. FOREX International Journal of
Publication Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

Optimization of Power and Area Using VLSI Implementation of
MAC Unit Based on Additive Multiply Module

M Nagabushanam?, Skandan Srikanth?, Rushita Mupalla®, Sushmitha S Kumar*and Swathi K°

LAssistant Professor, Department of Electronics and Communication Engineering, M.S Ramaiah Institute of Technology, Bangalore,
Karnataka 560054, India; nagabhushanam1971@msrit.edu

2Student, Department of Electronics and Communication Engineering, M.S Ramaiah Institute of Technology, Bangalore, Karnataka,
India; skandans4@gmail.com

3Student, Department of Electronics and Communication Engineering, M.S Ramaiah Institute of Technology, Bangalore, Karnataka,
India; rushital94@gmail.com

4Student, Department of Electronics and Communication Engineering, M.S Ramaiah Institute of Technology, Bangalore, Karnataka,
India; sushmikumar8@gmail.com

SStudent, Department of Electronics and Communication Engineering, M.S Ramaiah Institute of Technology, Bangalore, Karnataka,
India; swathikantharajskg@gmail.com

*Correspondence: M. Nagabushanam; nagabhushanam1971@msrit.edu

= ABSTRACT - The development of Digital Signal Processors (DSPs), graphical systems, Field Programmable Gate Arrays
(FPGAS)/ Application-Specific Integrated Circuits (ASICs), and multimedia systems all rely heavily on digital circuits. The need
for high-precision fixed-point or floating-point multipliers suitable for Very Large-Scale Integration (\VLSI) implementation in high-
speed DSP applications is developing rapidly. An integral part of any digital system is the multiplier. In digital systems as well as
signal processing, the adder and multiplier seem to be the fundamental arithmetic units. Problems arise when using a multiplier in
the realms of area, power, complexity, and speed. This paper details a more efficient MAC (Multiply- Accumulate) multiplier that
has been tuned for space usage. The proposed design is more efficient, takes up less room, and has lower latency than conventional
designs. The performance of the Additive Multiply Module (AMM) multiplier is measured against that of existing multipliers, where
it serves as a module in the MAC reducing area and delay.

Keywords: AMM, Booth Multiplier, Dadda Multiplier, Cadence, MAC.

ARTICLE INFORMATION and is responsible for math operations and its working is as
Author(s): M Nagabushanam, Skandan S, Rushita M, Sushmitha S Show_n in figure 2. There are numerous mump“cat'o_n
Kumar and Swathi K: algorithms, and you can select one based on how well it
Received: 14/07/2022; Accepted: 19/09/2022; Published 15/12/2022; performs: MOd'f'ed BOOth_ m_UIt'p“er' BOOth_ m_UIt'pI'er' Dadda
e-1SSN: 2347-470X; m tree multiplier, Array multiplier, AMM multiplier, and Wallace
Paper Id: IJEER 1407-08; m tree multiplier are some examples of different multiplication
b, LSRR sy OO \ algorithms. The AMM, Booth, and Dadda multipliers are used
Webpage-link “"— inplace of the multiplier block in this MAC unit. The basic full
\AM/w.ijeer.forexjournaI.co.in/archive/volume-lO/ijeer-lOO455.htmI In place ot the mutuplier block in this unit. 1he basic u

adder is what the adder block consists of. To compare the three
Publisher’s Note: FOREX Publication stays neutral with regard to parameters, namely power, area, and delay, the synthesis
Jurisdictional claims in Published maps and institutional affiliations. findings are carried out for both 8-bit and 16-bit MAC units.

X Y
#71. INTRODUCTION

The most crucial component of DSP is the MAC unit. The
system's overall speed and efficiency are determined by the
MAC unit. The MAC unit functions like a co-processor for such
primary CPU to lighten the load. Therefore, creating a
supercharged MAC unit is vital for microprocessors and DSP

operations. Additionally, there is a growth in demand for

electrical devices with high efficiencies, such as computers, \ H / iy
smartphones, microcontrollers, and microprocessors. The most

significant component of a MAC unit is the multiplier as shown

in figure 1, which determines its efficiency. The multiplier |

consumes a significant extent of time delay, space, and power.

The most crucial component in planning is multipliers. The
Multiplier and Accumulation units that make up a MAC unit

Website: www.ijeer.forexjournal.co.in Optimization of Power and Area Using VLSI 1099

Figure 1: MAC unit basic block diagram

https://www.ijeer.forexjournal.co.in/
mailto:rushita194@gmail.com
mailto:sushmikumar8@gmail.com
mailto:swathikantharajskg@gmail.com
https://doi.org/10.37391/IJEER.100455
https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100455.html

FOREX

Publication
Open Access | Rapid and quality publishing

Booth [7 bits Multiplicand (%) |

] 1
\ 1
| T 2 1
Stepl | Encoding i [bits Multiplier (1) |
_____ (IS W——— -
;) | 7 bits Partial Product (py) |
| 1
! i [1 bits Parial Product (2)) |
1
i E l # bits Partial Product (p2) I
i . i I a1 bits Partial Product (p,)
! Pogtial | '
Siep2 | Product | H
| Summation } |
| i :
) ! {n bits Partial Product (9,../)]
_____ {.________'r_--_____-____-_---______________-_
Step3 i Final E I Sum (5) l
: Addition ! I Carry (O) I
[rOpE— F G ——— Lo i o o vt o o o o o e 7 2 0 9 e O > O
Stepa | ACCUMUR 1 ™ 000) bits Multiplication Resul (6x1) |
_____ '
I

Figure 2: Working of MAC unit

:2. LITERATURE SURVEY

This study offers a thorough and unbiased analysis of the MAC
Unit implementation utilizing various multipliers. Array
multiplier and Booth multiplier are some of the several
multipliers that have been studied in Table [1], and the data
flow diagram of Booth multiplier is as shown in figure 3.

i Table 1: Parameter comparison table between array
multipliers and booth multipliers

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

Figure 4: 64-bit Booth multiplier simulation results

The MAC unit's simulation result in Xilinx with EDA play area
system is shown in figure 4.

““Table 2: Device Utilization

Slice Logic Used Available Utilization
Number of | 259 300 86%
bonded 10BS

Number of | 125 10250 1%
occupied Slices

Number of | 200 82000 1%

Slice Registers

Number of | 425 41000 1%

Slice LUT

Table 2 shows the device utilization of MAC Unit design using
various multipliers. The number of used occupied slices is the
least, the number of used slices LUT is the highest, and the
number of bonded 10BS shown as 86%.

CLK LOAD X

ADD/SUB(ALU)

J164 clk \L
% Y1

1 11 b
Q, DA
Right shift:A,Y,Y_1 |

I

COUNTER=COUNT+1

Figure 3: The data flow of a 64-bit Booth multiplier

Parameters Array Multiplier Booth Multiplier
— - - ““Table 3: Delay and Power Results
Power Utilization High Medium = _ i
_ Size 32-bit 64-bit
Area Highest Least Power (mW) 201.2 203.2
Complexity Simple Complex Delay (ns) 278 332
Del Highest Least . . .
ey J __ The analysis of the delay report for the MAC Unit design
Implement Easy Difficult utilizing various multipliers is as shown in table 3. The 64-Bit

MAC Unit uses hardly any energy so it may be used to develop
less power-consuming devices most effectively. It uses 203.47
mW of electricity. The analysis of power in VLSI design is
critical. The paper [2] displays the total power dissipation and
cell area of various MAC units. When compared to other MAC
units that are either created using the modified Booth or Dadda
multipliers, the Wallace tree multiplier-based MAC expends
less space, dissipates less power, and also causes less delay. As
a result, a 64-bit MAC unit was created that makes use of the
Wallace multiplier and carry-save adder. The arrangement is
created utilizing Verilog-HDL and RTL compiler constructed
with normal 180 nm TSMC technology libraries. Similar to
earlier work, an 8-bit MAC is created using several adders and
a multiplier.

The size and delay values of an 8-bit MAC unit that has a variety
of adders and multipliers implemented are shown in Table IV.
The Dadda Multiplier, Wallace Multiplier, and Modified Booth
Algorithm are the multipliers that were used in the comparative
analysis. The study employed three different adders: (i) Carry
Look Ahead adder (ii) Carry Select Adder (CSeA) and (iii)
Carry Save Adder (CSaA). The graphs are aligned with various
8-bit MAC unit types.

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI 1100

https://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

#: Table 4: Area and Delay Report for Different 8-Bit MAC

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

Sl. No MAC Name Area Report Delay
Cells | Cell Area | (ps)

(um?)

7 MCSMAC 1518013 218 1517795
8 DCSMAC 1508825 237 1508588
9 WCSMAC 435478 79 435399

Modified 221 7677 4995
Booth
Algorithm
Carry Look
Ahead
(MCLMAC)

1 Multiplier
Adder

Dadda 202 7904 4213
Multiplier
Carry Look
Ahead
(DCLMA)

2 Multiplier
Adder

Wallace 90 4398 3064
Multiplier
Carry Look
Ahead
(WCLMAC)

3 Multiplier
Adder

Modified 202 7418 4556
Booth
Algorithm
Carry Select
(MCEMAC)

4 Multiplier
Adder

Dadda 183 7637 4125
Multiplier
Carry Select
(DCEMAC)

5 Multiplier
Adder

Wallace 108 5013 1890
Multiplier
Carry Select
(WCEMAC)

6 Multiplier
Adder

Modified 185 6819 4545
Booth
Algorithm
Carry Save
(MCSMAC)

7 Multiplier
Adder

Dadda 166 7099 3890
Multiplier
Carry Save
(DCSMAC)

8 Multiplier
Adder

Wallace 61 2947 1026
Multiplier
Carry Save
(WCSMAC)

9 Multiplier
Adder

When two 128-bit numbers, X, and y, are assumed, the result
generates partial products and carries C and S, respectively.
Two ripples carry adders are utilized when adding two numbers
with a half adder. The ripple carry adder (RCA) will take as
much time as n full adders since it has to wait for the sum bit
before it can generate the previous carry bit. Nonetheless, the
CSaA generates all of the output values simultaneously, using
less time overall than ripple-carry adders to complete the
computation. As a result, the last stage uses Parallel-In Parallel-
Out (PIPO) as an accumulator.

able 5: Power Report for Various 8-bit MAC Unit

Sl. No MAC Name Power Report
Total Leakage Dynamic
Power Power Power (nW)
(nW) (nW)

1 MCLMAC 1813161 252 1812909

2 DCLMAC 1849307 270 1849037

3 WCLMAC 903852 132 903720

4 MCEMAC 1713749 242 1713506

5 DCEMAC 1721371 260 1721111

6 WCEMAC 657797 156 657640

3. METHODOLOGY

3.1 AMM Multiplier

In this proposed paper, the implementation of an 8-bit with a
16-bit of MAC unit with various multipliers such as AMM,
Booth Multiplier, and Dadda Multiplier was done. The Additive
Multiple Modules get additional inputs by append them for the
input operands product. A 4x2 AMM performs the arithmetic
operation which is p = ax+y+z. In this case, (a) and (b) each
represent the 4-bit multiplicand as well as a 2-bit multiplier. As
4+2=6, the product p consists of 6 bits. Four bits make up z.

L

Legend:
2 bits —— X0, 1]
4 bits — [0, 3) "
| l X[0, 1] | -
aa, 71_L |am| I 2.3]
6, Q)I 4, 5)1 J&
1l X1 o147

a —| ,_[2_| [X (4, 5]
4. 7] ap, 3) I .

8111 6710 (43

X 6,7
Ppo. 1)
P2, 3)
Pias)

Priz.15) Prio11) Pis. 9] P, 71
Figure 6: 8x8 AMM Multiplier built using 4x2 AMM Multiplier

Figure 5 shows a basic block diagram of a 4x2 AMM multiplier
and figure 6. Shows an 8-bit AMM multiplier built using two
4x2 AMM multipliers. Figure 7 indicates the product
generation for given inputs using the dot method used in an
AMM multiplier.

o ® 0 0
o0 001,
oo 00
® & -
:/:/:/.
4-bit adder ' @ Cn

" EEEEN

Figure 7: Dot Notations of AMM Multiplication

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI 1101

https://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

3.2 DADDA Multiplier

It builds up the total of partial products using various full and
half adders. While conceptually identical to a Wallace tree
multiplier, this version benefits from fewer gates and
marginally improved performance due to a revised reduction
tree. Figure 8 shows the various stages that go on in a Dadda
multiplier to get the desired output.

Dadda Multiplier uses the following steps to generate output:

e Multiply every bit of a1, by every single bit of a,, resulting
in Voltagel (V1) results.

e When using full and half adders, reduce the amount of
the partial products as in every stage until there are nearly
no bits remaining for each weight.

e The addition of the final result is done using a traditional
adder.

P
i
T Thagasase
swpz S LIRS
Syl
o
vt YR

Figure 8: Dot notation of 8x8 Dadda Multiplier

3.3 Booth Multiplier

The general block diagram of Booth multiplier is as shown in
Figure 9. Two signed binary numbers are multiplied using the
two's complement notation via Booth's multiplication algorithm
as shown in Figure 10. Although the multiplicand and product
representations are often both in two's complement
representation, any integer that supports subtraction and
addition will work as well, it is not necessary to choose one.
There are numerous modifications and improvements on certain
specifics. The functionality is frequently explained as
transforming strings of 1’s into high-order +1’s and low-order
I’s at the endpoints of the string in the multiplier. The net
impact is regarded as a negative of the proper value when a
string passes through the MSB because there is no high-

order+1.
Multiplicand

Buffer

Partial Product

,_

Generator

Multiplier
Buffer

Booth

Encoder

ADDER(final stage)

Final Result

Figure 9: Block diagram of Booth Multiplier

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

A I 0 1 0 -6

X x 1 1 0 1 3
Y g I 1 1 recoded multiplier
Add -A 0 1 1 0
Shift (] | | 0
Add A 10 1 0
1 1 0 1 0
Shift X L a1 0 % 0
Add -A 0O 1 1 0
1

0 0 0 | 0
Shift 0O 0 1 0 0 1 0

Figure 10: Booth Multiplication Algorithm

3.4 Full Adder with XOR

The adder known as a "full adder" adds three inputs and
generates two outputs. A and B make up the first two inputs and
Cin is the third input. The normal output is denoted as S, which
is the sum, while the output carry is designated as Cout as shown
in figure 11. Eight bits can be used to form a single-byte adder
using full adder logic, and the carry bit can be cascaded from
one adder to the next. A full adder is employed since a 1-bit
half-adder cannot use a carry-in bit when one is available,
therefore another 1-bit adder must be used. Three operands are
added via a 1-bit complete adder, which produces 2-bit results.

A { -H |
XOR H XOR (—Sum

Cin T
T

Mux +— Cout

Architecture of FA based on XOR and MUX gates
Sum = H & Cin
Cout = A.H + Cin.H

Figure 11: Full Adder with XOR

3.5 Accumulator Unit

The accumulator, which is a register, is where the products' total
is kept. It is commonly employed in MAC units and ALUs
(Arithmetic Logic Units). It may be unnecessary to perform
additional summing operations by saving values in the
accumulator. The delay time of the accumulator should be swift
enough to keep up with fast adders. An accumulator is often
used as a register to hold interim logical or numerical data in
multistep calculations. The block diagram of a register unit that
serves as an accumulator is shown in Figure 12. It acts as a
temporary repository for these calculations.

Figure 12: Accumulator Unit

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI 1102

https://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

It acts as a short-term repository for these calculations. The
value is gradually overwritten to hold the interim results each
time one of these actions is carried out. For example, in an
operation that requires adding many numbers, the accumulator
would initially store the result of adding the first two integers.
After the subsequent number is added, the net result then
replaces the previous result in the accumulator. This procedure
is repeated until the total amount is available and all the
numbers have been added. This total is calculated and written
to the main memory or another register afterward.

i 4, RESULTS AND DISCUSSION
4.1 MAC Unit with AMM Amplifier

Figure 13: Simulation results of 8-bit MAC unit using AMM
Multiplier

The following are the synthesis reports generated for an 8-bit
MAC unit that has an AMM Multiplier implemented in it. The
results of a simulation of 8-bit MAC unit with an AMM
multiplier are shown in figure 13. The MAC unit's power, delay,
and area results are depicted in figures 14, 15, and 16.
@genus:root: 9> report timing -unconstrained

wWarning : Possible timing problems have been detected in this design.
: The design is 'MAC_Architecture 1'.

[TIM-11]

Generated by:
Generated on:
Module:

Operating conditions
wireload mode:

Area mode:

Genus(TM) Synthesis Solution 17.22-s5817_1

Jun 27 2022 12:59:28 am [N
MAC_Architecture 1

slow (balanced tree)

enclosed

timing library

Path 1: UNCONSTRAINED Setup Check with Pin Delay/Dout_reg[151/CK->D
startpoint: (F) Y[O]
Endpoint: (F) Delay/Dout reg[151/D

setup:- 410
Data Path:- 9423

Figure 14: Delay synthesis for 8-bit MAC unit with AMM

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

@genus:root: 6> report power

Generated by: Genus (TM) Synthesis Solution 17.22-5017 1

Generated on: Jun 27 2022 12:57:58 am
Module: MAC_Architecture 1
Technology library: tsmcl8 1.0
Operating conditions: slow (balanced tree)
Wireload mode: enclosed
Area mode: timing library
Leakage Dynamic Total
Instance Cells Power(nwW) Power(nW) Power(nW)

MAC Architecture 1 189 313.324 542303.677 542617.001
Mul Block 126 242.480 370732.845 370975.325

Figure 16: Power synthesis for 8-bit MAC unit with AMM

In order to make a thorough comparison, the AMM synthesis
results are provided for the 16-bit MAC unit. The delay, power,
and area report for the 16-bit MAC unit of AMM multiplier
is shown in figures 17, 18, and 19.

Operating conditions:
Wireload mode:
Area mode:

slow (balanced tree)
enclosed
timing library

Path 1: UNCONSTRAINED Setup Check with Pin Delay/Dout reg[30]/CK->D
Startpoint: (R) Mul Block SD1/p[8]
Endpoint: (F) Delay/Dout reg[30]/D

411 k
8500

Setup: -
Data Path:-

Figure 17: Delay synthesis for 16-bit MAC unit with AMM

@aenus:root: 7> report area

Genus(TM) Synthesis Solution 17.22-s817 1
Jun 30 2022 09:55:07 pm
MAC Architecture XOR MUX

Generated by:
Generated on:
Module:

Technology library: tsncl8 1.0
Operating conditions: slow (balanced tree)
Wireload mode: enclosed

Area mode: timing library
Instance Medule Cel
1 Count Cell Area Net Area Total Area Wireload
MAC Architecture XOR MUX
196 6579.619 0.000 6579.619 <none> (D)

Figure 18: Area synthesis for 16-bit MAC unit with AMM

@genus:root: 6> report power

Generated by:
Generated on:
Module:

@genus:root: 7> report area

Generated by: Genus(TM) Synthesis Solution 17.22-s617 1

Genus (TM) Synthesis Solution 17.22-s017
Jun 30 2022 09:52:55 pm
MAC_Architecture XOR MUX

Generated on: Jun 27 2022 12:58:29 am

Module: MAC Architecture 1

Technology library: tsmcl8 1.0

Operating conditions: slow (balanced tree)

Wireload mode: enclosed

Area mode: timing library

Instance Module Cell Count Cell Area Net Area Total Are

a Wireload
MAC Architecture 1 189 6742.613 0.808 6742.61

3 <none> (D)

Figure 15: Area synthesis for 8-bit MAC unit with AMM

Technology library: tsmcl8 1.0
Operating conditions: slow (balanced tree)
Wireload mode: enclosed

Area mode: timing library
Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nw)

MAC Architecture XOR MUX 190 266.059 543053.356 543319.415
csa tree M.. 53 15 groupi 33 83.612 197500.052 197583.664

Figure 19: Power synthesis for 16-bit MAC unit with AMM

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI

https://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

4.2 MAC Unit with Booth Amplifier

Figure 20: Simulation results of MAC unit using Booth Multiplier

@genus:root: 6> report power

Generated by:
Generated on:
Module:

Genus (TM) Synthesis Solution 17.22-5017 1
Jun 28 2022 10:52:09 pm
MAC Architecture 1

Technology library: tsmcld 1.0
Operating conditions: slow (balanced tree)
Wireload mode: enclosed

Area mode: timing library
Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

MAC Architecture 1 306 230.576 534650.066 534880.642
Delay 17 24.621 63627.947 63652.567

Figure 21: 8-Bit MAC Unit Power Synthesis using a Booth
Multiplier

Generated by:
Generated on:

Kodule:

Operating conditions:
wireload node:

Area node:

Genus (TM) Synthesis Solution 17.22-s017 1
Jun 28 20622 16:53:33 pn
HAC_Architecture 1

slow (balanced tree)

enclosed

timing library

>ath 1: UNCONSTRAINED Setup Check with Pin Delay/Dout_reg(15]/CX->D
Startpoint: (R) X[0]
Endpoint: (F) Delay/Dout reg[15]/D

Setup: - 411
Data Path:- 15014

Figure 22: 8-Bit MAC Unit Delay Synthesis using a Booth
Multiplier

(@genus:root: 7> report ared

Generated by: Genug (TH) Synthesis Solution 17.22-5017 1
Genorated on: Jun 28 2022 10:53:10 pn
Hodule: MAC Architecture 1

Technology library: tsncld 1.0
Oporating canditiong: slov (bolanmd tree)
vireload zode: enclosed

Area oode: tining library
Instance Kodule Cell Count Cell Area Ket Aroo Total Arca wWirel
oad
MAC_Architecture 1 306 6975.461 0.000 6975.401 <o
ne> (0)
oolay Reglstor 17 911.424 0.000 911.434 o
ne> 101

Figure 23: Area synthesis for 8-Bit MAC unit with Booth Multiplier

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

Wireload node: enclosed
Area mode: timing library
Instance Module Cell Count Cell Area Net Area Total Ar

ea Wireload

MAC Architecture 1
47 <none> (D)

809 22622.847 0.000 22622.8

Figure 24: Area synthesis for 16-Bit MAC unit with Booth
Multiplier

Path 1: UNCONSTRAINED Setup Check with Pin Delay/Dout reg[31]/CK->D
Startpoint: (R) Y[1]
Endpoint: (F) Delay/Dout reg[31]/D

Setup: - 411
Data Path:- 38531

Figure 25: 16-Bit MAC Unit Delay Synthesis using a Booth
Multiplier

The results for MAC unit using Booth multiplier are shown
above. The simulation findings of MAC unit with the Booth
multiplier are displayed in Figure 20. Figures 21, 22, and 23
depict the results of the synthesis of an 8-bit MAC unit using
the Booth multiplier, while Figures 24, 25, and 26 depict the
outcomes of the synthesis of the 16-bit MAC unit with the
Booth multiplier.

Wireload mode: enclosed

Area mode: timing library
Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power (nW)
MAC_Architecture_ 1 809 830.271 3051024.913 3051855.184
Mul_Block Addition Part 282 572.851 2154712.351 2155285.202
Delay 33 49.106 177435.183 177484.289

Figure 26: Area synthesis for 8-Bit MAC unit with Booth Multiplier

4.3 MAC Unit with Dadda Amplifier

B

[=]

Figure 27: Simulation results for MAC unit using Dadda Multiplier

Module: MAC Architecture 1

Technology library: tsmcls 1.0

Operating conditions: slow (balanced tree)

wireload mode: enclosed

Area mode: timing library
moonoooass=om s==zzze

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nw)

MAC Architecture 1 213 353.424 583076.601 582430.025

Mul_Block Main_ PP_Gen 79 115.775 1601782.234 161898.010

Figure 28: Power synthesis for 8-bit MAC unit with Dadda
Multiplier

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI 110

https://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

VO WL 9F 5SS Liee
wireleod mfe: exleced
drea mfe: tisleg Intaary

Gl ant Ul ey B2t brea

Irstence Fofile

Teal ke Wireltad

ao® 03]

158430 aow 3]

Figure 29: Area synthesis for 8-bit MAC unit with Dadda multiplier

Path 1: UNCONSTRAINED Setup Check with Pin Delay/Dout reg[15]/CK->D
Startpoint: (R) Y[1
Endpoint: (F) Delay/Dout reg[15]/D

Setup:- 311
Data Path:- 14137

Figure 30: Delay synthesis for 8-bit MAC unit with Dadda multiplier

UPErdLLIg CONOLLLONS: SLOW (DGLaNCeq LIeg)
Wireload mode: enclosed
Area mode: timing library

Instance Module
MAC Architecture 1
Mul Block Adder Part

677 23018.688 0.800 23018.688 <none> (D)

Adder Block 294 15484.392 0.000 15484.392 <none> (D)

Figure 31: Area synthesis for 16-bit MAC unit with Dadda multiplier

Path 1: UNCONSTRAINED Setup Check with Pin Delay/Dout reg[31]/CK->D
Startpoint: (R) Y[0]
Endpoint: (F) Delay/Dout_reg[31]/D

Setup: - 418
Data Path:- 35995

Figure 32: Delay synthesis for 16-bit MAC unit with Dadda
multiplier

The above shown are the results for the MAC unit using the
Dadda multiplier. Figure 27 represents the simulation results of
the MAC unit using a booth multiplier. Figure 28, 29 and 30
show the synthesis report of an 8-bit MAC unit with a Dadda
multiplier and figure 31,32 and 33 show the synthesis results of
the16-bit MAC unit with the Dadda multiplier.

: Table 6: Comparison table for 8-bit MAC Unit

MAC Unit Power Area Delay

(W) (Um”2) (nS)

MAC unit with 542617 6742.6 9423

AMM

MAC unit with 534880 6975.46 15014
Booth Multiplier

MAC unit with 583430.3 7098.5 14137
Dadda Multiplier

Table 6 shows the synthesis results for the MAC Unit with 8-
Bit has been summarized and it is seen that the MAC unit with
8-bit AMM Multiplier has a better design based on Area and
Time Delay.

7 Table 7: Comparison table for 16-bit MAC Unit

MAC Unit Power(nW) Area (Um”2) Delay(nS)
MAC unit with 543319 6579 8500
AMM
MAC unit with
Booth
Multiplier
MAC unit with
Dadda
Multiplier

3051855.184 22622.84 38531

2857468.8 23018.688 35995

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

The 16-Bit MAC Unit synthesis findings are reported in Table
7, and it is clear that the 16-Bit MAC unit of AMM Multiplier
provides a better design in terms of time delay and area.

Operating conditions: slow (balanced tree)
wireload mode: enclosed
Arca mode: timing library

L LT e ety

Leakage Dynamic Total
Instance Cells Power(nw) Power(nw) Power(nw)
MAC Architecture 1 677 1052.724 2856416.072 2857468.796
Mul Block Adder Part 294 769.068 2176443.474 2177212.542

Figure 33: Power synthesis for 16-bit MAC unit with Dadda
multiplier

From the results obtained, the conclusions are made that a MAC
unit with an AMM multiplier gives a faster execution speed it
can also be noticed that with an increase in the number of bits
the area and delay significantly reduce that giving us a high-
speed MAC unit.

5. CONCLUSION

The proposed work designs a modified MAC unit using the
AMM multiplier and compares it with the Dadda and Booth
multiplier for 8-bit and 16-bit and found that the MAC with
AMM multiplier is better in terms of area, for 8-bit and is
reduced by 3.4% compared to the Booth multiplier, and 5.2%
with respect to Dadda multiplier. The delay is reduced by 37.2%
in Booth multiplier and 33.3% in Dadda multiplier respectively.
Similarly, for a 16-bit MAC multiplier, the area is reduced by
71% in comparison to the Booth multiplier and 71% for the
Dadda multiplier. The delay is reduced by 77.9% and 76.3%
respectively. These findings demonstrate that when bit count
increases, delay and area decrease with AMM compared to
conventional multipliers, making bit count ideal for high-speed
DSP applications.

[1] Akash Shaw, Vikas Gupta,2020, “Novel Design of High Speed 64-bit
Optimized MAC Unit”, IEEE International Conference for Innovation
in Technology(INOCON)Bengaluru, India. Nov 6-8, 2020.

[2] Chilakala Jayanth Reddy, A. Prasad “High Performance and
Implementation of 64-Bit MAC Units and Their Delay Comparison for
Binary Multipliers” International Journal of VLSI System Design and
Communication Systems Volume.04, IssueNo.09, September-2016.

[3] L. Jenila and R. Aroul Canessane (2022), Cross Layer Based Dynamic
Traffic Scheduling Algorithm for Wireless Multimedia Sensor Network.
IJEER 10(2), 399-404. DOI: 10.37391/1JEER.100256.

[4] Kadi Jaya Ramesh, Chepuri Pravalika, Dr.Rajkumar Sarma, "Multiply
and Accumulate Architectures for Digital signal Processing and digital
image Processing", Turkish Journal of Computer and Mathematics
Education VVol.12 No. 11 (2021).

[5] Sufia Banu and Shweta Gupta (2022), Design and Leakage Power
Optimization of 6T Static Random Access Memory Cell Using Cadence
Virtuoso. JEER 10(2), 341-346. DOI: 10.37391/1JEER.100246.

[6] Zhen gu, Shuguo Li, “Optimized Interpolation of Four-Term Karatsuba
Multiplication and a Method of Avoiding Negative Multiplicands", IEEE
Transactions On Circuits And Systems—I: Regular Papers, 2021.

[7] Moslem Heidarpur, Mitra Mirhassani, “An Efficient and High-Speed
Overlap-Free Karatsuba-Based Finite-Field Multiplier for FGPA
Implementation”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 29, No. 4, 2021.

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI 1105

https://www.ijeer.forexjournal.co.in/

FOREX

International Journal of

Publication Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 10, Issue 4 | Pages 1099-1106 | e-ISSN: 2347-470X

[8] B.Hemalatha, Dr.Hari Shankar Srivastava, V. Vinay Kumar, “Design of
MAC Unit For DSP Applications using Verilog HDL”, International
Journal of Research in Advent Technology, VVol.7, No. 4S, April 2019.

[9] Priyanka Nain, Dr. G. S.Virdi, “Multiplier-Accumulator (MAC) Unit”,
International Journal of Digital Application & Contemporary Research,
Volume 5, Issue 3, October 2016.

[10] Pratibhadevi Tapashetti, Dr. Rajkumar, B. Kulkarni and Dr. S. S. Patil,
“MAC Architectures Based on Modified Booth Algorithm”, International
Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, VVol. 5, Issue 12, December 2016.

[11] S. Aruna, S. Venkatesh and K. Srinivasa Naik, “A Low Power and High-
Speed Array Multiplier Using On-The-Fly Conversion", International
Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-
3878, Volume-7, Issue-5S4, February 2019.

[12] K. Praveen Reddy and S. Aruna Mastani, "Implementation Of High-
Performance 64-Bit Mac Unit for Dsp Processor”, International journal of
Current Engineering and Scientific Research, Vol.2, Issue-11, 2015.

[13] K. Rajesh, G. Umamaheswara Reddy, “FPGA Implementation of
Multiplier-Accumulator Unit using Vedic multiplier and Reversible
gates”. International Conference on Inventive Systems and Control
(ICISC 2019).

[14] Duncan J.M Moss, David Boland, Philip H.-W Leong, “A Two speed,
Radix-4 Serial parallel Multiplier”, IEEE Transaction on Very Large
Scale Integration System, Vol. 27, No. 4, pp: 769-777, 2019.

[15] Roshani Pawar, Dr. S. S. Shriramwar, "Design & Implementation of Area
Efficient Low Power High-Speed MAC Unit using FPGA", IEEE
International Conference on Power, Control, Signals and Instrumentation
Engineering (ICPCSI-2017).

[16] Suganthi Venkatachalam, Elizabeth Adams, Hyuk Jae Lee, Seok Bum Ko,
"Design and Analysis of Area and Power Efficient Approximate Booth
Multipliers". IEEE Transactions on Computers Vol. 68, Issue: 11, Nov. 1
2019.

[17] Chandrashekara M N, Rohit S, “Design of 8 Bit Vedic Multiplier Using
Urdhya Triyagbhyam Sutra with Modified Carry Save Adder”, 2019 4th
International Conference on Recent Trends on Electronics, Information,
Communication& Technology (RTEICT 2019), MAY 17th & 18th 2019.

[18] R. Anitha, Sarat Kumar Sahoo,”A 32 Bit MAC Unit Design using Vedic
Multiplier and Reversible Logic Gate” International Conference on
Circuit, Power and Computing Technologies (ICCPCT)2015.

[19] Kavindra Dwivedi, R.K Sharma, "Hybrid Multiplier-based Optimized
MAC Unit". 9th ICCCNT 2018 July 10-12, 2018, 1I1SC, Bengaluru, India.

[20] M. Masadeh, O. Hasan, and S. Tahar, "Comparative study of approximate
multipliers," in Proc. ACM Great Lakes Symp. VLSI, 2018, pp. 415-418.

© 2022 by M Nagabushanam, Skandan S,
@ ® Rushita M, Sushmitha S Kumar and Swathi K.
Submitted for possible open access publication

under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Website: www.ijeer.forexjournal.co.in

Optimization of Power and Area Using VLSI 1106

https://www.ijeer.forexjournal.co.in/

