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░ ABSTRACT- Performance of dense wireless sensor networks is often degraded due to communication interference and 

time synchronization issues. Existing machine learning & deep learning models that propose bioinspired & pre-emptive packet-

analysis solutions for these tasks either have high complexity, or high deployment costs. Moreover, these models cannot be scaled 

for heterogeneous node & traffic types, which limits their applicability when applied to real-time scenarios. To overcome these 

issues, this text proposes design of an interference-aware routing model with time synchronization capabilities for dense wireless 

sensor network deployments. The network initially collects temporal clock states & packet delivery performance of different nodes 

on heterogeneous traffic scenarios. These traffic patterns are converted into frequency, entropy, Gabor, and Wavelet components. 

The converted components are used to train an ensemble set of Naïve Bayes (NB), k Nearest Neighbour (kNN), Multilayer 

Perceptron (MLP), and Support Vector Machine (SVM) classifiers. These classifiers assist in identification of optimal clock 

deviations and set of routing paths. These routing paths are further fine-tuned via use of a Bacterial Foraging Optimization (BFO) 

Model, which assists in identification of interference-aware paths. The BFO Model uses a temporal fitness function that fuses 

throughput, communication delay, energy levels, and packet delivery performance for different set of contextual communications. 

Due to which, the model is able to showcase lower end-to-end delay, higher throughput, lower energy consumption, and higher 

packet delivery performance when compared with existing routing methods under high density nodes & heterogeneous network 

scenarios. The model showcases 99% PDR, 18.3% lower delay, 19.5% higher energy efficiency and 10.4% lower delay levels when 

compared with existing methods. 
 

General Terms: Wireless sensor network, routing model. 
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░ 1. INTRODUCTION   
The term "time synchronization" is used to describe the process 

of adjusting the clocks of all the devices that are connected to a 

wireless network so that they are set to the same point in time. 

Systems such as GPS are very reliant on accurate time data; 

hence, it is essential that this information be accurate in order to 

keep everyone on the same page and reduce the risk of 

communication problems via use of delay- and interference-

aware routing (DIAR) [1, 2, 3, 4]. Tools such as network time 

protocols (NTP), precision time protocols, and global 

positioning systems (GPS) may be used to synchronize time 

(PTP). Therefore, time synchronization is required for the 

continuing operation of appropriate data transmission and 

reception in order to avoid any disruptions via segment routing 

to wireless mesh networks (SR-WMN) [5, 6]. A direct outcome 

of ensuring that all components of a network are functioning on 

the same time scale is the elimination of communication 

mistakes and delays. This is of the utmost importance when 

working with material that is time-sensitive, such as streaming 

music or video sets. There are several methods that are used in 

wireless networks to synchronize the clocks of the devices that 

are connected to the networks [7, 8, 9]. One of these methods is 

the Global Positioning System (GPS), which uses signals from 

satellites to deliver accurate time to the devices that are 

connected to the network. Second, Network Time Protocol, 

sometimes known as NTP, is a technique that is commonly used 

to synchronize clocks across different networks. It does this by 

using a server-client configuration to send time information out 

across a network. PTP, which stands for Precision Time 

Protocol, is a protocol that was established to perfectly 

synchronize the time in industrial and automation networks. It 

is accurate to within microseconds, and it is capable of 

supporting wired as well as wireless communications [10, 11, 

12, 13]. 
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The ability to send data between nodes in a wireless network 

that is both accurate and dependable is made possible by time 

synchronization, which is an essential component of an efficient 

wireless network [14, 15, 16]. This chaining together of 

individual components is typical in interference-aware routing 

schemes [17, 18, 19, 20]. Any situation in which there is a 

deterioration or interruption of the signals that are being 

transferred between devices in wireless networks is referred to 

as communication interference. This may result in inaccuracy 

or the loss of data. There are a number of elements, some of 

which include, but are not limited to, Walls, flooring, and even 

furniture have the potential to obstruct or weaken the intensity 

of signals that are moving through an establishment. Second, 

electromagnetic interference from other electronic equipment, 

such as radios, TVs, and microwave ovens, may sometimes 

interfere with wireless connections and make them less reliable. 

Third, if several wireless devices are using the same frequency 

band, the signal strength may be diminished due to interference 

caused by crosstalk [21, 22, 23]. The strength of a signal 

weakens with increasing distance, and there is a possibility that 

communication may break down as a result of the power 

constraints imposed by the transmitting apparatus [24, 25, 26]. 

Interference may also be generated when many wireless 

networks are located in close proximity to one another, as is 

possible in places with a high population density. This 

phenomenon is referred to as "interference" from other 

networks [27, 28, 29, 30]. Interference may slow down the 

speeds at which data is sent, result in mistakes during data 

transmission, and possibly result in the loss of the signal 

entirely. Wireless networks often use strategies such as channel 

selection, frequency hopping, and error correction in order to 

reduce the likelihood of interference and ensure that messages 

continue to flow without a hitch via Kalman Filter (KF) like 

models that can be used for time synchronization in networks 

[31, 32, 33, 34]. 
 

Thus, based on this analysis it can be suggested that the 

bioinspired and pre-emptive packet-analysis solutions supplied 

by machine learning and deep learning models are either too 

hard or too costly to implement. These sorts of models are not 

particularly effective in real-time applications due to the fact 

that they cannot be scaled to accommodate a variety of node 

types and traffic patterns. In the next section of this article, we 

will present our proposal for the creation of a time-

synchronized, interference-aware routing model that may find 

extensive use in wireless sensor networks. In the 3rd section of 

the paper, the model was validated by comparing the outcomes 

it produced across a variety of communication contexts to those 

produced by well-established methods. This article concludes 

with some network-centric observations on the proposed model 

and some advice on how to make it even better for application 

in actual settings. These observations and recommendations are 

provided as a conclusion to this paper and can be used for 

different network scenarios. 
 

1.1 Contributions of the Paper  

The paper makes several contributions to the field: 

1. Novel approach: The paper proposes a novel approach to 

address the performance degradation issues in dense 

wireless sensor networks caused by communication 

interference and time synchronization problems. By 

combining interference-aware routing and time 

synchronization capabilities, the proposed model offers a 

comprehensive solution to optimize network performance 

in real-time scenarios. 

2. Ensemble of classifiers: The paper introduces an ensemble 

set of machine learning classifiers, including Naïve Bayes, 

k Nearest Neighbour (kNN), Multilayer Perceptron, and 

Support Vector Machine, to identify optimal clock 

deviations and routing paths. This ensemble approach 

enhances the accuracy and robustness of the routing 

decisions, enabling effective management of 

heterogeneous node and traffic types. 

3. Conversion of traffic patterns: The paper converts temporal 

traffic patterns into frequency, entropy, Gabor, and 

Wavelet components. This conversion allows for a more 

comprehensive analysis of the traffic characteristics, 

facilitating more informed decision-making in routing and 

interference mitigation. 

Overall, the paper's contributions lie in the development of a 

comprehensive interference-aware routing model with time 

synchronization capabilities that addresses the limitations of 

existing models in terms of complexity, deployment costs, and 

scalability for heterogeneous networks. By leveraging machine 

learning, ensemble classifiers, and a BFO model, the proposed 

approach offers a more efficient and effective solution for 

managing dense wireless sensor networks in real-time 

scenarios. 
 

1.2 Research Gaps 
The major research gaps in the existing system, which the paper 

aims to address, can include the following: 

1. Complexity and deployment costs: Existing machine 

learning and deep learning models that propose bioinspired 

and pre-emptive packet-analysis solutions for interference 

and time synchronization in wireless sensor networks often 

suffer from high complexity and deployment costs. This 

can limit their practical applicability and scalability in real-

world scenarios. The paper aims to fill this gap by 

proposing a model that is less complex and more cost-

effective, making it more accessible and feasible for 

deployment. 

2. Limited scalability for heterogeneous node and traffic 

types: Many existing models lack the ability to scale 

effectively for heterogeneous node and traffic types in 

wireless sensor networks. This restricts their applicability 

in real-time scenarios where networks consist of diverse 

nodes and experience varying traffic patterns. The paper 

aims to address this gap by designing a model that can 

handle heterogeneous node and traffic types, improving its 

versatility and usefulness in real-world deployments. 

3. Lack of interference-aware routing: Interference is a 

significant challenge in dense wireless sensor network 

deployments, and existing models often do not adequately 

consider interference in their routing decisions. This gap 

can lead to suboptimal routing paths and degraded network 

performance. The paper fills this gap by proposing an 

interference-aware routing model that takes interference 

https://www.ijeer.forexjournal.co.in/
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into account and identifies optimal routing paths while 

considering interference mitigation. 
 

By identifying and addressing these research gaps, the paper 

contributes to advancing the field of wireless sensor networks 

by proposing a model that offers a more accessible, scalable, 

interference-aware, and time-synchronized solution for dense 

network deployments with heterogeneous node and traffic 

types. 

 

░ 2. DESIGN OF AN INTERFERENCE-

AWARE ROUTING MODEL WITH TIME 

SYNCHRONIZATION CAPABILITIES 

FOR DENSE WIRELESS SENSOR 

NETWORK DEPLOYMENTS 
As per the review of interference-aware routing models, it was 

observed that existing deep learning and machine learning 

models that suggest bioinspired and proactive packet analysis 

approaches for these problems either have high deployment 

costs or high levels of complexity. These models also have 

limited applicability in real-time scenarios due to their inability 

to scale for heterogeneous node & traffic types. 

 

 
Figure 1: Design of the proposed time-synchronization & 

interference-aware routing process 
 

The design of an interference-aware routing model with time 

synchronization capabilities for dense wireless sensor network 

deployments is suggested in this text as a solution to these 

problems. As per figure 1, it can be observed that the network 

first gathers the temporal clock states and packet delivery 

capabilities of various nodes under various traffic scenarios. 

These traffic patterns are transformed into Gabor, Wavelet, 

Frequency, and Entropy components. An ensemble of 

classifiers, including Naive Bayes (NB), k Nearest Neighbour 

(kNN), Multilayer Perceptron (MLP), and Support Vector 

Machine (SVM), are trained using the converted components. 

These classifiers aid in identifying the best routing paths and 

clock deviations. Utilizing a Bacterial Foraging Optimization 

(BFO) Model, which aids in the identification of interference-

aware paths, further refines these routing paths. For various sets 

of contextual communications, the BFO Model employs a 

temporal fitness function that fuses throughput, communication 

delay, energy levels, and packet delivery performance under 

real-time scenarios. 
 

The model initially collects the following information sets, 

 Instantaneous Node Information, 

o Approximate Node locations 

o Energy levels for the Nodes 

o Internal clock offsets for the Nodes 

 Network Information Sets, 

o Data rate of the network 

o Received Signal Strength Indicator (RSSI) levels 

o Link Quality between Nodes 

 Interference Information Sets, 

o Packet Delivery Ratio of temporal communications 

o Throughput during temporal communications 
 

These information sets are converted into multi-domain features 

via a combination of Fourier (for Frequency Patterns) estimated 

via equation 1, Cosine (for Entropy Patterns) estimated via 

equation 2, Convolutional features that are estimated via 

equations 3 & 4, Gabor components which are estimated via 

equation 5, and Wavelet components which are estimated via 

equations 6 & 7 as follows, 
 

𝐷𝐹𝑇𝑖 = ∑ 𝑥𝑗 ∗ [𝑐𝑜𝑠 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓

) − √−1

𝑁𝑓

𝑗=1

∗ 𝑠𝑖𝑛 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓

)] …                          (1) 

 

Where, 𝑥 represents a combination of the Network, Node and 

Interference data samples.  
 

𝐷𝐶𝑇𝑖 =
1

√2 ∗ 𝑁𝑓

∗ 𝑥𝑖 ∑ 𝑥𝑗

𝑁𝑓

𝑗=1

∗ cos [
√−1 ∗ (2 ∗ 𝑖 + 1) ∗ 𝜋

2 ∗ 𝑁𝑓

] …           (2) 

𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖
= ∑ 𝑥(𝑖 − 𝑎) ∗ 𝐿𝑅𝑒𝐿𝑈 (

𝑚 + 2𝑎

2
) …            (3)

𝑚
2

𝑎=−
𝑚
2

 

 

https://www.ijeer.forexjournal.co.in/


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 11, Issue 2 | Pages 623-630 | e-ISSN: 2347-470X 

 

626 Website: www.ijeer.forexjournal.co.in        IARMTS: Design of an Interference-Aware Routing Model 

Where, 𝑚 & 𝑎 represents dimensions of window & strides for 

different convolutional configurations, while 𝐿𝑅𝑒𝐿𝑈  is an 

activation function which is estimated via equation 4 as follows, 
 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0 , 𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑥  (4) 
 

Similarly, the Gabor components are estimated as per equation 

5, 
 

𝐺(𝑥, 𝑦)𝑠 = 𝑒
−𝑥`2+𝜕2∗𝑦′2

2∗∅2 ∗ cos (2 ∗
𝑝𝑖

𝜆
∗ 𝑥′) …                      (5) 

 

Where, 𝑥 & 𝑦  are the parameter index & parameter values, 

while 𝜕, ∅ & 𝜆  represents the Angular & Wavelength 

components of the Gabor process. 
 

𝑊𝑎 =
𝑥𝑖 + 𝑥𝑖+1

2
…                                                                    (6) 

 

𝑊𝑑 =
𝑥𝑖 − 𝑥𝑖+1

2
…                                                                   (7) 

 

Where, 𝑊𝑎 & 𝑊𝑑  represents the approximate & diagonal 

Wavelet components. All these components are processed by an 

ensemble classifier that combines Naïve Bayes (NB), k Nearest 

Neighbours (kNN), Support Vector Machine (SVM), and 

Multilayer Perceptron (MLP), which assist in identification of 

clock duty cycle deviations and corresponding routing paths. 

The clock deviation levels & routing paths used between 

previous source & destination nodes are used to train these 

classifiers. The configuration used for these classifiers can be 

observed from table 1 as follows 
 

░ Table 1: Parameters used for different classifiers 
 

Classifier used for 

clock deviation 

analysis 

Parameters used for the classifiers 

Naïve Bayes (NB) Priors (P) are estimated as per equation 8, 

𝑃 =

(∑ (
𝑥𝑖 −

∑
𝑥𝑗

𝑁
𝑁𝑐
𝑗=1

)

2
𝑁𝑐
𝑖=1 )

𝑁𝑐
      (8) 

Where, 𝑁𝑐 represents number of previous 

communications, while 𝑥  are the 

extracted vector of features. 

Smoothing Value (𝑆𝑣), is set to 𝐿𝑟, as per 

the BFO routing process. 

Support Vector 

Machine (SVM) 
Regularization constant (𝐶 =

1

𝑁𝑐
) 

Tolerance of error 𝑡𝑜𝑙 = 𝐿𝑟 

k Nearest 

Neighbours (kNN) 

k = 1, for feature-to-feature classification 

operations 

 

Multilayer 

Perceptron (MLP) 

Total Hidden Neurons are estimated as 

per equation 9, 

𝑁(𝐻𝑖𝑑𝑑𝑒𝑛) = 𝑁𝑐 ∗ 𝐿𝑟 ∗ 𝑁𝑎      (9) 

Where, 𝑁𝑎 represents average number of 

nodes in the network during previous 

communications. 

 

Once individual classifiers are trained, then the output class is 

estimated for different routes & clock deviations via equation 

10, 
 

𝑐𝑜𝑢𝑡 = 𝑐(𝑁𝐵) ∗ 𝐴(𝑁𝐵) + 𝑐(𝑘𝑁𝑁) ∗ 𝐴(𝑘𝑁𝑁) + 𝑐(𝑀𝐿𝑃)
∗ 𝐴(𝑀𝐿𝑃) + 𝑐(𝑆𝑉𝑀) ∗ 𝐴(𝑆𝑉𝑀)       (10) 

 

This assists in identification of initial routes between nodes, and 

their corresponding clock deviation levels. These routes & 

deviation levels are tuned by a Bacterial Foraging Optimizer 

(BFO) that works as per the following operations, 
 

 A set of iterations ( 𝑁𝐼 ), set of Bacterium ( 𝑁𝐵 ), and 

learning rate of bacterium (𝐿𝑟) were initialized for setting 

up the optimization process 

 Reference distance between source (s) & destination (d) 

was evaluated via equation 10, 
 

𝑑𝑟𝑒𝑓 = √(𝑥𝑠 − 𝑥𝑑)2 − (𝑦𝑠 − 𝑦𝑑)2 …                                    (10) 
 

Where, 𝑥 & 𝑦 represents locations of these nodes. 
 

 All nodes that satisfy equation 11 were selected and their 

routes were shortlisted from the classified routes, 

 

𝑑(𝑠𝑟𝑐, 𝑛𝑜𝑑𝑒) < 𝑑𝑟𝑒𝑓  & 𝑑(𝑛𝑜𝑑𝑒, 𝑑𝑒𝑠𝑡) < 𝑑𝑟𝑒𝑓 …           (11) 
 

Where, 𝑑(𝑖, 𝑗)  is the Euclidean distance between nodes 𝑖 & 𝑗 

that can be placed stochastically for real-time scenarios. 

 From this set of routes, a route was stochastically selected 

via equation 12, 

 

𝑁𝑠𝑒𝑙 = 𝐿𝑠𝑒𝑙[𝑆𝑇𝑂𝐶𝐻(1, 𝑆𝑖𝑧𝑒(𝐿𝑠𝑒𝑙))] …                               (12) 
 

Where, 𝐿𝑠𝑒𝑙  is a list of selected nodes that are classified by the 

ensemble classification process. 
 

 Due to removal of nodes due to condition 11, the selected 

route might have communication gaps, which are filled by 

nodes that satisfy equation 11, thereby maintaining higher 

connectivity levels. 

 Based on the selected path, calculate bacterium fitness via 

equation 13, 
 

𝑓𝑏 =
1

𝑁𝑠𝑒𝑙 − 1
∑ [

𝑑𝑟𝑒𝑓

𝑑𝑖+1,𝑖

+
𝐸𝑖

𝑀𝑎𝑥(𝐸)
+

𝑇𝐻𝑅(𝑖)

𝑀𝑎𝑥(𝑇𝐻𝑅)

𝑁𝑠𝑒𝑙−1

𝑖=1

+
𝑃𝐷𝑅(𝑖)

100
] …                                  (13) 

 

Where, 𝑑, 𝐸, 𝑇𝐻𝑅 & 𝑃𝐷𝑅  represents distance between nodes, 

energy levels, through put and packet delivery ratio of the 

selected nodes. 

 Similar to this route, 𝑁𝐵  different routes were selected, 

their fitness was estimated, and a fitness threshold was 

evaluated via equation 14, 
 

𝑓𝑡ℎ = ∑ 𝑓𝑏𝑖
∗

𝐿𝑏

𝑁𝐵

𝑁𝐵

𝑖=1

…                                                    (14) 
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 Bacterium with 𝑓 > 𝑓𝑡ℎ  were passed directly to the next 

iteration, while others are discarded and reproduced in the 

next set of iterations. 
 

After repeating this process for 𝑁𝐼  iterations, Bacteria with 

highest fitness levels was selected, and used for routing 

operations. Due to which, the clock deviations were optimized, 

and interference-aware routing was deployed in the network, 

even for larger network scenarios. Performance of this model 

was evaluated on different network scenarios, and compared 

with existing models in the next section of this text. 

 

░ 3. STATISTICAL ANALYSIS  
This paper proposed the design of an interference-aware routing 

model with time synchronisation capabilities for dense wireless 

sensor network deployments to address scalability and 

communication issues. The network first gathers the temporal 

clock states and packet delivery capabilities of various nodes 

under various traffic scenarios. These traffic patterns are 

transformed into Gabor, Wavelet, Frequency, and Entropy 

components. An ensemble of classifiers, including Naive Bayes 

(NB), k Nearest Neighbor (kNN), Multilayer Perceptron 

(MLP), and Support Vector Machine (SVM), are trained using 

the converted components. These classifiers aid in identifying 

the best routing paths and clock deviations. Utilizing a Bacterial 

Foraging Optimization (BFO) Model, which aids in the 

identification of interference-aware paths, further refines these 

routing paths. For various sets of contextual communications, 

the BFO Model employs a temporal fitness function that fuses 

throughput, communication delay, energy levels, and packet 

delivery performance. As a result, the model, when compared 

to existing routing techniques, can demonstrate lower end-to-

end delay, higher throughput, lower energy consumption, and 

higher packet delivery performance in high density node & 

heterogeneous network scenarios. Performance of this model 

was tested on Network Simulator-2 (NS2.34) under the 

conditions as depicted in table 2, 
 

░ Table 2: Configuration of the network & nodes for 

simulation purposes 
 

Parametric Network Settings Value for the settings 

Communication Model used 

during simulations 

Multiple Ray Communication 

Antennas 

MAC Model 802.16a 

Queuing Model Priority Queuing with Drop Tails 

Network Nodes 2500 

Routing protocol used to 

perform time synchronizations 

DSR (Dynamic State Routing) 

Dimensions of the Network 1.5km x 1.5km 

Energy Model Used Idle: 0.05 mW 

Reception: 1 mW 

Transmission: 2 mW 

Transition: 0.5 mW 

Initial: 1000 mW 

 

Based on these parameters, the network was simulated with 

varying number of communications. For each of these 

communications, end-to-end delay (D), energy consumed (E), 

throughput (THR) and Packet Delivery Ratio (PDR) were 

estimated, and compared with DAIR [3], SR WMN [6], and KF 

[33], which are recently proposed time synchronization models. 

This performance was evaluated w.r.t. different Number of 

Communication (NC), with 10% nodes out of clock 

synchronization, and can be observed from figure 2 as follows 

 

 
 

Figure 2: Average communication delay under 10% clock 

synchronization scenarios 
 

As per this evaluation, and its visualization in figure 2, it can be 

observed that even under large-scale scenarios and multiple 

synchronization issues, the proposed model is capable of 

reducing the delay needed for communication by 10.5% when 

compared with DAIR [3], 14.9% when compared with SR 

WMN [6] and 16.2% when compared with KF [33] under 

different communications. This delay is reduced due to use of 

multi-domain features for identification of clock deviations, and 

use of BFO for selection of optimal routing paths. Due to which, 

the model is useful for a wide variety of high-speed 

communication scenarios. Similarly, the energy consumed 

during these communications can be observed from figure 3 as 

follows, 
 

 
 

Figure 3: Average communication energy needed under 10% clock 

synchronization scenarios 
 

As per this evaluation, and its visualization in figure 3, it can be 

observed that even under large-scale scenarios and multiple 

synchronization issues, the proposed model is capable of 

reducing the energy needed for communication by 19.4% when 

compared with DAIR [3], 26.2% when compared with SR 

WMN [6] and 23.5% when compared with KF [33] under 

different communications. This energy consumption is reduced 
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due to use of multi-domain features for identification of clock 

deviations, and use of residual energy for selection of optimal 

routing paths. Due to which, the model is useful for energy-

aware communication scenarios. Similarly, the throughput 

obtained during these communications can be observed from 

figure 4 as follows; 
 

 
 

Figure 4: Average communication throughput needed under 10% 

clock synchronization scenarios 
 

As per this evaluation, and its visualization in figure 4, it can be 

observed that the proposed model is capable of improving the 

throughput obtained during communication by 8.3% when 

compared with DAIR [3], 8.5% when compared with SR WMN 

[6] and 1.9% when compared with KF [33] under different 

communications. This throughput is improved due to use of 

ensemble classification for identification of clock deviations, 

and use of BFO that incorporates temporal throughput for 

selection of optimal routing paths. Due to which, the model is 

useful for high data rate communication scenarios. Similarly, 

the PDR obtained during these communications can be 

observed from figure 5. 
 

As per this evaluation, and its visualization in figure 5, it can be 

observed that the proposed model is capable of improving the 

PDR obtained during communication by 5.5% when compared 

with DAIR [3], 6.5% when compared with SR WMN [6] and 

8.3% when compared with KF [33] under different 

communications. This PDR is improved due to use of ensemble 

classification for identification of clock deviations, and use of 

BFO that incorporates temporal PDR for selection of optimal 

routing paths. Due to which, the model is useful for high 

efficiency communication scenarios.  

 

 
 

Figure 5: Node average communication PDR achieved under 10% 

clock synchronization scenarios 

░ 4. CONCLUSION AND FUTURE 

SCOPE 
This paper proposed the design of an interference-aware routing 

model with time synchronization capabilities for dense wireless 

sensor network deployments to address scalability and 

communication issues. The network first gathers the temporal 

clock states and packet delivery capabilities of various nodes 

under various traffic scenarios. These traffic patterns are 

transformed into Gabor, Wavelet, Frequency, and Entropy 

components. An ensemble of classifiers, including Naive Bayes 

(NB), k Nearest Neighbor (kNN), Multilayer Perceptron 

(MLP), and Support Vector Machine (SVM), are trained using 

the converted components. These classifiers aid in identifying 

the best routing paths and clock deviations. Utilizing a Bacterial 

Foraging Optimization (BFO) Model, which aids in the 

identification of interference-aware paths, further refines these 

routing paths. For various sets of contextual communications, 

the BFO Model employs a temporal fitness function that fuses 

throughput, communication delay, energy levels, and packet 

delivery performance. In terms of communication speed, it was 

observed that even under large-scale scenarios and multiple 

synchronization issues, the proposed model is capable of 

reducing the delay needed for communication by 10.5% when 

compared with DAIR [3], 14.9% when compared with SR 

WMN [6] and 16.2% when compared with KF [33] under 

different communications. This delay is reduced due to use of 

multi-domain features for identification of clock deviations, and 

use of BFO for selection of optimal routing paths. Due to which, 

the model is useful for a wide variety of high-speed 

communication scenarios.  
 

In terms of energy efficiency, it was observed that even under 

large-scale scenarios and multiple synchronization issues, the 

proposed model is capable of reducing the energy needed for 

communication by 19.4% when compared with DAIR [3], 

26.2% when compared with SR WMN [6] and 23.5% when 

compared with KF [33] under different communications. This 

energy consumption is reduced due to use of multi-domain 

features for identification of clock deviations, and use of 

residual energy for selection of optimal routing paths. While, in 

terms of data rates, it was observed that the proposed model is 

capable of improving the throughput obtained during 

communication by 8.3% when compared with DAIR [3], 8.5% 

when compared with SR WMN [6] and 1.9% when compared 

with KF [33] under different communications. This throughput 

is improved due to use of ensemble classification for 

identification of clock deviations, and use of BFO that 

incorporates temporal throughput for selection of optimal 

routing paths. When PDR was estimated, it was observed that 

the proposed model is capable of improving the PDR obtained 

during communication by 5.5% when compared with DAIR [3], 

6.5% when compared with SR WMN [6] and 8.3% when 

compared with KF [33] under different communications. This 

PDR is improved due to use of ensemble classification for 

identification of clock deviations, and use of BFO that 

incorporates temporal PDR for selection of optimal routing 

paths. Due to which, the model is useful for high efficiency 

communication scenarios. In future, performance of the 
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proposed model must be validated under large-scale scenarios, 

and can be improved via integration of multiple bioinspired 

models for pre-emption of clock deviation, and interferences. 
  
Ethical & Practical Implications 

The widespread adoption of the proposed interference-aware 

routing model with time synchronization capabilities for dense 

wireless sensor network deployments could have several ethical 

and social implications. Some potential implications are: 
 

1. Privacy concerns: Collecting temporal clock states and 

packet delivery performance of different nodes in the 

network may raise privacy concerns. The data collected 

could potentially contain sensitive information about 

individuals or organizations, and its misuse or 

unauthorized access could lead to privacy breaches. 

Proper data protection and anonymization measures 

should be implemented to address these concerns. 

2. Data security: As the proposed model involves collecting 

and analyzing network data, it becomes important to 

ensure the security of the data. Unauthorized access to the 

collected data or vulnerabilities in the model's 

implementation could result in data breaches, leading to 

potential exploitation or disruption of the sensor network. 

3. Bias and fairness: Machine learning models, such as 

Naïve Bayes, k Nearest Neighbour, Multilayer Perceptron, 

and Support Vector Machine classifiers, rely on training 

data to make predictions and decisions. If the training data 

is biased or unrepresentative, it could introduce unfairness 

or discrimination in the routing decisions made by the 

model. Care should be taken to ensure the fairness of the 

model and mitigate biases in the training data. 

4. Dependence on technology: Widespread adoption of the 

proposed model could lead to a heavy reliance on 

technology for network management and optimization. 

While this can bring benefits, it also raises concerns about 

potential system failures or vulnerabilities. It is crucial to 

have backup systems and contingency plans in place to 

mitigate the impact of any technical failures. 
 

To address these ethical and social implications, it is crucial to 

incorporate principles such as transparency, accountability, 

fairness, privacy protection, and sustainability in the design, 

implementation, and governance of the proposed model. 

Regulatory frameworks and guidelines should be established 

to ensure responsible deployment and usage of the technology, 

considering the potential implications on individuals, 

communities, and the environments. 
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