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░ ABSTRACT- The extensive review of the literature evaluation on predictive maintenance (PdM) in this work focuses on 

system designs, goals, and methodologies. In the business world, any equipment or system failures or unscheduled downtime would 

negatively affect or stop an organization's key operations, possibly incurring heavy fines and irreparable reputational damage. 

Traditional maintenance methods now in use are plagued by a variety of limitations and preconceptions, including expensive 

preventive maintenance costs, insufficient or incorrect mathematical deterioration procedures, and manual feature extraction. The 

PdM maintenance framework is suggested as a new method of maintenance framework to prevent any damage only after the 

analytical analysis shows specific malfunctions or breakdowns, which is in line with the growth of digital building and the 

advancement of the Internet of Things (IoT), and Artificial Intelligence (AI), and so on. We also present an overview of the three 

main types of fault diagnosis and prognosis methods used in PdM mechanisms: scientific, conventional Machine Learning (ML), 

and deep learning (DL). While offering a thorough assessment of DL-dependent techniques, we make a quick overview of the 

knowledge-based and conventional ML-dependent strategies used in various components or systems. Eventually, significant 

possibilities for further study are discussed. 
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░ 1. INTRODUCTION   
A firm's capacity to compete in cheap price, excellent quality, 

and efficiency is significantly influenced by servicing as a 

critical business operation with its major effect on expenses and 

reliability. An organization's main operations would be harmed 

or interrupted by any unscheduled downtime of industrial 

equipment, apparatus, or gadgets, possibly incurring heavy 

fines and irreparable reputational damage. For example, in 

2013, Amazon had just 49 mins of the outage, which resulted in 

$4 million in missed revenue for the company. Following a 

market survey by the Ponemon Institute, firms lost an average 

of $138,000 per hr as a result of data centre outages [1] 

According to some reports, the operation and maintenance 

(O&M) expenses for wind farms vary from 19% to 28% of the 

entire income from the power produced, and the maintenance 

expenses in the oil and gas industry vary from 20% to 65% of 

the overall price of manufacturing. Consequently, to avoid 

power failures, obtain greater reliability, and save running 

expenses, businesses must design an effective maintenance 

program [2]. (Bevilacqua & Braglia, 2000). 

Reactive maintenance (RM), preventive maintenance (PM), and 

PdM are the three types of maintenance programs that have 

evolved. Examples of these technologies include the IoT, 

sensing technology, AI, and so on (See figure 1). RM typically 

produces significant lag and expensive reactive repair 

expenses because it is only used to return the machinery to its 

initial working condition after a problem has occurred. 
 

  

Fig.1: Maintenance plans of RM, PM, and PdM 

Although the idea of PdM has been around for a while, it has 

only gradually seemed to be competent and affordable enough 

to bring PdM broadly available [3]. Condition monitoring, fault 

diagnosis and prognosis, and maintenance schedules are 

frequently included in PdM. The advanced potency of enabling 
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technologies includes the ability to track and anticipate the 

advancement of faults, recognize, separate, and distinguish 

precursor and latent faults in equipment and machines, and 

elements, as well as automate or assist decision-making to 

create maintenance schedules [4]. Three essential issues should 

be carefully taken into account from the perspective of PdM: 
 

(1) PdM frameworks: With the introduction of Industry 4.0 

(I4.0), various approaches, such as enhanced sensing methods, 

cloud computing, etc., have been used in industrial facilities. 

PdM structures must: (a) be compliant with 

different manufacturing specifications, (b) be simple to 

incorporate with the developing or forthcoming approaches, 

and (c) achieve the fundamental needs of PdM, such as data 

gathering, fault diagnosis and prognosis, etc., to develop 

productive, precise, and ubiquitous maintenance systems by 

adopting these emerging technologies.  
 

2) The goals of PdM: Two common goals for PdM methods are 

cost and reliability. Insulation is frequently used for these 

diverse reasons, some of which may contradict. For multi-

component processes, for instance, the associated system 

availability may be weak to be tolerable when the optimum 

system maintenance expense is reached [5]. Consequently, it is 

important to thoroughly analyze and establish the PdM goals for 

a given element or system.  
 

(3) The methods used to diagnose and forecast faults are as 

follows: The currently employed algorithms, including 

approach-dependent techniques, Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Autoencoders, and 

Convolutional Neural Networks (CNN), among others, differ 

greatly. PdM problems also vary between distinct industries, 

factories, and pieces of equipment. The fault diagnosis and 

prognosis strategies in the framework of PdM should 

consequently be created and adjusted for certain issues. 

 

1.1 Shipbuilding Industry   
Regardless of the worldwide economic and political issues, 

shipbuilding is one of the earliest, most significant, accessible, 

and increasingly desirable businesses on the planet [6]. The 

advantages of the Indian shipbuilding sector include a large 

coastline, close vicinity to major trade lanes, and low labor 

costs. On the contrary side, India's shipbuilding capability has 

fallen behind the nation's economic development, market 

potential, and human resource capability [7]. 
 

Sea transportation is a relevant and sustainable way of 

transportation that can be combined with other forms to build a 

cost-effective system. A dependable and active national 

distribution system that links one location to another, 

encouraging regional economic development and sustaining an 

already established economy. The national maritime 

transportation connection system is designed to integrate cargo 

and travelers’ transportation [8]. Companies that are productive 

and environmentally friendly can reduce the energy use of their 

machinery [9]. Industrial cyber-physical systems replace the 

conventional labor-intensive approach by enabling real-time 

surveillance, detection, and activation of physical equipment for 

PdM [10]. The driving drivers in the marine industry are 

operational effectiveness and ecological responsibility [11]. 

Lately, it has come to light that the shipbuilding industry is 

considering using the additive manufacturing (AM) method to 

manufacture replacement parts on board. Implementation, 

architecture, and supply-chain structure of AM in the marine 

industry currently [12].  

  

The maritime sector tries to leverage new technology to get 

through the current financial crisis and boost its productivity 

[13]. Furthermore, using these emerging innovations will result 

in several relationships and perhaps unanticipated effects. Since 

it is an export-oriented industry that engages highly qualified 

personnel, mainly depends on cutting-edge technologies, and 

needs additional capital, international trade in shipbuilding is a 

main contributor to regional commercial development [14]. 

Even in the shipbuilding industry, which is notorious for 

expense permeation and plan procrastination, a much more 

thorough framework for production supply chains and system 

implementation requirements that involve providers at the 

minimal stages can serve to stimulate expenditure in good 

standards. This study explores prescriptive and strategic 

objectives for intended and practical aspirations in the marine 

shipbuilding sector from the standpoint of sustainability 

improvement [15]. 
  
Marine PdM parts can need to be replaced while they are still in 

use during their scheduled or regular service intervals, which 

would be expensive. Utilizing sensor or ML techniques in the 

IIoT framework, it is the potential to optimize the maintenance 

of maritime mechanical systems. AI-based PdM uses a variety 

of data sources to determine which components ought to be 

upgraded before they fail, including manufacturing methods, 

environmental data, and data from integrated IoT sensors in 

equipment.  
 

The shipbuilding sector needs physical labor for Industrial 

Internet of Things-based PdT-as-a-Service (IIoT-PdMaaS). 

Most goods are transported by sea and water transport 

worldwide, and this fact has long been acknowledged by all. 

Ship maintenance is extremely important to maintain ships' 

conditions at a reliable operating level. The plan for ship 

maintenance is shown in fig.2. 
 

 
 

Fig. 2: Maintenance strategy for ships 

1.2 Research Objective   
The main objective of this studies is listed below:  

http://www.ijeer.forexjournal.co.in/
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(a) This paper's major aim is to conduct a comprehensive 

literary evaluation aimed at addressing the subsequent 

study question: 

(b) What benefits and opportunities do AI technologies bring 

to IIoT applications in Industry 4.0, particularly for PdM? 

(c) Rather than focusing on the results that the researchers 

provided, a preference was placed on evaluating the state-

of-the-art techniques, together with their attributes and 

techniques. 

 

░ 2. LITERATURE REVIEW  
As part of the industry 4.0 revolution, recently founded additive 

AM technologies may be useful for producing labor-intensive 

and complex items. The shipbuilding industry might make 

intricate double-curved components with greater design 

flexibility and at a cheaper cost by utilizing Wire Arc Additive 

Manufacturing (WAAM) [12]. The research looked at existing 

and future WAAM uses in the shipbuilding sector and talked 

about how the technology might be used given some current and 

possible limitations like resource accessibility and property 

standards, design complexity, and organizational procedure. 

The rapid surge of the shipbuilding industry is an effort to 

increase future prosperity. As the shipbuilding industry grows 

and demands improved quality of the product, standard costing 

as a means of cost information would be put to the test. By 

employing operations to determine expenditures, the Activity-

Based Costing (ABC) System produces overhead expenses that 

are more pertinent and organized [16].  
 

Design errors could result in major cost overruns in the 

shipbuilding sector. It's easier to guarantee speedy delivery and 

higher efficiency, when possible, and design problems are 

anticipated. Additionally, the rule aggregation procedure that 

enables the aggregation of discriminatory classification rules 

was not sufficiently considered by conventional associative 

classification approaches (ACA) [17]. In addition to finding 

specific rules that effectively aggregate pertinent authorities and 

use less fuel, the number of similar attributes was also 

considered to improve predictive accuracy. It cost money and 

took months to construct a new ship. Consequently, selecting a 

shipyard involves knowledge of the industry on the part of the 

shipowners [18].  
 

The purpose of this research was to distinguish between 

qualified and unqualified shielded metal arc welders (SMAW) 

in the shipbuilding sector. To reduce examination expenses 

while guaranteeing weldment grade and requiring minimal 

preventative maintenance, an economical tool that could rapidly 

evaluate a welder's level of ability was needed [19]. Without 

PdM, smart manufacturing in the industrial sector and 

components with dehumidifying pumps used for anticipations 

of boats in shipyards would not be conceivable. In shipyards 

with smart manufacturing in I4.0, ML technologies have 

become a practical tool for PdM and dewatering equipment. 

The scholars examine the literature on ML techniques like 

SVM for PdM in I4.0 and categorize the research relying on the 

ML algorithms, machinery, and equipment used in data 

collection and organization [20].  

The article is applied research of the conventional shipbuilding 

sector, its providers, and consumers in Indonesia, and it offers 

suggestions for enhancing the efficiency of the supply chain 

[21]. The conventional shipbuilding industry, the providers, and 

the specific provider ratings make up the three aspects of this 

research. To enhance the efficiency of other industries, 

management lessons can be learned by looking at supply 

networks for the shipbuilding industry. The IIoT-PdMaaS 

strategy has been proposed to outperform the current 

approaches. Enhancing organizational procedures, resource 

management, fuel efficiency, delay times, and PdM in 

shipbuilding has been advised by the IIoT-PdMaaS strategy. 

 

░ 3. METHODOLOGY  
To acquire consistency and high-quality outcomes, we built this 

study on the notions of literature review. 

The primary scientific issues that this analysis will focus on are: 

• make a taxonomic suggestion for preventive maintenance; 

• compile the key ideas concerning the subject; 

• list the primary surveillance and prediction models used in 

the sector; 

• pinpoint the company's primary problems and upcoming 

problems. 

3.1 Research Questions 
We formulate the major question (MQ) and sub-questions (SQ) 

in table 1 based on the highlighted scientific contributions and 

difficulties. 

To report on how PdM is being applied in the industry, we 

create MQs. The SQs work together to describe the review's 

contributions to science. The primary methods for sharing 

research on the PdM and industry are listed in the SQ1 question. 

The techniques and concepts utilized are identified and related 

in SQ2. The SQ3 analyses the most frequent terms to 

standardize and give a taxonomy suggestion. The SQ5 inquiry 

mentions the difficulties and potential future directions after 

SQ4 examines the applications. 
 

░ Table 1: Research questions 
 

Identifier Problems 

MQ What concepts, techniques, or monitoring-

related framework is currently being used in the 

market? 

SQ1 What are the primary channels for getting PdM-

aligned research out there in the business 

world? 

SQ2 Which prediction methods are most frequently 

used in the sector? 

SQ3 Is it feasible to develop a classification utilizing 

the phrases discovered for surveillance or 

predictive applications? 

SQ4 How do the survey results for concepts, 

approaches, or design look? 

SQ5 What issues and unanswered questions have 

been noted? 

http://www.ijeer.forexjournal.co.in/
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3.2 Search Strategy 
The datasets and strings were defined in the following phase. 

Since Google Scholar provides a complimentary search of the 

publication's title and contents, we picked it as our opening 

dataset. Our goal is to produce a larger number of results, even 

though some of the publications' returns are not centered on PM. 

It would be an opportunity to assess the string's efficiency and 

spot any possible PdM-related categorizing challenges. Due to 

the difficulties and perspectives, this investigation line will face 

shortly, we have narrowed our lookup to PdM deployed to 

Industry. The string considers various characteristics that have 

been identified, like the premise that PdM approach data is 

dominated by electrical and mechanical parameters. Our study's 

string of conclusions is shown in table 2. 
 

░ Table 2: Quality evaluation standards 
 

Section Depiction 

Criteria 1 Search with a 12-year filter from 2008 to 2020. 

Criteria 2 Eliminate all books, scientific documents, theses, and 

dissertations. 

Criteria 3 Delete any articles that are fewer than four pages long 

or not in English. 

Criteria 4 Eliminate any articles with titles, abstracts, or 

keywords that do not contain the keywords industry, 

intelligent factory, smart and smart manufacturing, or 

IoT. 

Criteria 5 Eliminate any articles that don't discuss surveillance 

or forecasting as a paradigm, technique, or design for 

industry, smart factories, or IoT. 
 

3.3 Article Selection 
The string shown in fig.3 was performed at Google Scholar on 

September 13, 2020, with a filter that took ten years, from 2008 

to 2020, outlawing copyrights and quotations. The papers were 

then transferred to Mendeley software. The goal of our 

assessment was to increase the number of outcomes that were 

sent to the database while also assessing the string's context and 

the MQ and SQ inquiries. 

 

 

 

 

 

 
 

 

Fig. 3: Search string 
 

We changed the string to reflect the basis of publishers after the 

cataloging was done in Google Scholar. We continued the 

methodology in that sequence, removing identical publications 

as we go. 
 

The selected style must be highlighted. As a team of 

investigators cataloged the literature, the first choice was made 

by identical dissemination of the papers and regular meetings to 

explain the findings. After analyzing roughly 100 articles, we 

found that some searches had delivered material that did not 

meet criteria 5. (See Table 3) 

 

After the initial selection, 120 papers were chosen using a 

methodology that considered abstract analysis, keyword 

research, section content analysis, and conclusion verification. 

The important requirement used in these was the 5, and we 

verified whether the paper helped with the application of the 

PdM while considering time-based monitoring rather than just 

an alert. 
 

We searched for articles with relevant content to include in the 

remainder of this discussion as well as other research surveys, 

evaluations, mapping, and particles that emphasized business 

concerns and trends connected to PdM as our final application 

of the criteria.  
 

Table 3 lists the articles that were chosen along with the 

categories of publications, publishers, conferences, or journals 

that were included in our corpus. 
 

░ Table 3: Selected articles sorted by year 
 

Article Publisher Year 

 [22] IEEE 2017 

[23] ASME 2017b 

[24] ASME 2017c 

[25] ASME 2017a 

[26] Elsevier 2017d 

[27] Elsevier 2017 

[28] IEEE 2017 

 [29] Elsevier 2017 

 [30] Elsevier 2017 

 [31] IEEE 2018 

[32] IEEE 2018 

[33] Springer 2018 

 [34] IEEE 2018 

 [35] Elsevier 2018 

[36] IEEE 2018 

 [37] Elsevier 2018 

[38] IEEE 2018 

 [39] ACM 2018 

 [40] Springer 2018 

 [41] Springer 2018 

[42] Elsevier 2018 

 [43] IEEE 2018 

 [44] Elsevier 2018 

 [45] IEEE 2018 

 [46] Elsevier 2018 

 [47] IEEE 2018 

 [48] Atlantis-Press 2018 

 [49] IEEE 2018 

 [50] Springer 2018 

 [51] IEEE 2018 

 [52] Taylor & Francis 2018 

 [53] IEEE 2019 

 [54] Springer 2019 

 [55] Elsevier 2019 

 [56] IEEE 2020 

 [57] Elsevier 2020 

 [58] Elsevier 2021 

 [59] Springer 2021 

[60] IEEE 2022 

 [61] IEEE 2022 

 [62] IEEE 2022 

 [63] Elsevier 2023 

 [64] IEEE 2023 

“MONITOR” or “PREDICT” 

“ARTIFICIAL INTELLIGENCE” or “AI” 

“INTERNET OF THINGS” or “IoT” 

“MODEL” or “METHOD” or “ARCHITECTURE” 

“MAINTENANCE” or “PREDICTIVE 

MAINTENANCE” 

http://www.ijeer.forexjournal.co.in/
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░ 4. RESULTS AND DISCUSSIONS  
To reply to the MQ, we give the findings and analyses in this 

section based on the previously discussed questions. 
 

SQ1 —What are the primary channels used in the industry to 

spread PdM-aligned studies? 

We analyze the following to respond to this query: 

1. Table 3, which includes a list of each study's conferences and 

journals; 

2. Fig. 3, demonstrates the distribution of the article by 

publisher. 

 

 
 

Fig. 4: Distribution of publications by Publisher and Type. 

With the help of bar graph in fig. 5, we can identify IEEE and 

Elsevier with the greatest quantity of articles. The distribution 

of publications analyzed using published methods confirms the 

finding that PdM applications exhibit an interdisciplinary 

quality involving numerous fields of study. 

  

The annual rise of articles is depicted in fig. 4 with a focus on 

the year 2020. The development of IoT and AI for PdM in the 

industry is a contributing element, which we emphasize. 

 

 
 

Fig. 5: Distribution and tendency of articles by year 
 

IEEE and Elsevier are the primary channels for propagating 

PdM in the enterprise, as can be seen in the figures. The line 

separating conferences and journals is razor thin. The articles 

indicate a sharp increase in 2020, which suggests a pattern for 

the years after. Another thing we can bring out is that a lot of 

PdM approaches come from journals that have an overall score 

for engineering, but not computing. 
 

SQ2 — Which prediction methods are most frequently used in 

the sector?  

We presented the subsequent responses in several situations 

when the articles were assessed: We start by going into detail 

about the three prediction categorization techniques: data-

driven, knowledge-based, and physical model-based. 
 

 
 

Fig. 6: Classification of the prediction 
 

The second setting in which to answer SQ2 concerns ANN, ML, 

and algorithm-based solutions. For this purpose, we separate the 

papers into three major blocks: Deep Learning (DL), Random 

Forest (RF), and additional ANN and ML-based approaches.  
 

░ Table 4: List of the chosen articles 
 

 

Algorithms Identifiers 

RF [23] [24] [25] [26] [37] [49]  

DL [28] [32] [42] [45] [48] [49]  

ANNs and ML [26] [28] [31] [34] [35] [43] [46] [51]  

 

SQ3 — Is it feasible to build a classification utilizing the 

phrases discovered for surveillance or predictive applications? 

By resolving one of the scientific difficulties of this study, we 

responded to this query. With the completion of the 

investigation and the description of the publications, we began 

the identification, separation, and analysis of the findings, 

demonstrating the methodology's sequential application. To do 

this, we use the VOS viewer tool to add to the visualization of 

the key terms discovered and produce a taxonomy that is more 

thorough than we had originally intended. 
 

As per table 5, we have implemented filtering for comparable 

phrases to prevent duplication. This method avoids plotting the 

interpretation of identical words written differently or even 

writing, individually, on the map. 
 

Table 5: Configuration file for discriminant terms 
Initialing Changed by 

Learning algorithms ML 

Internet of Things IoT 

Predictive maintenance Maintenance 

Artificial intelligence AI 

Deep learning DL 

0 5 10 15 20 25
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Springer
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Citeseerx
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SQ4 — How do the survey responses for designs, approaches, 

or structures look?  
 

The topics about applications provide an overview of the key 

data regarding the models, approaches, structures, and designs. 

We emphasize the article's headline or executive summary, the 

implementation scenario, and the data used to create the 

projection. Each publication has an eccentric characteristic, like 

the use of sensors, acquisition, connectivity, or return form, but 

most applications have an issue with the existing plants, which 

is one of the largest obstacles for those looking to enter a sector 

with limited resources.  
 

SQ5 — What issues and unanswered queries have been noted? 

Implementation of time-based PdM is the study's main obstacle 

and emphasis. Even the chosen publications, which paid 

attention to these criteria, do not explicitly state that they will 

make the forecast. RF was used in one example to anticipate a 

failure window of seven days [49]. Other conditions include 

reactive mode, planned maintenance, planned preventive 

actions, and planned condition monitoring, among other time-

related designations. 

 

░ 6. CONCLUSIONS 
To acquire the requirements of excellence, safety, and 

efficiency, the maintenance action involves planning and 

strategy. We are aware that one of them predictive maintenance 

will be the aim of our research, in which we hope to better 

understand the methodology used and the programs now in use. 

A summary of PdM from the perspective of Industry is thus 

intended by the existing literature offered in this paper. 47 

articles on technologies, frameworks, and techniques associated 

with the use of PdM were found to be the significance of our 

extensive bibliographical survey approach. We drew attention 
to the multidisciplinary nature of the industry's new issues and 

the need for integration. The area of investigation that can be 

expanded along with the concepts introduced by the FIS 

principle, and that implementation will significantly alter and 

enhance the industrial environment. 
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