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░ ABSTRACT- Edge indicating operators such as gradient, mean curvature, and Gauss curvature-based image noise removal 

algorithms are incapable of classifying edges, ramps, and flat areas adequately. These operators are often affected by the loss of fine 

textures. In this paper, these problems are addressed and proposed a new coefficient of diffusion for noise removal. This new 

coefficient consists of two edge indicating operators, namely fractional-order difference curvature and fractional-order gradient. 

The fractional-order difference curvature is capable of analyzing flat surfaces, edges, ramps, and tiny textures. The fractional-order 

gradient can able to distinguish texture regions. The selection of the order is more flexible for the fractional order gradient and 

fractional-order difference curvature. This will result in effective image denoising. Since the discrete Fourier transform is simple to 

numerically implement, it is taken into consideration for the implementation of fractional-order gradient. The proposed method can 

give results that are visually appealing and improved quantitative outputs in terms of the Figure of Merit (FoM), Mean Structural 

Similarity (MSSIM), and Peak Signal to Noise Ratio (PSNR), according to comparative analysis.  
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░ 1. INTRODUCTION   
The development of an image denoising model that eliminates 

noise while maintaining crucial features, such as texture details 

and edges, is a challenging task. Image denoising can be 

modelled mathematically as an ill-posed inverse problem. A 

classical method for the inverse problem is variational method 

and it is based on energy minimization. This method can be used 

to model the image in the bounded variation (BV) function 

space while keeping the image edges preserved. The functions 

in BV space are allowed to have jumps and interruptions of 

discontinuous information, even if the edges are well 

represented. The functions are piece-wise continuous and the 

solutions are frequently piece-wise constant, resulting in 

staircase effects in image reconstruction. This approach has 

been generally observed in various image processing 

approaches with diverse applications, such as image super-

resolution, image restoration, image inpainting, and image 

denoising. 
  

A variety of noise removal methods using integer-order partial 

differential equations (PDE) [8, 13, 14] are available in the 

literature. Among these energy minimization approaches, 

anisotropic diffusion introduced by Perona and Malik (PM) [14] 

and variational approach introduced by Rudin et al. [13] are 

very popular for the edge preservation capability. It is noted that 

the PM method produces encouraging solutions for the 

elimination of noise in the images while keeping edges of an 

object and minimizing oscillations. However, it retains some 

unacceptable effects, such as, lose in contrast and texture details 

also produces staircase effects [3,9]. You and Kaveh (YK) 

proposed a 4th- order PDE-based approach for the removal of 

noise [12]. The absolute value of Laplacian is defined for 

diffusion coefficient. This approach can overcome the staircase 

effect which is introduced by the PM approach. However, it has 

the weak holding ability of preserving the edges and tends to 

leave the processed image with speckle noise. 
  

When the image is with variety of structures, such as, small-

scale textures, ramps, edges, corners, lines, flat regions, and so 

on, the gradient features are not sufficient to represent the 

complex structure of an image. So, many researchers worked on 

the new geometric features (curvature, structure tensor, etc.) for 

the image restoration. 
  

Chan and Shen introduced Mean curvature-driven diffusion 

(MCDD) model [11] for the image reconstruction. This MCDD 

model is an advancement of anisotropic diffusion, where mean 

curvature acts as a conductance coefficient. As a result, the 

illumination is flattened and smoothed out. In 2005 [9], the 

authors proposed a diffusion model driven by Gauss curvature. 

The Gauss curvature operator cannot differentiate edges from 

ramps and flat areas. Further, isolated noise and edges cannot 

be distinguished by the mean curvature operator. While the 

previous models can preserve the edges and ramps, they may 

introduce edge blurriness and texture fuzziness. 
  

The fractional-order calculus has been widely used in image 

processing to retain the edges [1-7]. The "non-local" attribute of 

the fractional-order differentiation operator allows for 

improved texture preservation, in contrast to the traditional 

integer-order differentiation operator. This paper proposes the 
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fractional-order gradient-based diffusion coefficient and the 

fractional-order difference curvature (fDC). This new 

conduction coefficient can well differentiate edges of an image 

from the flat and ramp areas. The suggested model incorporates 

fractional-order gradients into anisotropic diffusion, which is a 

natural interpolation between the second-order (PM) and 

fourth-order diffusion models. The improved conduction 

coefficient successfully retains the edges of an image and 

lessens the staircase effect by utilizing the various diffusion 

speed benefits in various parts of the conduction function. 
 

The article is presented as follows. Section 2 explains fractional-

order derivative using DFT. A new image denoising model is 

presented by using fractional anisotropic diffusion and 

fractional-order gradient and is explained in Section 3. In 

Section 4, the performance of the suggested model and state-of-

art image denoising models is compared and examined. Section 

5 provides conclusions. 
 

░ 2. FRACTIONAL ORDER DERIVATIVE 

USING DFT 
The generalized form of the integer-order derivative is referred 

as the fractional-order derivative. There are different definitions 

given by many mathematicians to fractional-order derivative 

which give different results. In the applications of image 

processing, the definition of fractional-order derivative using 

discrete Fourier transform (DFT) is considered since it is simple 

to execute [3]. The 2-D DFT of an image 𝑢(𝑥, 𝑦) of 𝑀 × 𝑀 size 

is represented as 
 

�̂�(𝜔1, 𝜔2) =
1

𝑀2
∑ 𝑢(𝑥, 𝑦)𝑒− 

𝑗2𝜋(𝜔1𝑥+𝜔2𝑦)
𝑀

𝑀−1

𝑥,𝑦=0

                 (1) 

 

For 2-D DFT, the translation property in spatial-domain can be 

denoted as 
 

𝑢(𝑥 − 𝑥0, 𝑦 − 𝑦0)
𝐹
↔ 𝑒− 

𝑗2𝜋(𝜔1𝑥0+𝜔2𝑦0)

𝑀 �̂�(𝜔1, 𝜔2)            (2)  
 

Where, F is 2D-DFT. The first-order partial difference in the x 

direction can therefore be written as 
 

           𝐷𝑥𝑢(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) − 𝑢(𝑥 − 1, 𝑦)                               (3)  

𝐷𝑥𝑢(𝑥, 𝑦)
𝐹

↔ (1 − 𝑒− 
𝑗2𝜋𝜔1

𝑀 )  �̂�(𝜔1, 𝜔2)                           (4) 

 

and the DFT of fractional-order partial difference in the               

𝑥-direction is denoted by 
 

𝐷𝑥
𝛼𝑢(𝑥, 𝑦)

𝐹
↔ (1 − 𝑒− 

𝑗2𝜋𝜔1
𝑀 )

𝛼

�̂�(𝜔1, 𝜔2)                    (5) 

 

Similarly, the DFT of fractional-order partial difference in the 

𝑦-direction denoted by 

 

𝐷𝑦
𝛼𝑢(𝑥, 𝑦)

𝐹
↔ (1 − 𝑒− 

𝑗2𝜋𝜔2
𝑀 )

𝛼

�̂�(𝜔1, 𝜔2)                    (6) 

In general, the fractional-order derivative operator of two-

dimensional signal can be written as    

𝐷𝛼𝑢(𝑥, 𝑦) = (𝐷𝑥
𝛼𝑢(𝑥, 𝑦), 𝐷𝑦

𝛼𝑢(𝑥, 𝑦))                           (7)  

And 
  

|𝐷𝛼𝑢(𝑥, 𝑦)| = √(𝐷𝑥
𝛼𝑢(𝑥, 𝑦))2 + (𝐷𝑦

𝛼𝑢(𝑥, 𝑦))2             (8)  
 

The central difference approach is highly helpful in actual 

computations to calculate the fractional-order difference. This 

is analogous to shifting of  𝐷𝑥
𝛼𝑢(𝑥, 𝑦) and 𝐷𝑦

𝛼𝑢(𝑥, 𝑦) by 𝛼/2 

units. 
 

�̃�𝑥
𝛼𝑢(𝑥,𝑦) = 𝐹−1 ((1 − 𝑒− 

𝑗2𝜋𝜔1
𝑀 )

𝛼

𝑒
𝑗𝜋𝛼𝜔1

𝑀 �̂�(𝜔1, 𝜔2))      (9) 

�̃�𝑦
𝛼𝑢(𝑥, 𝑦) = 𝐹−1 ((1 − 𝑒− 

𝑗2𝜋𝜔2
𝑀 )

𝛼

𝑒
𝑗𝜋𝛼𝜔2

𝑀 �̂�(𝜔1, 𝜔2))  (10) 

 

where,  𝐹−1  is the 2-D inverse discrete Fourier transform 

(IDFT). The operator �̃�𝑥
𝛼 has the form [𝐹−1][𝐾1][𝐹], where [.] 

is a matrix operator, and 
 

𝐾1 = 𝑑𝑖𝑎𝑔 ((1 − 𝑒− 
𝑗2𝜋𝜔1

𝑀 )
𝛼

𝑒
𝑗𝜋𝛼𝜔1

𝑀 )                  (11) 

 

The following ocncept can be used to calculate the adjoint 

operator �̃�𝑥
𝛼∗

 of �̃�𝑥
𝛼   

 

�̃�𝑥
𝛼∗

= ([𝐹−1][𝐾1][𝐹])∗ = [𝐹][𝐾1
∗][𝐹−1]              (12) 

 

Since 𝐾1  is purely diagonal operator, 𝐾1
∗  is the complex 

conjugation of  𝐾1 . The same procedure can be used for the 

calculations of �̃�𝑦
𝛼∗

 and �̃�𝑦
𝛼. 

 

�̃�𝑦
𝛼∗

= [𝐹][𝐾2
∗][𝐹−1]                                            (13) 

 

░ 3. PROPOSED MODEL  
In this article, a new fractional - order PDE for the removal of 

noise is presented. Initially, for the effective image denoising, 

the advantage of fractional-order gradient and fractional-order 

difference curvature is considered. Fractional-order gradient 

(𝐷𝛼𝑢)  is the non-integer order derivative of a signal and it 

possesses non-local property. Fractional-order difference 

curvature (𝑓𝐷𝐶) is a new feature descriptor and it is very useful 

for differentiating textures, ramps and flat regions [2]. In order 

to identify the edges, ramps, and flat areas, it is proposed to 

apply both fractional-order gradient and fractional-order 

difference curvature. 
 

3.1 A New Diffusion Coefficient  
The new coefficient of diffusion is defined as 
 

𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶) =
1

1 + |𝐷𝛼𝑢| + 𝑓𝐷𝐶
            (13) 

 

Where, |𝐷𝛼𝑢| is the magnitude of fractional-order gradient and 

it can be calculated as √(𝐷𝑥
𝛼𝑢(𝑥, 𝑦))2 + (𝐷𝑦

𝛼𝑢(𝑥, 𝑦))2     

The fractional-order difference curvature can be described by 

the formula 

𝑓𝐷𝐶 = ||𝑢𝜂𝜂
𝛽

| − |𝑢𝜉𝜉
𝛽

||                                   (14) 

 

https://www.ijeer.forexjournal.co.in/
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Where 𝑢𝜂𝜂
𝛽

 and 𝑢𝜉𝜉
𝛽

 correspondingly denote the fractional-order 

derivatives in the level curves' perpendicular and tangent 

directions, β represents fractional-order, and |.| denotes the 

absolute function. 
 

𝑢𝜂𝜂
𝛽

= (
𝐷𝛽𝑢

|𝐷𝛽𝑢|
)

𝑇

(
𝐷𝑥𝑥

𝛽
𝑢 𝐷𝑥𝑦

𝛽
𝑢

𝐷𝑥𝑦
𝛽

𝑢 𝐷𝑦𝑦
𝛽

𝑢
) (

𝐷𝛽𝑢

|𝐷𝛽𝑢|
)                   (15) 

=
(𝐷𝑥

𝛽
𝑢)

2
𝐷𝑥𝑥

𝛽
𝑢 + 2𝐷𝑥

𝛽
𝑢. 𝐷𝑦

𝛽
𝑢. 𝐷𝑥𝑦

𝛽
𝑢 + (𝐷𝑦

𝛽
𝑢)

2
𝐷𝑦𝑦

𝛽
𝑢

(𝐷𝑥
𝛽

𝑢)2 + (𝐷𝑦
𝛽

𝑢)2
(16) 

𝑢𝜉𝜉
𝛽

= (
𝐷𝛽𝑢

|𝐷𝛽𝑢|
)

𝑇

(
𝐷𝑥𝑥

𝛽
𝑢 −𝐷𝑥𝑦

𝛽
𝑢

−𝐷𝑥𝑦
𝛽

𝑢 𝐷𝑦𝑦
𝛽

𝑢
) (

𝐷𝛽𝑢

|𝐷𝛽𝑢|
)              (17) 

=
(𝐷𝑥

𝛽
𝑢)

2
𝐷𝑦𝑦

𝛽
𝑢 − 2𝐷𝑥

𝛽
𝑢. 𝐷𝑦

𝛽
𝑢. 𝐷𝑥𝑦

𝛽
𝑢 + (𝐷𝑦

𝛽
𝑢)

2
𝐷𝑥𝑥

𝛽
𝑢

(𝐷𝑥
𝛽

𝑢)2 + (𝐷𝑦
𝛽

𝑢)2
  (18) 

 

Table 1 shows the study of the curvature operators in the three 

distinct regions of the degraded image. 
 

░ Table 1: Comparison of Gradient and curvatures 
 

Feature Gradient MC GC DC fDC 

Edge Large Large Small Large Large 

Flat/Ramp Small Small Small Small Small 

Isolated Noise Large Large Large Small Small 

 

The difference curvature (DC) and fractional-difference 

curvature (fDC) are thus observed to be minimal in 

homogeneous and noisy regions and only large on edge 

features. Naturally, the values of DC and fDC can be used to 

identify edges from noisy and flat areas. However, the fDC will 

give the thin edge output [2]. Therefore, the following is the 

proposed fractional-order image denoising model based on the 

fractional-order gradient and fractional-order difference 

curvature: 
 
𝜕𝑢

𝜕𝑡
= −𝐷𝛼(𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶)𝐷𝛼𝑢)                                     (19)  

 

The above equation can be represented as 
 

𝜕𝑢

𝜕𝑡
= −𝐷𝑥

𝛼(𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶)𝐷𝑥
𝛼𝑢)

− 𝐷𝑦
𝛼(𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶)𝐷𝑦

𝛼𝑢)       (20) 
 

The performance of the proposed image denoising model is 

explained as follows. For noisy pixels, a small 𝑓𝐷𝐶  value is 

chosen which will accelerate the diffusion process of noisy 

pixels. Therefore, the proposed model can effectively eliminate 

the noise and preserve more details. The value of 𝑓𝐷𝐶 for edges 

is very high. As a result, the coefficient of diffusion value has a 

tendency to be very low, which will cause the diffusion of edges 

to go more slowly and preserve the properties of the image. 

Therefore, the proposed methodology can change the diffusion 

speed of edges, features, and noise in the damaged image. This 

approach has a strong capability of removing noise also 

preserving edge details. The following algorithm provides a 

summary of the suggested model's overall restoration 

procedure. 

1. Initialization:  

             1.1 𝑢(0) = 𝑢,  Δ𝑡 = 0.01,  𝛼, 𝛽 

             1.2 Calculate the discrete Fourier transform  �̂�(0)  of  

                      𝑢(0). 
2. Iteration:  For  𝑖 = 0,1,2,3, …  ; Calculate  �̂�(𝑖+1) by           

the following steps 

2.1 Calculate the fractional-order central partial differences 

�̃�𝑥
𝛼𝑢(𝑖), �̃�𝑦

𝛼𝑢(𝑖)using (9) and (10). 
 

2.2 Calculate |�̃�𝛼𝑢(𝑚)| = √(�̃�𝑥
𝛼𝑢(𝑖))

2
+ (�̃�𝑦

𝛼𝑢(𝑖) )
2

+ 𝜖  ,  𝜖  is 

a small value to avoid divide by zero. 
 

2.3 Compute fractional-order difference curvature 𝑓𝐷𝐶  using 

Eq. (14) 
 

2.4 Compute conductance coefficient  𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶)   using 

Eq. (11) 
 

2.5 Calculate 𝑔𝑥
(𝑖)

= 𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶)�̃�𝑥
𝛼𝑢(𝑖)  and  𝑔𝑦

(𝑖)
=

𝐶(|𝐷𝛼𝑢|, 𝑓𝐷𝐶)�̃�𝑦
𝛼𝑢(𝑖)

 

  

2.6 Calculate  �̂�(𝑖) = [𝐾1
∗][𝐹(𝑔𝑥

(𝑖)
)] + [𝐾2

∗][𝐹(𝑔𝑦
(𝑖)

)]  
  

2.7 Calculate  �̂�(𝑖+1) = �̂�(𝑖) − �̂�(𝑖) ∆𝑡 

 

2.8 Calculate inverse discrete Fourier transform of �̂�(𝑖+1) i.e., 

       𝑢(i+1) 
 

2.9 If PSNR (𝑢(𝑖+1), 𝑢0) > PSNR (𝑢(𝑖), 𝑢0), then set  𝑖 = 𝑖 + 1;    

and go to step 2; else stop. 

 

░ 4. NUMERICAL EXPERIMENTS 
The USC-SIPI image database is used to denoise the images for 

this study. The original images are degraded by Gaussian noise 

with a mean value of zero and standard deviations of =10%, 

=20%, and =30% to evaluate the suggested framework's 

performance. In the first experiment, we considered the images 

which are damaged with Gaussian noise of mean equal to zero 

and =10%. The proposed algorithm is tested for the various 

values of fractional-order gradient in the range [8,14] of step 

size 0.1 and applied on Gaussian noisy boat image with 10% 

standard deviation. This algorithm is compared with the model 

[7] and the model [6] for the selection of the fractional-order. 

The comparison results are shown in the figure 1. It is observed 

that the proposed model gives better results when the fractional 

order is 1.9 and 𝛽 =  1.1. 
 

The comparable results are shown in table 2 in terms of PSNR, 

MSSIM [15], and FoM [16] for a variety of images with 

Gaussian noise degradation and average value of zero and 

standard deviations of 10%, 20%, and 30%. It is noted that the 

suggested model works better than the other models since the 

diffusion coefficient is based on the fractional-order difference 

curvature. Hence thin edges are also preserved. As the noise 

density increases, the proposed model can able to remove the 

https://www.ijeer.forexjournal.co.in/
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noise effectively. The proposed model is applied on the 

damaged boat image of zero mean, 30% of standard deviation 

Gaussian noise and the results are presented in figure 2. 
 

Comparisons are made between the suggested model and the 

models [7], [6], and [1]. The model [7] preserves edges textures 

well in denoising process. When the fractional order is 1.9 the 

model produces good results. When the noise density increases, 

i.e., more than 20% this model will not produce satisfactory 

results. The conduction coefficient in the proposed model 

depends on both fractional-order gradient and fractional-order 

difference curvature hence it can diffuse slowly at the edges and 

texture regions also more diffusion in the smooth regions. The 

figure of merit is more and clearly indicates that it can able to 

preserve the edges. As a result, the suggested model can 

successfully eliminate noise while preserving the edges and 

texture regions. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 1: Selection of the fractional-order about boat image with 

Gaussian noise, σ=10% (a) PSNR (dB) (b) MSSIM (c) FoM 

░ 5. CONCLUSION 
The proposed nonlinear diffusion model for image denoising 

reported in this study is driven by fractional-order gradient and 

fractional-order differential curvature. Fractional-order 

gradients have non-local property and can discern between 

texture, fine structures, and noise. Fractional-order difference 

curvature is an efficient edge descriptor even in the high-density 

noise. The selection of the order is more flexible for the 

fractional order gradient and fractional-order difference 

curvature; hence the model produces good quality results. The 

experimental results demonstrate that the proposed model 

decreases noise while avoiding visual distortions like the stair-

case effect and speckle noise. Edge preservation is improved 

with respect to the state-of-art models. The selection of the 

fractional order is not constant for all the images. So, an 

adaptive denoising model may be proposed in the future work. 
 

░ Table 2. Comparison of Gradient and curvatures 

Image  [7] [6] [1] Proposed 

Cameraman 

(256 × 256) 

10%  
 

 

20%  
 

 

30% 

31.0253 

0.8054 
0.9458 

28.0408 

0.7180 
0.7147 

21.9506 

0.3017 
0.6262 

33.0216 

0.8230 
0.9408 

28.5250 

0.7296 
0.8899 

24.4120 

0.4227 
0.5354 

32.2983 

0.8209 
0.9397 

28.4904 

0.7359 
0.7390 

26.6263 

0.6805 
0.5484 

33.4006 

0.8279 
0.9512 

29.2138 

0.7360 
0.8884 

27.5758 

0.6761 
0.8471 

Lena  

(512 ×512) 

10%  
 

 

20%  
 

 

30% 

32.6995 

0.8624 
0.8837 

30.5485 

0.8129 
0.7789 

26.0458 

0.6852 
0.7333 

33.9139 

0.8848 
0.9117 

31.1852 

0.8231 
0.8373 

25.3835 

0.4945 
0.4141 

33.7993 

0.8848 
0.8947 

30.4485 

0.8129 
0.8790 

28.7386 

0.7595 
0.7502 

34.0364 

0.8892 
0.9274 

31.0134 

0.8228 
0.8730 

29.8377 

0.7631 
0.8298 

Barbara 

(512 ×512) 

10%  
 

 

20%  
 

 

30% 

30.9425 

0.7675 
0.8626 

26.9230 

0.7312 
0.6581 

24.8092 

0.6108 
0.5166 

31.6089 

0.9038 
0.9227 

28.1184 

0.8114 
0.8341 

24.3177 

0.5704 
0.5258 

30.9456 

0.8759 
0.8726 

26.9303 

0.7412 
0.6681 

24.8109 

0.6286 
0.6176 

31.5411 

0.8959 
0.9051 

27.8130 

0.7814 
0.8327 

26.0743 

0.6784 
0.7117 

Boat 
(512 ×512) 

10%  

 
 

20%  

 
 

30% 

31.9221 

0.8684 

0.9157 
30.0630 

0.7910 

0.8178 
27.4345 

0.7004 

0.6705 

32.7657 

0.8984 

0.9267 
28.2331 

0.7199 

0.8130 
27.2140 

0.6978 

0.7132 

32.6275 

0.8983 

0.9302 
29.3319 

0.7990 

0.8302 
27.4097 

0.7078 

0.7325 

32.9799 

0.8999 

0.9410 
30.1106 

0.7963 

0.8857 
28.6407 

0.7179 

0.8228 

Peppers 
(512 ×512) 

10%  

 
 

20%  

 
 

30% 

32.1470 

0.8667 

0.8110 
29.5646 

0.7789 

0.6788 
27.8455 

0.7337 

0.5897 

33.1352 

0.8718 

0.8888 
31.0158 

0.8180 

0.8004 
27.9797 

0.7348 

0.5858 

32.6470 

0.8679 

0.8105 
29.6467 

0.7896 

0.6884 
27.8554 

0.7379 

0.5971 

33.2661 

0.8760 

0.9157 
30.9396 

0.8184 

0.8471 
29.2368 

0.7697 

0.7877 

 
 

 

https://www.ijeer.forexjournal.co.in/


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 10, Issue 4 | Pages 837-842 | e-ISSN: 2347-470X 

 

841 Website: www.ijeer.forexjournal.co.in           Fractional-order Diffusion based Image Denoising Model 

 
 

 
 

 
 

 
 

 
 

 

Figure 2: Comparison of various image denoising models about boat image with Gaussian noise, σ = 30%. 

First Column:  Original image, Noisy image, Result using [7]; 

Second Column: Result using [6], Result using [1], Result using proposed model 
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