Ah 

░ 3. GWO FOR EMS IN HEV  
The Canidae family includes the grey wolf (Canis lupus). Grey 

wolves are peak predators which indicate that they are the top 

predators in the food chain. Grey wolves desire to be with other 

wolves in a pack. The typical wolf pack size is between 5 and 

12 wolves. They have a complex social dominance system, 

which is fascinating. A male and a female are the alphas, or 

leaders. The alpha wolf is habitually in charge of sleeping 

arrangements, hunting, and waking times, among other things. 

The pack is dictated by the alpha's judgments.  
 

Grey wolves engage in group hunting, which is an interesting 

social characteristic in addition to their social hierarchy. 
 

The three key stages of grey wolf hunting the first stage is as 

following, encircling, and pestering the prey until it stops 

moving, the second phase is tracking, pursuing, and impending 

the prey, and the final stage of attacking the prey. 
 

After searching for the prey, the pack of grey wolves encircles 

the prey which can be mathematically represented by equation 

3-4. 

E⃗⃗ = |O⃗⃗ . Xp
⃗⃗ ⃗⃗ (i) − X⃗⃗ (i)| (3) 

 

X⃗⃗ (i + 1) = Xp
⃗⃗ ⃗⃗ (i) − B⃗⃗ . E⃗⃗  (4) 

 

Where, 𝑖  represents current iteration, B⃗⃗  stands for the 

coefficient vector representing distance the between the two 

wolfs, O⃗⃗  denotes the coefficient vector representing the obstacle 

in hunting path when the wolves reaching towards the prey,  

Xp
⃗⃗ ⃗⃗   describes the position of prey and X⃗⃗  depicts the position of 

the grey wolf. 
 

The coefficients vectors ( B⃗⃗  and O⃗⃗ ) required for encirclement 

are calculated using equation 5 and 6. 
 

B⃗⃗ = 2 × l × r1⃗⃗  ⃗ − l  (5) 

O⃗⃗ = 2 × r2⃗⃗  ⃗ (6) 

 

Where, the component l  reduces linearly from 2 to 0 at the time 

of iterations and  r1⃗⃗  ⃗ and r2⃗⃗  ⃗ represents random vectors in the 

interval [0, 1]. 

  

After encirclement of the prey, α, β, and δ wolf guides the other 

members for attacking the prey. The α wolf provides the best 

decision among α, β, and δ wolves. The hunting behavior of the 

grey wolf is mathematically represented using equation 7-13. 
 

Eα
⃗⃗ ⃗⃗  = |O1

⃗⃗ ⃗⃗ . Xα
⃗⃗ ⃗⃗  (i) − X⃗⃗ (i)| (7) 

Eβ
⃗⃗⃗⃗ = |O2

⃗⃗ ⃗⃗  . Xβ
⃗⃗ ⃗⃗ (i) − X⃗⃗ (i)| (8) 

Eδ
⃗⃗⃗⃗ = |O3

⃗⃗ ⃗⃗  . Xδ
⃗⃗⃗⃗ (i) − X⃗⃗ (i)| (9) 

X1
⃗⃗⃗⃗ = Xα

⃗⃗ ⃗⃗  (i) − B1
⃗⃗⃗⃗ . Eα

⃗⃗ ⃗⃗   (10) 

X2
⃗⃗⃗⃗ = Xβ

⃗⃗ ⃗⃗ (i) − B2
⃗⃗⃗⃗ . Eβ

⃗⃗⃗⃗  (11) 

X3
⃗⃗⃗⃗ = Xδ

⃗⃗⃗⃗ (i) − B3
⃗⃗⃗⃗ . Eδ

⃗⃗⃗⃗  (12) 

X⃗⃗ (i + 1) =
(X1 + X2 + X3)

3
 

(13) 

https://www.ijeer.forexjournal.co.in/
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The main goal of the suggested GWO based EMS to minimize 

the fitness to acquire the power requirement of HEV for the 

given driving cycle with minimum cost and less pollution. 

Equation 14 provides the fitness function for the suggested 

GWO based 

  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐺 = 𝐹𝑖𝑡𝐵 + 𝐹𝑖𝑡𝐹𝐶 + 𝐹𝑖𝑡𝑈𝐶 + 𝐹𝑖𝑡𝐼𝐶𝐸 (14) 
 

3.1 Cost Function for Battery 
The cost function for battery is given by equation 15. The 

suggested simulation considered 500 kW battery for the 

simulation. The changing mode of the battery is considered as 

the load of about 3 MW.  
 

𝐹𝑖𝑡𝐵 = 𝛼1𝑃𝐵   (15) 
 

Where, 𝑃𝐵  stands for the battery power (MW), 𝐹𝑖𝑡𝐵  is cost 

fitness function of battery, 𝛼1 represents cost coefficient for the 

battery energy (300 $/kW). 

3.2 Cost Function for Fuel Cell  
The cost function for fuel cell is also typically considered as a 

function of quadratic approximation is given in equation 16. 
  
𝐹𝑖𝑡𝐹𝐶 = 𝛼2𝑃𝐹𝐶   (16) 
 

Where, 𝐹𝑖𝑡𝐹𝐶  is cost fitness function of fuel cell, and  𝛼2 stands 

for the cost coefficients of the fuel cell (340$/KW) [29], [27]. 
 

3.3 Cost Function for Ultra-Capacitor  
The cost function for the ultra-capacitor considering cost per 

unit of ultra-capacitor power ( 𝛼3 =200$/KW) is given in 

equation 17. 
 

𝐹𝑖𝑡𝑈𝐶 = 𝛼3𝑃𝑈𝐶   (17) 

 

The algorithm for the GWO based EMS for the HEV system is 

given as: 

 

 
 

░ 4. SIMULATION RESULTS AND 

DISCUSSIONS 
The suggested system is simulated using MATLAB-Simulink 

on the personal computer with the windows environment. The 

outcome of the suggested EMS model is validated for the 

different values of the battery state of charging, ultra-capacitor 

charging, requirement of FC power and Load demand and it is 

observed that it is able to provide the power to the HEV for 

longer duration as shown in figure 7. The system utilizes the FC 

power source in critical conditions only that helps to minimize 

the fuel cost.  
 

(a) 

Algorithm: GWO based HEV EMS 

Step 1: Initialization Phase 

Initialize the grey wolf population Xi (i = 1, 2, ..., n) 

N: Number of energy sources(FC, UC, and BT) 

Initialize a, A, and C 

Initialize the distributed generator parameters 

Initialize costing parameters of the generators 

Step 2: Calculate the fitness using equation 1 for each wolf  

𝑋∝ =the best wolf (search agent) 

𝑋𝛽  =the second best wolf (search agent) 

𝑋𝛿   =the third best wolf (search agent) 

       Step 3: while (t < Max number of iterations) 

for each wolf  (search agent) 

Update the position of the current search agent by above 

equations 

end for 

Update a,A and C 

Calculate the fitness of all search agents 

Update 𝑋∝, 𝑋𝛽, and 𝑋𝛿  

t=t+1 

end while 

return 𝑋∝(Best Solution) 

https://www.ijeer.forexjournal.co.in/
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(b) 

 
(c) 

 
(d) 

Figure 7: Simulation results for the GWO based EMS a) Battery 

SOC b) Speed of vehicle c) FC power d) UC power 

 

It is noted that when the battery SOC is higher than the FC 

power is less frequently used. However, FC power is frequently 

used for powering HEV when battery SOC drops below 40% of 

its maximum capacity. The simulation results are carried out for 

varying speeds with dynamic vehicular and ambient conditions. 

The simulation results depicts that the suggested GWO helps to 

provide the power to the HEV during the discharge condition of 

the battery to fulfill the power demand. The GWO is able to 

handle the unpredictable behavior of the driving cycle and 

provides the best control of the power source selection with the 

minimum cost. Also, it provides the pollution free nature of the 

HEV by selection of pollution free sources for the powering the 

HEV. In recent years, deep learning algorithms have shown 

noteworthy contributions in various signal processing 

applications because of their faster conversions, high accuracy, 

reliability, and effectiveness [6], [7], [12]. In the future, various 

deep learning-based systems can be employed for driving and 

vehicle condition data augmentation to create the synthetic data 

for the simulation using available limited datasets [8], [9], [13]. 

Again, it can be used to improve accuracy; minimize control 

time; handle multiple objectives for EMS control; and provide 

generalized EMS for different types of HEVs. 
 

░ 5. CONCLUSION AND FUTURE SCOPE 
Thus, this article presents GWO based hybrid energy source 

selection for the EMS of HEVs based on the cost profile to 

fulfill the power requirement and minimize the pollution 

occurred due to emission of hydrocarbon and nitrogen oxides. 

The suggested GWO considers the various driving conditions 

and provides the economical and pollution free solution to attain 

the higher efficiency of the HEVs. In future, the outcome of the 

suggested EMS can be improved by considering various real 

time environmental parameters and driving patterns. Various 

deep learning algorithms can be used for the EMS for different 

HEVs for driving conditions data augmentation and control of 

EMS to improve the performance of the system under various 

driving and environmental conditions. Also, the approach can 

be extended for the HEVs considering the renewable power 

sources.  
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