
 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

228 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

░ ABSTRACT- Data compression is defined as the process of encoding, converting and modifying the bits-structures of data

in such a way that reduces less-spaces on the disk. Fast-ABRC, a new context ABRC for compressing the image and video. This

paper introduces novel hardware F-ABRC (Fast-adaptive binary range coder) and architecture of VLSI, as it doesn’t have

requirement of LUTs (Look-up-Tables) and also it is completely multiplication free. To get the result, we will combine the utilization

of simple operation to compute the approximation after encoding every single symbol and the PE (probability estimation) on the

basis of ISW (Imaginary Sliding Window) with approximation of the multiplication. We have represented our introduced algorithm,

which is faster and in comparison, to the existing model it gives superior compression efficiency and the comparison takes place on

the basis of two parameters such as power dissipation (Dynamic and Static) and device utilization.

Keywords: F-ABRC, ISW, VLSI.

░ 1. INTRODUCTION
The term DC (Data compression) contains the relevant

encoding information through smaller bits than the given

original re-presentation in the signal processing [1]. Moreover,

compression can be lossy / lossless. The statistical redundancy

is removed for lossless compression minimizing the bits. In the

lossless compression, the information is stored as it is.

unwanted eminent information is eliminated for minimizing the

bits of lossy compression. The data size file which is introduced

as the DC is minimized by this process. It is known as source-

coding in data transmission context. Before storing and

transmitting, the source data has encoded. The channel coding

for error detection, correction and line coding (means mapping

the data onto the signal) along with source code should not to

be confused. The compression [2] is very useful because it

minimizes the resources, which needed to transmit and store the

data. The computational resources can be consumed in

compression process and generally in decomposition process.

DC (Data Compression) is subjected to the complexity of space-

time. For example, the compression method for video may need

expensive hardware for video, which is being decompressed

fast as to be noticed, and decompress the video in full before

seeing it and may not be convenient or need the additional

storage. The DC scheme contains among the various factors,

consisting the compression degree, the amount of distortion is

represented (when utilizing the lossy DC), and computational

resources needed to decompress and compress the data. The

AC (arithmetic coding) is very common algorithm, which is

utilized in both the lossy and lossless data compression

algorithms. It is an entropy encoding method, which is

frequently gotten that the symbols can be encoded with smaller

bits than the lower seen symbols. It has few benefits over well-

known methods like Huffman coding. The term AC covers 2

distinct processes like encoding the messages and decode them.

The term entropy coding is eminent phase in the scheme of

video coding to reduce the size of syntax elements into the

bitstream without the help of information loss. ABRC which is

abbreviation for Adaptive Binary Arithmetic Coding [3] is the

entropy tool that can be appeared in AVC/H.264 for 1st time in

the standards of video coding. Related with prior CAVLC [4]

(context-adaptive of variable length coding), the Adaptive-

Binary Athematic-Coding (ABAC) develops the efficiency of

compression by 14 and 9% [5]. Because of greater

computational complexity, the ABC (Adaptive Binary Coding)

can be only sustained in high and main profiles of AVC/H.264.

After that, with development in memory cost reduction and

throughput, the ABAC can be adopted as the tool of entropy

coding for the syntax elements in the HEVC [6]. The ABAC

encoding process contains of 3 phases such as context

modeling, BAC (Binary Arithmetic Coding) and binarization

[7]. If the element of syntax isn’t binary, so it can be mapped

to the binary sequences that is the term of binarization;

otherwise, this phase can be omitted. Then for every single

binary, there are 2 coding modes like bypass and regular. In the

mode of regular coding, first the binary enters the phase of

context modeling where the model of probability can be chosen

for binary according to the earlier that encoded the syntax

Multiplication free Fast-Adaptive Binary Range Coder using

ISW

Sunkara Teena Mrudula1*, K.E. Srinivasa Murthy2 and M.N. Giri Prasad3

1Research Scholar, Dept of ECE, Jawaharlal Nehru Technological University Anantapur, Anantapuramu 515002, A.P, India
2Professor, Department of ECE, Ravindra College of Engineering for Women, Kurnool, A.P, India
3 Professor, Jawaharlal Nehru Technological University Anantapur, Anantapuramu 515002, A.P, India

*Correspondence: Sunkara Teena Mrudula; sunkaramrudula@gmail.com

ARTICLE INFORMATION

Author(s): Sunkara Teena Mrudula , K.E. Srinivasa Murthy and M.N.

Giri Prasad;

Received: 15/02/2023; Accepted: 27/03/2023; Published: 30/03/2023;

e-ISSN: 2347-470X;

Paper Id: IJEER 1502-07;

Citation: 10.37391/IJEER.110131

Webpage-link:

www.ijeer.forexjournal.co.in/archive/volume-11/ijeer-110131.html

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
mailto:sunkaramrudula@gmail.com
https://doi.org/10.37391/IJEER.110131
https://ijeer.forexjournal.co.in/archive/volume-11/ijeer-110131.html

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

229 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

elements (known as context). Then the binary is together and

associated with the model of probability that is fed into the BAC

(binary arithmetic coder), with the help of subsequent model of

updating procedure. In the mode of bypass coding, the binary

can be encoded with the help of probability distribution (e.g.,

no modeling context) that speeds up the process of

decoding/encoding. To understand the ABAC, we can distribute

the ABAC encoding process into 2 phases such as arithmetic

coding and probability estimation. The modelling of

banalization and context phases are considering the syntax

element of probability distribution, while the BAC phase

satisfies the encoding. If the distribution of probability is

specified accurately then the arithmetic coding can realize itself

the efficiency of optimal coding up to the rounding error.

Therefore, the performance tool of arithmetic coding solely

based on the probability estimation. In both HEVC and H.264,

the tools of ABRC can be optimized with the help of empirical

context methods and binarization, which was acquired by

experience, intuition and physically performed the statistics.

Then, it is very doubtful whether the ABRC tool is an optimal.

To minimize the CC (computation complexity), the

modification of the Re-norm method will help to minimize the

CC. In [8], it is proposed that the faster technique is Re-norm

technique, but it is dependent on LUTs. Whereas in [9], the

author introduced ABRC, which does not the byte Re-norm.

Although, in the interval of ABRC, the multiplication is utilized

by the range coder. Henceforth, F-ABRC (Fast-ABRC)

implementation is also known as Q-Coder [10], and it follows

the M-coder in H.264/AVC and H.264/HEVC, QM-Coder in

JPEG and MQ-Coder JPEG2000 make use of the LUTs for

multiplication of approximate operation and the probability

estimation in interval part of bit-Re-norm (Re-normalization),

which produces possible approximation. another replacement

to the range, codes and arithmetic codes utilizes the elements of

output bit-stream as well as the byte Re-Norm will be achieved

at the same time. We make the use of the term ABRC for the

universal DC and for the video calling [11]. M-coder in together

with ABRC acquires up to 40% less computational complexity

is represented [14] for the performance of software. Anyways,

from the implementation of hardware, the drawback of ABRC,

in the part of interval division, ABRC is to make use of the

multiplication. On the other hand, the cost of multiplication can

be similar with cost utilizing the look-up-tables in the modern

architecture. As byte-Re-Norm is very less complex than the Bit

Re-Norm. This paper is mainly dedicated to the F-ABRC for

decoding and encoding technique which is the significant

component of the CABAC, we make the use of CABAC in

image and video compression standards like JPEG,

H.265/HEVC, JPEG2000 and H.264/AVC.

This paper introduces F-ABRC that does not utilize the LUTs

and multiplication. The introduced algorithm is the

modification of F-ABRC, which is basically based on the ISW

(Imaginary Sliding Window). Based on the statistical properties

of corresponding binary source, it allows to assign precise

window-length. Therefore, as compared to the method of state-

of-the-art M-Coder, which don’t require look-up-tables and

very faster. The effectiveness of compression also improvised

by it. As rest of this paper is planned in such a way that section-

2 reviews the ABRC, section-3 reviews the BAC

implementation, section 4 dedicated the free look-up-tables and

probability estimation of 1’s for the binary source and

introduces the free look-up-tables and multiplication free of F-

ABRC. Then the comparative outcomes for introduced F-

ABRC and M-Coder are represented.

░ 2. LITERATURE SURVEY
Several F-ABRC algorithm have been introduced [12]-[14]. To

create implementation of AC (arithmetic coding) more

practicable and easier, the alphabet size requires to be

minimized to the binary so the process of coding can be

simplified. The simple and faster implementation of AC-

algorithm is utilizing the LUT method [15]. Few architectural

develops in the implementation of VLSI of the arithmetic coder

has been created by [18] utilizing the well-known method of

speculative execution and loop unrolling. Whereas, in [20]

introduced the algorithm that utilizes the redundant arithmetic

to get further speed up for coder. Anyways, all of the coder is

based on the arithmetic coding hardware’s, which is defined to

compress bi-level data of image and may be very poor for

another type of data.

This paper [21] introduces an efficiency of the adaptive- BAC

that dependent on a domain of logarithm (LBAC) as well as

evaluation of probability dependent on P- LBAC (L-BAC).

Combination of the P-LBAC as well as LBAC attain a ratio of

the large data compression through less complexity as well as

structure of hardware efficiency. The introduces P-LBAC as

well as LBAC do not utilize even division and multiplication

operation or overview the tables, and only shifting as well as

addition operators are needed. The introduced LBAC are

designed to approval the coding of various symbols as well as

had huge throughput. CABAC [22] is a general part of the

existing ISO/IEC/ISO advanced H.264/AVC for the

compression of video is described. By CABAC through

context modelling, a large degree of the redundancy and

adaption reduction is acquired. The framework of the CABAC

also consists a novel method of less-complexity for the BAC as

well as evaluation of probability, which is well suitable for the

efficiency of the hardware as well as implementation of the

software.

In [23] introduces an efficiency of hardware-ABRC as well as

its VLSI design. To acquire this, they follow a method,

according to various requirements, that allows to reduce the

capacity of bit in the period partition as well as it allows to

explains that how the requirement avoided to make use in case

of a loop under renormalization portion of ABRC. In the

proposed ABRC, the estimation of probability is based on the

lookup table free simulated sliding window. They have

introduced an existing size of Adaptive – WSA (window

selection algorithm) to gain a performance of the higher

compression. they introduce an existing size of adaptive

window selection algorithm. In contrast, through an ABRC by

a unique window, the introduced scheme gives an adaption of

the faster probability at basic decoding/encoding phase, as well

as more suitable probability evaluation for the very less entropy

of the binary sources. Whereas, in [24] represent a VLSI

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

230 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

architecture of the ABAC for lossless compression of data as

well as decompression. The important component of it includes

of an APEM (adaptive probability estimation modular), an

AOU (arithmetic operation unit), and a NU (normalization

unit), A new method of bit-suffering, that concurrently resolves

combination of source-termination as well as carry-over

problems of efficiency, is designed and introduced in an UN.

The APEM evaluates the probabilities of conditional of the

efficiency of input symbols utilizing a method of table lookup

method through 1.28-kbytes memory.

In [25] represents novel methods to parallelize-CABACs

(context-based adaptive binary arithmetic coders). Two existing

similar methods are defined as PCABACs (or CABACs).

Therefore, this type of the coders is designed through

transforming general utilized binary multiplication-free ACs

(arithmetic coders). Uses of the linear estimates as well as

simplifies the H/w (hardware) by predicting that low possible

symbol probability is about the similar when presenting the

decoding/encoding. There is another codec administrates

method of table lookup as well as attains parallelism through a

model of parallelized probability (known as QT-coder). QL-

coder developed by IBM-coder, as well as QT-coder developed

through utilization of CABAC in H.264 standard of

compression of video. Whereas in [26] introduces the new

scheme of AEC (adaptive entropy-coding scheme) for the

compression is represented. It uses an adaptive technique of

arithmetic coding to best contrast the entropy of first order of

coded indicators as well as to keep rule of the statics of the

nonstationary symbol. BAC implementation is discussed in

next section.

░ 3. PROPOSED METHODOLOGY

3.1 Implementation of ABAC
In addition to the stationary-discrete-memoryless abbreviation

for SDM of the binary-source here we consider 𝓅 = probability

of 1’s. Encoding codewords for BS (binary-sequence) as 𝑆𝐿 =
{𝑠1, 𝑠2, … , 𝑠𝐿}, 𝑠𝑡 ∈ {0,1} is signify as bits-

number⌈−log2 (𝑆
𝐿) + 1⌉ In BA (Binary Arithmetic).

𝐶𝑢𝑚(𝑆𝐿) + 0.5 × 𝑃𝑟𝑜(𝑆𝐿) (1)

Where, 𝑃𝑟𝑜(𝑆𝐿) is represented as the probability and

𝐶𝑢𝑚(𝑆𝐿) is signify as the cumulative probability of the

sequence 𝑆𝐿 respectively, which is computed by the help of

recurrent-operations.

If 𝑠𝑖 = 0, then

{
𝐶𝑢𝑚(𝑆𝑖) ← 𝑃𝑟𝑜(𝑆𝑖−1)

𝑃𝑟𝑜(𝑆𝑖) ← 𝑃𝑟𝑜(𝑆𝑖−1)(1 − 𝓅)

(2)

If 𝑠𝑖 = 1, then

{
𝐶𝑢𝑚(𝐼𝑢) ← 𝐶𝑢𝑚(𝑆𝑖−1) + 𝑃𝑟𝑜(𝑆𝑖−1)(1 − 𝓅)

𝑃𝑟𝑜(𝑆𝑖) ← 𝑃𝑟𝑜(𝑆𝑖−1)𝓅

(3)

There are two registers such as X and Y. As for execution of the

integer of an arithmetic encoder depends on these two registers.

𝑃𝑟𝑜(𝑆𝐿) is correlate with register X and 𝐶𝑢𝑚 (𝑆𝐿) is correlate

with Y. To show the register R and L we required more and

more accuracy so that it develops with the maximize number of

Y. we make use of re- normalization technique for each symbol

of an output so that it will avoid registers-underflow as well as

it will reduce the coding latency.

3.2 PE (Probability Estimation) based on

Imaginary sliding Window (ISW)
In real time applications, probability of 1 is undetermined. In

this period, symbol of an input binary 𝐴𝑡0 for the 1’s Probability

Estimation (PE) can be solved in place of 𝓅 . To get

approximate result by examining the content of special – buffer

(this buffer encoded as the symbols and keeps B earlier) for the

source symbol, based on SW concept i.e. Sliding Window

concept the PE algorithm has been developed. Here length of

the buffer is BL. Then content of buffer can be moved from one

place. After this the last symbol is removed from buffer. To free

– cell the novel symbol is rewritten.

The probability of 1’s for binary sources are estimated by the

help of Krichevsky- Trofimov method:

𝓅̂𝑢+1 =
𝑛𝑜𝑢 +

1
2

𝐵𝐿 + 1

(4)

Before in window, encoding the symbol together with index 𝑖
no. of one’s is 𝑛𝑜𝑢.

When we make use of ISW there are many advantages and one

of them is the possibility of precision of the statistics change as

well as adaption which is fast. However, there is major

disadvantage of this algorithm that in encoder and decoder

memory the window has to be kept. The ISW technique has

been introduced to ignore this disadvantage. The window

content doesn’t require to store by the ISW technique. In place

of this the symbol counts from the source alphabet kept in the

window can be approximated,

For BS, we are considering the ISW technique. Index 𝑖, 𝑡𝑖 ∈
{0,1} in addition to 𝑠𝑖 ∈ {0,1} defines (after including 𝑠𝑖 , from

window it can be removed) as the source input’s symbol. Here

in place of final one, we consider that the unspecified position’s

symbol is separated at each time from window. Afterwards, in

windows the procedure randomized is re-computed.

PHASE 1: Eliminate the random symbol from window

𝑛𝑜𝑖+1 ← 𝑛𝑜𝑖 − 𝑡𝑖 (5)

Where, 𝑡𝑖 is denoted as the random value which can be

generated with the help of probabilities.

{
𝑃(𝑡𝑖 = 1) =

𝑛𝑜𝑖
𝐵𝐿

𝑃(𝑡𝑖 = 0) = 1 −
𝑛𝑜𝑖
𝐵𝐿

(6)

PHASE 2: Include novel symbol from source

𝑛𝑜𝑖+1 ← 𝑛𝑜𝑖+1 + 𝑠𝑖 (7)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

231 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

The unknown variable can be created for implementing ISW’s

algorithm. At corresponding stages of decoder and encoder this

kind of unknown variable takes equal value. To ignore unknown

variable there is a technique. In the algorithm at 1st stage, we

will replace average probabilistic including value 𝑡𝑖 . Encoding

symbol 𝑠𝑖 which can be represented in 2-stages after re-solving

the no. of 1’s.

PHASE 1: Eliminate the average number of 1’s from

window.

𝑛𝑜𝑖+1 ← 𝑛𝑜𝑖 −
𝑛𝑜𝑖
𝐵𝐿

(8)

PHASE 2: Include the novel symbol from source.

𝑛𝑜𝑖+1 ← 𝑛𝑜𝑖+1 + 𝑠𝑖 (9)

By adding the equation (8) and (9), the last rule of re-computing

the number of 1’s, which can be mentioned as follows:

𝑛𝑜𝑖+1 = (1 −
1

𝐵𝐿
) . 𝑛𝑜𝑖 + 𝑠𝑖 .

(10)

On the basis of eq. (10), the PE (Probability Estimation)

utilizing the ISW, which is been introduced in [28]. By

comparing with M-Coder, it provides improved efficiency

because of specific ISW length, which is chosen by the help of

statistical properties of the binary source. Nonetheless, it needs

multiplications that is insufficient for the implementation of

hardware.

3.3 Removal of Multiplication using Reasoning

Procedure

To eliminate the multiplication, we utilize the same reasoning,

which is described in [29]. After the procedure of re-

normalization, the register R fulfills the given inequality.

1

2
2𝑑−1 ≤ 𝑋 < 2𝑑−1

(11)

From (11), it can be follows the multiplication that can be

approximated in following way:

𝒯 = 𝑋 × 𝓅̂𝑖 ≈ 𝛼2
𝑑−1 × 𝓅̂𝑖 , (12)

Let’s multiply both sides of (9) by the help of 𝛼2𝑑−1, where

𝛼 ∈ [
1

2
, …… . .1].

𝑛𝑜𝑖+1
, = (1 −

1

𝐵𝐿
) . 𝑛𝑜𝑖

, + 𝛼2𝑑−1𝑠𝑖 ,
(13)

Where 𝑛𝑜𝑖
, = 𝛼2𝑑−1𝑛𝑜𝑖, lets define the 𝐵𝐿 = 2𝑏𝑙, where 𝑏𝑙 is

denoted as the integer +𝑣𝑒 value. After that the we get the Equ

(12) of integer rounding,

𝑛𝑜𝑖+1
, =

{

 𝑛𝑜𝑖

, + ⌊
2𝑑−12𝐵𝐿 − 𝑛𝑜𝑖

, + 2𝐵𝐿−1

2𝐵𝐿
⌋ , 𝑖𝑓𝑠𝑖 = 1

𝑛𝑜𝑖
, − ⌊

𝑛𝑜𝑖
, + 2𝐵𝐿−1

2𝐵𝐿
⌋ , 𝑖𝑓 𝑠𝑖 = 0

(14)

And,

𝒯 = 𝑋 × 𝓅̂𝑖 ≈ 𝛼2
𝑑−1 × 𝓅̂𝑖 =

𝑛𝑜𝑖
,

2𝐵𝐿

(15)

To develop the precision approximation, which is mentioned in

eq. (7), we quantize the interval such as [
1

2
2𝑑−1; 2𝑑−1] to 4

points:

{
32

24
2𝑑−1,

32 + 2

24
2𝑑−1,

32 + 4

24
2𝑑−1,

24 − 1

24
2𝑑−1}

(16)

To execute this, first, we compute the state 𝑛𝑜𝑖
,
 on the basis of

eq. (14) for𝛼 =
32

24
. Then estimate the multiplication in given

method below:

𝒯 = 𝑌 × 𝓅̂𝑖 ≈
𝑛𝑜𝑖

, + ∆ ×
1
22
𝑛𝑜𝑖

,

2𝐵𝐿
,𝑊ℎ𝑒𝑟𝑒 ∆

=
𝑋 − 2𝑑−2

2𝑑−4

(17)

Considering the estimation of multiplication can be precise for

𝓅̂𝑖 <
2

3
 [14], we should be work with 𝓅̂𝑖 ∈ [0, …… ,

1

2
] and

utilized the LPS and MPS. In this case, the value of MPS should

be varied.

𝑝̂𝑡 =
𝑛𝑜𝑖

,

2𝐵𝐿
1

𝛼2𝑑−1
> 0.5 𝑜𝑟 𝑛𝑜𝑖

, > 𝛼2𝑑−22𝐵𝐿 .
(18)

Thus, considering the equation (14), (17) and (18), the Fast-

ABRC (Adaptive-Binary Arithmetic Coding) is been

introduced in algorithm:

Algorithm 1: Encoding Method of Binary symbol 𝒔𝒕

S1: ∆← (𝑋 − 2𝑑−2) ≫ (𝑑 − 22)

S2: 𝒯 ← (𝑛𝑜 + ∆ × (𝑛𝑜 ≫ 2)) ≫ 𝑏𝑙

S3: 𝒯 ← 𝑚𝑎𝑥(1, 𝒯)

S4: 𝑋 ← 𝑋 − 𝒯

S5: 𝑖𝑓 𝑠𝑡 ≠ 𝑀𝑃𝑆 then

S6: 𝑌 ← 𝑌 + 𝑋

S7: 𝑋 ← 𝒯

S8: 𝑛𝑜 ← 𝑛𝑜 + ((𝛼2𝑑−12𝑏𝑙 − 𝑛𝑜 + 2𝑏𝑙−1) ≫ 𝑏𝑙)

S9: 𝑖𝑓 𝑛𝑜 > 𝛼2𝑑−22𝑏𝑙 then

S10: 𝑀𝑃𝑆 ← !𝑀𝑃𝑆:

S11: 𝑖𝑓 𝑛𝑜 > 𝛼2𝑑−22𝑏𝑙;

S12: End if

S13: else

S14: 𝑛𝑜 ← 𝑛𝑜 − ((𝑛𝑜 + 2𝑏𝑙−1) ≫ 𝑏𝑙)

S15: End if

S16: Call the Re-norm Procedure

Since, ∆∈ {0,1,2,3} the multiplication in line 2 of the Algo-1

that can be implemented on the basis of addition and conditional

operations.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

232 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

3.4 Architecture of Multiple-Encoding Symbols
For increasing the performance of the AC encoding, we

introduce the architecture of encoding which is able to coding

the multiple symbols per cycle. While preserving the same or

greater performance of coding, our architecture gives the

flexibility to balance the clock rate by changing the huge

number of coding per-cycle.

Figure 1 represents the block diagram of encoding architecture.

To encode the multiple symbols per-cycle, we match the 1-

symbol of encoding architecture and include the extra hardware

in every single pipeline phase. For encoding the 𝑛𝑜 number of

symbols per-cycle, we match the 1-symbol of encoding

architecture by 𝑛𝑜 time in the phases 0 and 1. As represented in

Figure 1, the 1-symbol of encoding unit in phases 0 and 1 adds

the CU (Context update), RO (Range Operation) and LO (Low-

Operation). For more than one symbol encoding, this useful unit

are matched. After encode the symbol, these value of low and

range are delivered to next useful unit. In stage 0, if multiple

encoding symbols will be utilizing the model of context

probability after the updating. Hence, the context data requires

the multiplexer to select the right one. In phase1, the number of

outcomes are produced by the help of LO, which is more

variable. For minimizing the complexity and workload oh phase

2, we integrate the all outcomes before passing the information

to phase 2.

In phase 2, we add the smaller number of input to help more

than one encoding symbol. The BPU (Byte Packing Unit) can

processes the 8-bit per cycle. For coding the 1 symbol, the usual

number of outcomes from the Phase 1 is less than the 1. As we

prolong the design for more than one symbol encoding, the

probability for total number of input is being larger than 23,

which is very small. Such type of exception only arises in some

times for every single video frame. Thus, we add the less buffer

in front of Phase-2. The input buffer controls the number of

input to 23-bits. As an outcome, utilizing the input buffer that

can maintain the similar structure of byte which packing the unit

in Phase 2.

Figure 1: Architecture of Encoding Symbol

Figure 2 represents the details of unit for outcome combination.

The outcome combination unit contains of adders and shifters.

There are two types of input (I/P) signals in figure 2. The signal

𝑂/𝑃 𝑏𝑖𝑡𝑠_𝑖 (𝑖 = 0,1, … . . , 𝑛𝑜) means the encoding outcome of

1-symbol and 𝑋_𝑠ℎ𝑖𝑓𝑡_𝑖 (𝑖 = 0,1, … . . , 𝑛𝑜) represents the

encoding outcome length. For integrating the outcome, which

can be produced by various low-operations, firstly, we shift the

prior encoding outcome to right place. Then we utilize the

address to integrate the all outcome bits. The outcome

combination of unit can output the total number of outcome bits

and the sequence of outcome bits.

Figure 2: Outcome of Combinational Unit

Figure 3: Block diagram of Input -BL (Buffer Limit)

Figure 3 represents the Block diagram of Input -LB (Limit

Buffer). There are 2 types of local registers, input signals and 2

output signals. The first register known as “Buffer” is

temporarily storing the residual bits if the prior length of

packing bits are larger than 23 bits. The second register

“𝑁𝑜_𝐵𝑢𝑓𝑓𝑒𝑟” is recording the number of bits which is stored

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

233 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

in register “Buffer”. If the buffer is empty, we integrate bits in

input bits and buffer. Then we verify if total number of bits are

larger than 23. As the total number of bits is larger than 23, then

we first choose 23 MSB bits of the integrated outcome as the

output and preserve the bits of residual in buffer. Then, directly

we pass the bits to byte packet unit.

░ 4. EXPERIMENTAL RESULTS
This unit represents outcomes of F-ABRC which we have

experimented as existing techniques compared with it. The

main aim of this paper is not to use multiplications and LUT in

ISW. After experimental result VDHL is used to write a code

and Xilinx-version of 14.7 is to simulate. We have compared

various parameters as well as constraint and some existing

techniques which we have to be supposed in every single case,

as we introduced F-ARBC is much better than existing

techniques. The results are divided into 2-section such as power

dissipation and device utilization.

4.1 Device Utilization

Below table 1 represents 1st column for various architecture and

2nd for technology, 3rd and 4th column represents logic cell (no.)

and memory. The number of logic cells is the best parameter

that has been utilized for various resources by the help of FPGA

technologies. The maximization in any image or video does not

affect hardware resources of F-ABRC at fixed number of block

size. The outcomes of F-ABRC is represented in table 1, when

FPGA compared with architectures and implementation takes

place. Our result i.e., outcomes doesn’t need LUT and gets

much better effectiveness of compression. Generally, to say F-

ABRC has been developed from the ISW of the binary sources

for the non-stationary, which gains trade off accuracy of 1’s

probability and speed of adaption because the use of different

window size. That’s why, it is more desirable for the standards

of non-standardized codes , image and video coding. As

compared to JPEG [34] AND SPIHT [32]. The JPEG is

approximately 2.8 more than F-ABRC in logic cell (no.). where

F-ABRC requires 10.6 times less than NLS [30]. Like we can

see as in MQ-Coder Dyer [39] MQ-Coder-Kai [40] MQ-Coder

[37] requires approximate 7.3, 1.6 8 and 16.5 times more logic

cell as compared to F-ABRC. More to say, ABRC [41], ABRC

[42] and ABRC [43] are 1.6, 1.7 and 1.3 times greater Fast-

ABRC. Below the table 1 represents comparison for different

coders.

░ Table 1: FPGA resources of introduced F-ABRC in

comparison with various implementations

Technology used LC (Logic Cell) Memory (in bytes

Kbit)

Virtex 2-4 10,125 432

Virtex 2000E 83,808 N/A

Virtex 6-LX75T 16,621 0

Virtex 5-LX330 22,996 8.3

Spartan 3-S200 2711 N/A

Spartan 3-S200 2385 N/A

Zynq Z-7020 1017 0

Virtex 4-LX80 15,692 4.17

Altera Stratix 761 2675

Altera Stratix 1596 8192

Virtex 4- XC4VL 6974 4269

Virtex 5- ML507 1544 552960

Virtex 4-LX80 1688 0

Altera Stratix 1296 0

Virtex 4- XC4VF 948 0

4.2 Power Dissipation
Table 2 gives power dissipation for proposed Fast-ABRC in

comparison to MQ-Coder, STS, CL-DCT and ABRC. In table-

2, the architecture whereas second, third and fourth row depicts

CL-DCT, MQ-Coder, STS, and the ABRC depicted by 1st row.

2nd row provides maximum operating frequency that is 182.75

MHz for F-ABRC (Fast-ABRC) and only 105.92 MHz for

ABRC. The third and fourth column provides the dynamic

power and the normalized power. So, it is very clear that the

dynamic power and the normalized power value is less than F-

ABRC in comparison to MQ-Coder, STS, CL-DCT and the

ABRC. The F-ABRC has less normalized power as 182.75,

2077 and 0.114 in comparison to t MQ-Coder, STS, CL-DCT

and the ABRC. Lastly, the density of power is represented in

5th column. The F-ABRC has slightly less than the other

models. So, our F-ABRC outperforms better than another

existing model.

░ Table 2: Power Dissipation for Proposed F-ABRC in

comparison to CL-DCT, MQ-Coder, STS and ABRC

Architecture MQ

Coder

CL-

DCT

STS ABRC F-

ABRC

Frequency

(MHz)

48.30 66.4 96 105.92 182.75

Dynamic

power (mW)

488.67 96 74 127.05 20.77

Normalized

power

(mW/MHz)

10.117 1.45 0.77 1.19 0.114

Power

density

(µW/(MHz ×

Logic

0.65 0.60 0.75 0.71 0.12

Below table 3, In comparison with ABRC and MQ-Coder

represents the power consumption. As in both phases, there is

need for lossless compression in real-time which is provided by

encoding cores. Here, the F-ABRC consumes 166.79, 20.77 and

187.56 m 5W, which is very less than in comparison to MQ-

Coder and ABRC; even the consumption of leakage power is

taken into the account. It’s essential to be noticed that our

presented models at the decoder side of F-ABRC are

implemented as an analogical.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

234 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

░ Table 3: Power consumption for proposed Fast-ABRC in

comparison to MQ-Coder and ABRC

Architecture MQ Coder

Kai [40]

ABRC [43] Fast-ABRC

Static power

(mW)

624.68 622.55 166.79

Dynamic

power (mW)

69.81 18.15 20.77

Total power

(mW)

694.49 640.7 187.56

4.3 Static and Dynamic Power
When there is not an action of the circuit then the power

consumed has been defined in place of the static power. It also

produces the leakage power as well as standby power. Here, we

have taken 2 other models like ABRC and MQ-Coder, whereas

the static power of MQ-Coder and ABRC achieves 624.68 and

622.55mW when compared with our F-ABRC as we can see

that our models outperform better than other two models.

Whenever there is an action of the circuit, the power consumed

is defined in place of dynamic power. The dynamic power can

be assumed as the main parameter while comparing with other

2 models. Here, we have taken 2 other models as MQ-Coder

and ABRC that possesses 69.81 and 18.15 mW when compared

with our F-ABRC as we can see that our models outperform

better than other two models

Figure 4: Comparison of Static and Dynamic power

4.4 Total Power
The total power can be defined as the combination of both static

and dynamic power. In figure-5, we can see that 2 existing

model such as MQ-Coder and ABRC achieves 694.49 and

640.7 mW, whereas our model achieves 187.56 mW, which

outperforms much better than the other 2 models.

Figure 5: Comparison of Total power

░ 5. CONCLUSION
In this paper, we have represented the multiplication free Fast-

ABRC. It performs superior compression-efficiency, very

quicker as compared to M-coder and don’t need LUT.

Basically, our proposed F-ABRC depends on ISW for binary

sources of non - stationary, additionally, these methods perform

trade-off among precision of PE and adaption speed because of

the utilization of various size of window. In device utilization,

we can see that FPGA required by F-ABRC is 2.8 times lower

than JPEG. As in NLS, which is 10 times more to F-ABRC,

similarly several methodologies such as MQ-Coder required

16.5, 1.68 and 7.3 times bigger than F-ABRC in logic cell.

Moreover, ABRC [41], ABRC [42] and ABRC [43] are 1.6, 1.7

and 1.3 times greater than Fast-ABRC. Bit-PP [31], BPS [33],

1DSPIHT [32] requires more amount of area in comparison to

the F-ABRC.

░ REFERENCES
[1] K. Holtz and E. Holtz, "Lossless data compression techniques,"

Proceedings of WESCON '94, Anaheim , CA, USA, 1994, pp. 392-397.

[2] Eswaran, K., &Gastpar, M. (2009). Foundations of Distributed Source

Coding. Distributed Source Coding, 3–31.

[3] D. Marpe and T. Wiegand, “A highly efficient multiplication-free binary

arithmetic coder and its application in video coding,” in Proc. IEEE Int.
Conf. Image Process., 2003, pp. 263–266.

[4] V. Sze and M. Budagavi, “Overview of the high efficiency video coding

(HEVC) standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, pp. 1649–1668, Dec. 2012.

0 100 200 300 400 500 600 700 800

MQ Coder Kai [40]

ABRC[43]

F-ABRC

Total Power (mW)

C
o

d
er

 T
ec

h
n

iq
u

e

Static power (mW)

0

200

400

600

800

MQ Coder Kai [40] ABRC[43] F-ABRC

Total power (mW)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 228-235 | e-ISSN: 2347-470X

235 Website: www.ijeer.forexjournal.co.in Multiplication free Fast-Adaptive Binary Range Coder

[5] Auli-Llinas, F. (2015). Context-Adaptive Binary Arithmetic Coding With

Fixed-Length Codewords. IEEE Transactions on Multimedia, 17(8),

1385–1390.

[6] V. Rosa, L. Max, S. Bampi,” High Performance Architectures for the
Arithmetic Encoder of the H.264/AVC CABAC Entropy Coder”,

Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE International

Conference.

[7] D. Chevion, E. D. Karnin, and E. Walach, “High efficiency, multiplication

free approximation of arithmetic coding,” in Proc. IEEE Data
Compression Conf., Apr. 1991, pp. 43–52.

[8] M. Slattery and J. Mitchell, “The Qx-coder,” IBM J. Res, Devel., vol. 42,

no. 6, pp. 767–784, Nov. 1998.

[9] E.Belyaev, A.Turlikov, K.Egiazarian and M.Gabbouj,”An efficient

adaptive binary arithmetic coder with low memory requirement,”IEEE

Journal of Selected Topics in Signal Processing. Special Issue on Video
Coding: HEVC and beyond, vol.7, iss.6, pp.1053–1061, 2013.

[10] G. Feygin, P. G. Gulak, and P. Chow, “Minimizing error and VLSI

complexity in the multiplication free approximation of arithmetic coding,”

in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 1993, pp.

118–127.

[11] L. Huynh, “Multiplication and division free adaptive arithmetic coding

techniques for bi-level images,” in Proc. IEEE Data Compression Conf.,
Snowbird, UT, Mar. 1994, pp. 264–273.

[12] P. G. Howard and J. S. Vitter, “Arithmetic coding for data compression,”

Proc. IEEE, vol. 82, pp. 857–865, June 1994.

[13] R. Arps, T. Truong, D. Lu, R. Pasco, and T. Friedman, “A multi-purpose

VLSI chip for adaptive data compression of bilevel images,” IBM J. Res.

Develop., vol. 32, no. 6, pp. 775–794, Nov. 1988.

[14] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B. Arps, “An

overview of the basic principles of the Q-coder adaptive binary arithmetic
coder,” IBM J. Res. Develop., vol. 32, no. 6, pp. 717–725, Nov. 1988.

[15] G. Feygin, P. G. Gulak, and P. Chow, “Architectural advances in the VLSI

implementation of arithmetic coding for binary image compression,” in

Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 19.

[16] W. Pennebaker and J. Mitchell, JPEG Still Image Data Compression

Standard. New York: Van Nostrand Reinhold, 1993.94, pp. 254–263.

[17] B. Fu and K. K. Parhi, “Two VLSI design advances in arithmetic coding,”

in Proc. ISCAS, Seattle, WA, Apr. 1995, pp. 1440–1443.

[18] E. Belyaev, K. Liu, M. Gabbouj and Y. Li, "An Efficient Adaptive Binary

Range Coder and Its VLSI Architecture," in IEEE Transactions on

Circuits and Systems for Video Technology, vol. 25, no. 8, pp. 1435-1446,

Aug. 2015.

[19] Shiann-RongKuang, Jer-Min Jou and Yuh-Lin Chen, "The design of an

adaptive on-line binary arithmetic-coding chip," in IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 45,

no. 7, pp. 693-706, July 1998.

[20] J. -. Lin and K. K. Parhi, "Parallelization of Context-Based Adaptive

Binary Arithmetic Coders," in IEEE Transactions on Signal Processing,
vol. 54, no. 10, pp. 3702-3711, Oct. 2006.

[21] B. Ryabko, “Imaginary sliding window as a tool for data compression“,

Problems of Information Transmission, pp. 156–163, 1996.

[22] D. Taubman and M. Marcellin, “JPEG2000: Image Compression,

Fundamentals, Standards, and Practice“, Kluwer Academic Publishers,

2002.

[23] Wheeler FW, Pearlman WA. SPIHT image compression without lists. In:

IEEE 2000 International Conference on Acoustics, Speech, and Signal
Processing; 5–9 June 2000; İstanbul, Turkey. New York, NY, USA: IEEE.

pp.2047-2050.

[24] Fry TW, Hauck SA. SPIHT image compression on FPGAs. IEEE T

CircSyst Vid 2005; 15: 1138-1147

[25] Kim S, Lee D, Kim JS, Lee HJ. A high-throughput hardware design of a

one-dimensional SPIHT algorithm. IEEET Multimedia 2016; 18: 392-

404.

[26] Jin Y, Lee HJ. A block-based pass-parallel SPIHT algorithm. IEEE T

CircSyst Vid 2012; 22: 1064-1075.

[27] Wallace G. The JPEG still picture compression standard. IEEE T

ConsumElectr 1992; 38: 18-34.

[28] Kaddachi ML, Soudani A, Lecuire V, Torki K, Makkaoui L, Moureaux

JM. Low power hardware-based image compression solution for wireless
camera sensor networks. Comp Stand Inter 2012; 34: 14-23.

[29] Rafi LONE, Mohd& HAKIM, Najeeb-ud-Din. (2018). FPGA

implementation of a low-power and area-efficient state-table-based

compression algorithm for DSLR cameras. TURKISH JOURNAL OF

ELECTRICAL ENGINEERING & COMPUTER SCIENCES. 26. 2928-
2943. 10.3906/elk-1804-208.

[30] K.Liu, Y.Zhou, Y. Song Li, J. Feng Ma, “A high performance MQ

encoder architecture in JPEG2000“, INTEGRATION, the VLSI journal,

vol.43, no.3, pp.305–317, 2010.

[31] I.Shcherbakov, N.Wehn, “A Parallel Adaptive Range Coding

Compressor: Algorithm, FPGA Prototype, Evaluation“, Data
Compression Conference, 2012.

© 2023 by the Sunkara Teena Mrudula, K.E.

Srinivasa Murthy and M.N. Giri Prasad.

Submitted for possible open access publication

under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

