CNN Classification of Multi-Scale Ensemble OCT for Macular Image Analysis

P. Ananta Lakshmi¹, G. Veerapandu², Sridevi Gamini³ and Mahesh K. Singh⁴

¹²Department of ECE, Aditya College of Engineering, Surampalem, India, ³anithapratihatt984@gmail.com, ⁴mahesh.singh@accendere.co.in

ABSTRACT—Computer-Aided Diagnosis (CAD) of retinal pathology is a dynamic medical analysis area. The CAD system in the optical coherence tomography (OCT) is important for the monitoring of ocular diseases because of the heavy utilization of the retinal OCT imaging process. The Multi-Scale Expert Convolution Mixture (MCME) is designed to classify the normal retina. OCT is becoming one of the most popular non-invasive evaluation approaches for retinal eye disease. The amount of OCT is growing and the automation of OCT image analysis is becoming increasingly necessary. The surrogate-aided classification approach is to automatically classify retinal OCT images because of the Convolution Neural Network (CNN). The methods to classify OCT images and macular OCT classification are done by using CNN. Maculopathy is a combined collection of diseases to facilitate the effect of the inner region of the retina identified as the macula. Central Serous Chorioretinopathy (CSR) and macular edema are the main two types of maculopathies. Numerous researches have focused on the detection of these macular disorders with OCT. It is used to overcome retinal diseases.

Keywords: CAD System, CNN, OCT, Image analysis, Macular Pathology, Surrogate-assisted.

1. INTRODUCTION

In human eyes, the Retina absorbs concentrated light from the lens and translates neural signals. Macula, which is positioned inside the inner part of the retina as a sense of light. It is the main sensory field. Fine vision, color vision, and other similar functions are also related to it. Macular information transfers to the brain [1-4]. Several pathologies, including diabetic macular edemas and age-related macular degeneration (AMD), can affect the health of the macula. It is the cause of blindness that is most common. This results in blurred, blind spots or no vision, either 5-8, 0.4% of people aged 50% over the age of 60 suffer from this disorder. And DME is the other source of loss of vision. It is the most common complication harmful to sight. And also, the advanced form of AMD is Nonvascular or oxidative age-related macular disintegration. This one is the main source of blindness. It is also called choroid revascularization (CNV). The successful treatment of CNV is an anti-vascular endothelial growth factor [3, 11, 12].

One of the most widely used imaging techniques in ophthalmology since 1991 is OCT, which captures cross-sectional images. OCT is commonly used in AMD and DME diagnosis. OCT program is a time-consuming operation, the CAD is implemented to reduce the time requirement. It is used to automatically evaluate OCT data [4, 15, 16]. The CNN method is also introduced to overcome the disadvantages in OCT [13, 17]. A tabular analysis based on the CAD-related issue in retinal OCT images done by different researchers shown in table 1.

Table 1: CAD works on Retinal OCT Imaging

<table>
<thead>
<tr>
<th>Author</th>
<th>Database</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yibiao Rong</td>
<td>Local database, Duke</td>
<td>Surrogate-assisted classification+retinal</td>
<td>The area under the curve (AUC=0.9783 for</td>
</tr>
<tr>
<td></td>
<td>database</td>
<td>OCT images+ automatically based on a</td>
<td>the local base AUC=0.9856 for duke database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>convolutional mixture of an expert. (MCME)</td>
<td></td>
</tr>
<tr>
<td>Reza Rasti</td>
<td>Confined information</td>
<td>. a multi-scale convolutional mixture of an</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set of OCT image with</td>
<td>expert. (MCME)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>149 subjects, open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data set of 46 OCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEN ZHOU</td>
<td>BVC OCT</td>
<td>Novel automatic detection (data preparation,</td>
<td>It is perfectly feasible and superior.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network training, and testing)</td>
<td></td>
</tr>
</tbody>
</table>

Two moves were clarified by Reza Rasti from the table. One is the pre-processing stage to remove retinal disorders and provide a collection of average section quantity of interests using a graph-dependent curvature improvement algorithm [14, 18, 19].
The creation and use of a data-driven depiction solution through detailed guidance move toward is another classification step. A new type of deep ensemble based on CT volumes is needed for this. In the treatment of vascular diseases, the Wenzhou procedure is used.

A multi-scale convolution expert mixture (MCME) was suggested as a set of models [20-23]. It is a fast thing, depending on the scale. The suggested CAD system is structured to evaluate the macular system. The MCME strategy has two primary reasons for choosing it. (1) Analysis of OCT retinal volumes based on slices. (2) The various protocols of imaging in the retinal OCT [1, 24, 25].

2. RELATED WORK

The existing dynamic area of medical imaging investigation is CAD retinal pathologies in 2018. To assist the ophthalmologist in the near the beginning is the recognition of ocular disease. The OCT imaging system and the retinal CAD device are necessary. A novel CAD approach for the diagnosis of retinal pathology in macular OCT that didn’t rely on imaging and lesion detection has been developed and tested [1]. The most important method for the non-invasive evaluation of retinal eye disease is optical coherence tomography (OCT) in 2019. To decrease the noise, image de-noising is done first. The elimination of the masks is achieved through thresholding and morphological dilatation. The efficiency of de-noising, surrogate-assisted classification, group approach, and volume rate performance [2, 16].

OCT is commonly used in 2019 to diagnose ocular diseases such as DME and AMD. OCT retina datasets are implemented and an effective network model is used. The SVM approach is used to increase the amplification of experimental comparison data by data enhancement and it is possible to consider generative adversarial networks (GAN) [3]. The photographs of the color found in 2012 show a comparatively high dissimilarity of vessels in the area of the opening of the neural canal. In permutation with Gabor wavelets and Gaussian filter banks. The SD-OCT volume is used. Here present two novel strategies for segmentation of retinal vessel. The aforementioned multimodal algorithms work better than the other three algorithms [4, 17].

In 2019, a dual-attention multi-level model for the diagnosis of two common macular disorders, macular degeneration associated with age, and diabetic macular edemas. This leads to a deformation of the generation and identification of characteristics more locally reactive. The number of CNN base parameters is reduced by OCT-B scans. There are no processing steps needed for this device [5]. The leave-on-patient evaluation resulted in factual optimistic and true unconstructive rates of 95% and 0.17% correspondingly in 2015. Intraregional and sub-retinal fluid abnormalities were manually delineated by two retinal experts [18]. In many ways, the detection and segmentation of fluid-related irregularities in clinical data is a different issue. Patients can have several extreme diseases, rendering the size and location, and shape of the fluid regions uncertain [6]. Because of positivity limitations in optical measurements, the extended shade end member and large quantity removal technique were scientifically developed in 2019 to resolve the problem of blind linear un-mixing (BLU). The mathematical formulation was based on algorithms from CQO and ALS [7].

A thorough exploration of arteriosclerosis induces thickening of the lumen partition resultant in major obstruction and causing acute coronary events. The OCT provides high rotating images in 2016. The problem modeling algorithm is a graph-based segmentation of the interaction of tissue photons used in the model’s OCT construction [8]. Maculopathy is a collection of diseases in 2018 that affect the inner area of the retina recognized as the macula. There is two forms of macular edemas (ME) in maculopathy and essential causes of chorioretinopathy (CSR) [19]. The approach proposed is focused on the vigorous invention of 3-D retinal liquefied throughout research on the segmentation matrix based on ST-GS [9]. A method for automatic categorization of standard macular appearances in spectral-domain OCT (SD-OCT) volumes was published in 2010 along with a common confined retinal irregularity approach [20]. The intraregional segmentation detection technique was compared with the orientation ordinary established by two experts [10, 21].

3. METHODOLOGY

The first step is noise reduction. There are three approaches to OCT imaging, one of which is an anisotropic diffusion filter; the other is a non-orthogonal wavelet filter optimized, and finally a bilateral filter. To decrease the processing distance of the corresponding procedure, remove the mask from the image. The proposed method of OCT detection by the CNN approach is shown in figure 1.

![Figure 1: Supported Process Surrogate to Identify Retinal OCT Images](image)

By figure 2, the two methods for removing masks are thresholding and morphological dilation. To generate a binary image, thresholding is performed on a denoised image.

\[
BW(x,y) = \begin{cases} 1 & IF(x, y) > T \\ 0 & others \end{cases}
\]

(1)
Here BW is the double image and it is a denoised image. T is the threshold value. The methods of denoising and mask extraction methods can produce surrogate images. This is used for the CNN model to be educated. The input illustration forecast is determined by the standard of the output of the CNN representation shown in figure 2.

$$P(i) = \frac{1}{k \sum_{j=1}^{K} I[i]}$$

Figure 2: Diagrammatic Representation of Surrogate Assisted Method

To extract the mean intensity value of each B-scan, the normalization step is completed. The normal deviation of one. B-scans are resized as (496*512) in various volumes. Intensity variations are rendered in OCT images from various phases of normalization processes. The retinal layer in B-scans can be shifted or randomly focused in OCT images because of the anatomical structure. This trigger wide differences in locations. When detecting the hyperreflective complex, graph-based geometry is used for retinal flattening. This is to generate pixels for the graph nodes of the OCT images. Each B-scan is vertically cropped, taking into account the estimated HRC of 220 pixels exceeding and 45 pixels below. For the crop process, these values are elected. For further processing, every cropped image is resized to 128*512 pixels. The ROI from each B-scan is extracted by crop a focused 128*470 bound box. To generate the VOI, the entire B-scans are resized to 256*128 pixels and centered.

It is used before they are fed to coevolutionary ensemble models for macular OCT B-scans. The key assumption of the study for the four levels of the Gaussian Low Pass Picture Pyramids multi-level research version is to be determined.

$$I(i,k) = \sum_{n=-2}^{2} \sum_{m=-2}^{2} W(m,n)I_{i-1}(2i+m,2k+n)$$

Figure 3: Proposed model of multi-scale CNN macular based OCT classification

4. RESULT AND DISCUSSION

According to the 5-fold cross-validation process, knowledge and average results of analyzed structures. The MCME model scale merge outperforms the method of use and setup. It has an AUC of 0.995 with a precision of 96.78 percent note the 96.78 percent of the database.

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F1 (%)</th>
<th>AUC</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalization</td>
<td>83.32</td>
<td>84.67</td>
<td>83.09</td>
<td>0.905</td>
<td>0.315</td>
</tr>
<tr>
<td>Retinal flattening</td>
<td>91.26</td>
<td>92.65</td>
<td>92.78</td>
<td>0.953</td>
<td>0.234</td>
</tr>
<tr>
<td>Image cropping</td>
<td>95.62</td>
<td>96.98</td>
<td>97.37</td>
<td>0.995</td>
<td>0.078</td>
</tr>
<tr>
<td>ROI selection</td>
<td>95.92</td>
<td>94.89</td>
<td>94.89</td>
<td>0.985</td>
<td>0.045</td>
</tr>
<tr>
<td>VOI generation</td>
<td>98.24</td>
<td>97.97</td>
<td>98.01</td>
<td>0.995</td>
<td>0.020</td>
</tr>
<tr>
<td>Multi scale decomposition</td>
<td>98.83</td>
<td>98.66</td>
<td>98.68</td>
<td>0.995</td>
<td>0.013</td>
</tr>
</tbody>
</table>

To analyze the effects of the diagnosis threshold value, diagnostic sensitivity is tested for the different values of the diagnostic threshold values. Detailed experimental analysis for all possible scale fusion configurations for the projected MCME was performed for the table analysis, taking into account the 5-fold cross-validation and the investigative threshold is 20%. The results are summarized in the table above. The total percentage is 96.78% and the AUC is 0.995. In addition, the new VGG19 competitive deep networks were separately evaluated as off-the-visual feature extractors in the problem. In the above table, the findings are summarized. 96.78% is the overall percentage and 0.995 is the AUC. Furthermore, the latest VGG19 competitive deep networks were separately assessed in the issue as off-the-visual feature extractors.
Table 3: Result of 5-fold cross-validation

<table>
<thead>
<tr>
<th>Test</th>
<th>Subcode</th>
<th>No. B</th>
<th>No.D</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>Sub1</td>
<td>38</td>
<td>39</td>
<td>0.96</td>
</tr>
<tr>
<td>Test 2</td>
<td>Sub1</td>
<td>39</td>
<td>34</td>
<td>0.965</td>
</tr>
<tr>
<td>Test 3</td>
<td>Sub1</td>
<td>50</td>
<td>45</td>
<td>1.7</td>
</tr>
<tr>
<td>Test 4</td>
<td>Sub1</td>
<td>76</td>
<td>75</td>
<td>1.2</td>
</tr>
<tr>
<td>Test 5</td>
<td>Sub1</td>
<td>52</td>
<td>45</td>
<td>0.8259</td>
</tr>
</tbody>
</table>

5. CONCLUSION

The analysis of this method shows the CAD method for the diagnosis of retinal pathology in macular OCT. In the above table, the findings are summarized. 96.78% is the overall percentage and 0.995 is the AUC. Furthermore, the latest VGG19 competitive deep networks were separately assessed in the issue as off-the-shelf feature extractors. The different data sets are used to test the efficiency of the proposed algorithm. It also shows the novel OCT-based clinical decision. Finally, the process of OCT classification and the retinal OCT images are used to classify the surrogate-assisted method. In future work, it is predictable work is that through a superior record together by extra-retinal pathologies. Large quantities of dissimilar belongings are to be proposed, as well as to be shown extensive convolution modules. The presentation of the future MCME representation must be considerably enhanced.

REFERENCES

In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 247-250). IEEE.

