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░ ABSTRACT- A persistent brain's neurological state is epilepsy, characterised by recurring seizure. Brain electrical activity 

is measured using EEG signals, which can be used to detect and diagnose significant brain problems such as Epilepsy, Autism, 

Alzheimer’s etc. However, manual EEG data processing is time-consuming, requires highly skilled clinicians, and is associated 

with low inter-rater reliability (IRA). A computer-aided diagnosis approach for epileptic seizure detection from multichannel EEG 

recordings by fusing the time-frequency features and the deep learning features extracted from Convolutional Neural Network-

Gated Recurrent Unit (CNN-GRU) model using canonical correlation analysis (CCA) method is provided in this study. Deep 

Learning features are extracted using CNN-GRU layers, motivated by recent advancements in image classification and optimised 

for use with EEG data. We have also extracted time-frequency features such as spectral entropies and Sub Band energies from 

Empirical mode decomposition (EMD) and Hilbert Marginal Spectrum (HMS). We used CHBMIT dataset to carry out the results 

and showed that the method proposed for fusing the time-frequency features and deep learning has given better performance. 
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░ 1. INTRODUCTION   
Brain functions as the most essential operational organ in our 

body, controlling and coordinating the other muscles and 

nerves. Some brain disorders like autism, sleeping disorders, 

epilepsy etc.  are sensitive to certain frequencies of brain 

impulses. Brain waves in table 1, displays states associated with 

various signals and linked brain areas [1]. Epilepsy is 

considered one of the most prevalent non-contagious brain 

illnesses. Epilepsy has been identified in approximately 1% of 

people worldwide. Temporary electric disturbances are 

experienced by patients who have epileptic seizures. One or 

more strokes occur in a month for about 20–30% of people with 

epilepsy. Physical injuries during an epileptic seizure period 

could possibly result in the patient's death. The patients also 

struggle with social isolation and serious mental illnesses. The 

International League Against Epilepsy (ILAE) in 2017:  has 

proposed three new classifications of epileptic seizure types and 

they are focal, generalised, and epilepsy with unidentified 

symptoms. Each epileptic seizure type, as well as the brain 

regions experiencing convulsion, are described in this 

classification along with some precise and in-depth information 

about them. Early identification of epileptic seizures is critical 

since it significantly slows the progression of the disease [2]. 
 

EEG is a non-invasive method of measuring brain waves that 

includes recording electrical activity. Electrodes can be placed 

across human’s skull and scalp to measure the brain activities 

by their electrical potentials. It is often used to diagnose and 

treat many neurological conditions, including somnipathy, 

epilepsy, coma etc. Medical professionals frequently use EEG 

[3], as a diagnostic tool because of its great temporal resolution 

and low cost, despite the fact that it has less spatial resolution 

than methods of brain imaging like Computed Tomography 

(CT), functional Magnetic Resonance Imaging (fMRI) scan and 

others. 
 

Interpreting an EEG signal [4], to find out if someone has a 

neurological illness often requires long-term surveillance 

involves the recording of several brief sessions, because 

symptoms are not always present in the EEG signal. Large 

volumes of data are produced during this procedure, which 

require skilled investigators to manually interpret. Due to the 

scarcity of skilled specialist investigators and the massive 

volume of data, analysis of EEG is a lengthy procedure that can 

creates a lag in the patient's course of therapy ranging from 

hours to weeks. By speeding up the reading process and hence 

decreasing workload, it might be beneficial to automate EEG 

interpretation process could be helpful to neurologists. This is 

why machine learning and deep learning systems that 

automatically interpret EEG have gained popularity in recent 

years. 
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░ Table 1: Frequencies and properties of brain waves 
 

Brain 

wave 

Frequency 

(Hz) 

Range 

Behavioural State Location 

Delta (δ) 0 – 4 Deep sleep, 

dreamless sleep, 

severe organic brain 

disease 

Thalamic 

region 

Theta (θ) 4 – 7.5 Drowsy state, deeply 

relaxed  

Hippocampus 

region 

Alpha (α) 8 -13 Normal, relaxed Posterior 

region 

Beta (β) 14-30 Busy, anxious 

thinking, 

concentration 

Frontal, 

somatosensory 

and Parietal 

Gamma(γ) 30-100 Intense 

concentration, during 

tension 

Somatosensory 

cortex 

 

To detect epileptic seizure with EEG signals, many researchers 

have developed many automated methods and some of them are 

reviewed in this section. Pre-processing of EEG signals, 

significant features extraction, and classification are all part of 

the automatic seizure identification. Variety of Machine 

Learning models which are traditional and Deep Learning 

models using scalp EEG measurements have been proposed. In 

these approaches, electrodes are placed on patient’s scalps to 

capture EEG. 
 

EEG signals are initially pre-processed to reduce noise and 

improve Signal to Noise (SNR) ratio. EEG signals can be 

filtered using bandpass Butterworth and notch filters as 

standard pre-processing techniques. High SNR(Signal-to-

noise) ratio with   EEG recordings, we can use common and 

optimised spatial pattern filter. Empirical mode decomposition 

is especially beneficial for pre-processing EEG recordings 

because it yields IMFs (Intrinsic Mode Functions) by 

preserving low-frequencies, so that we can increase the SNR 

(Signal-to-Noise Ratio).  Fourier and wavelet transformations 

can also be used as pre-processing steps before being fed into 

convolutional neural networks [13]. 
 

After the noise has been removed, patterns from signals are 

extracted, and significant features are chosen that have a high 

variance between different classes and low variance within 

same class. For the purpose of detecting epileptic seizures, 

researchers have extracted custom features in the temporal, 

spectral, and time-frequency domains. Temporal characteristics 

such as first four Statistical Moments, Estimated Entropy, 

Hjorth Parameters, and Lyapunov Exponents. Spectral features 

such as PSD (Power Spectral Density), Spectral Moments are 

few of those [16-18]. 
 

The effectiveness of Deep Learning algorithms over several 

traditional Machine Learning applications, which include 

Object Detection, Video Processing, identification of 

Alzheimer's etc., has garnered a lot of interest. To analyse and 

learn temporal patterns in EEG signals Recurrent Neural 

Networks (RNN) are used extensively [24]. Improvements in 

RNNs that are Long Short-Term Memory (LSTM) [14] and 

Gated Recurrent Unit (GRU) has greatly outperformed than 

traditional RNNs. To address vanishing gradient and exploding 

gradient problem, gates are used in them. Epileptic seizure 

detection from EEG signals has recently been done using 

LSTM. We used GRUs in this study, since only few parameters 

are needed when compared to LSTM, as a result, it offers a 

shorter training period despite requiring data to generalise. In 

EEG data processing, Convolutional Neural Networks (CNNs) 

also gained substantial remark. CNNs can be applied to the 

wavelet space and raw data to classify epileptic EEG signals, 

and in other datasets they have done exceptionally well. The 

capacity of CNNs to automatically learn new features yields 

greater results when compared with hand-engineered features, 

if volume of data needed to train the CNNs is sufficient [19-22]. 
 

The performance accuracy of epileptic seizure detection models 

mainly depends on the features extracted from domain 

knowledge. Manually extracted features (handcrafted) need 

expert domain knowledge so these have significant importance 

in seizure detection. Lately deep learning methods are 

introduced for automatic feature extraction from raw EEG 

signals data for seizure detection models. However, previous 

studies stated that the significance of handcrafted features 

cannot be overlooked as these are extracted with expert domain 

knowledge. Therefore, the fusion of both the handcrafted and 

automatically extracted features using CNN-GRU for seizure 

detection to boost the performance is proposed in this work. 
 

░ 2. SYSTEM MODEL 
The CHBMIT dataset, which consists of EEG recordings of 

pediatric patients with uncontrollable seizures, was gathered at 

Children's Hospital Boston [5] is used in this work. The 

recordings, which were collected from 23 individuals, were 

split up into 24 cases and given the numbers chb01 through 

chb24. Each case includes 9 to 42 EDF recordings that are 

between one and four hours long. Table 2, shows the details of 

dataset. With a 16-bit resolution, sampled signals at a rate of 

256 Hz. At least 23 channels are included in each recording. 

The international 10-20 system is used to determine the 

placement, names of the EEG electrodes and are analyzed for 

the seizure or non-seizure. 
 

░ Table 2: CHB-MIT EEG Dataset 
 

Type Scalp EEG 

Subjects 22 

Age 1.5 to 19 

Male Subjects 5 

Female Subjects 17 

Channels 23 

Sampling Rate 256 Hz 

Seizure files 185 hours 

Total EDF Files 682 hours 

 

A method for epileptic seizure detection from multichannel 

EEG recordings by canonical correlation analysis-based fusion 

of time-frequency features with deep features. Figure 1 depicts 

https://www.ijeer.forexjournal.co.in/
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the process flow diagram of proposed feature fusion based 

epileptic seizure detection. The raw multichannel EEG signals 

dataset for epileptic seizure detection are collected from 

Childrens Hospital Boston-Massachusetts Institute of 

Technology (CHBMIT) for different subjects. Preprocessing of 

signals can be carried out by common average referencing and 

bandpass filter to remove Signal to Noise Ratio (SNR) for all 

23 channels. The preprocessed signal is decomposed into IMfs 

using EMD and from IMfs the Hilbert Marginal Spectrum is 

generated using Hilbert-Haung Transform (HHT). 
 

Sub-band energies for brain frequency rhythms, Shannon 

entropy, Tsallis entropy, and Renyi entropy, the time-frequency 

features are extracted from the Hilbert Marginal Spectrum 

which is a time-frequency transformation of EEG signal. Deep 

learning features are extracted using CNN-GRU layers. Feature 

fusion of time-frequency features and features extracted from 

CNN-GRU using canonical correlation analysis (CCA). 

Softmax classifier receives the combined features as input and 

will classify as seizure and non-seizure events. Accuracy, 

Precision, Recall and F-measures are the performance metrics 

that are used to acess the performance of the model. 

 

 
Figure 1: Process Flow Diagram of Proposed Feature Fusion Based Epileptic Seizure Detection 

 

Due to improper electrode placement, patient eye blinking, and 

muscle movement. Pre-processing of EEG signals is necessary 

for further implementations, EEG signals are segmented into 

epochs, which are brief intervals of time. The signals are filtered 

up to cut-off frequency of 45 Hz using a Butterworth filter. 

Using 2sec epochs with short durations produces more seizure 

epochs to train the model of CNN-GRU. Each 2-sec epoch is 

decomposed into 6 IMFs using EMD. EMD (Empirical Mode 

Decomposition) and Hilbert marginal spectral analysis are the 

two parts of the HHT (Hilbert Huang Transform) [7]. EMD's 

signal decomposition approach is straightforward, direct, and 

adaptable. 
 

2.1 Empirical Mode Decomposition 
EMD is used to divide signal into meaningful components and 

to gain new insight into features. It is an adaptive basis system 

to determine physically meaningful modes from data. The EMD 

[6] is a common method for decomposing nonlinear, non-

stationary signals that decomposes into sum of Intrinsic Mode 

Functions (IMFs) which are amplitude and frequency 

modulated signals.  
 

2.2 Hilbert Marginal Spectrum 

All IMF extracted from the preprocessed signals using EMD, 

can further analyzed using HHT.  Hilbert-Huang transform 

describes the imaginary portion of the function to make it an 

analytic function also called as progressive function, in which 

every frequency component below zero will be set as zero, in 

order to preserve the imaginary part of signal, during inverse 

transform. The Hilbert transform yields instantaneous 

frequencies that are functions of time when applied to singular 

vectors. This gives a distribution of energy over time and 

https://www.ijeer.forexjournal.co.in/
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frequency. To simplify the idea of instantaneous frequency and 

time, it can represent time-frequency localization. 
 

2.3 Time-frequency features  

Various spectral entropies and sub-band energy of different 

frequency bands are time-frequency features used in this paper 

are given below. 
 

2.3.1 Spectral entropies 

Entropy is a measure of dysfunction of physical systems. It is 

associated with the amount of knowledge that can be learned 

through observing chaotic methods [15]. It is a practical 

approach for determining the spectral power distribution. A 

probability distribution that is broad and flat produces a high 

entropy, whereas low entropy results from a narrow, peaked 

distribution. Numerous fields have effectively used and 

investigated the Fourier spectrum-based entropies. Entropy is a 

statistical term used to describe the variability within an EEG 

signal [10]. The HMS-based entropy may perform well in the 

classification of EEG signals because HMS has outstanding 

nonstationary signal processing properties. The Shannon, 

Renyi, and Tsallis spectral entropies [11-12] are described in 

this study. 
 

2.3.2 Sub-Band energy 

Energy characteristics plays a key role in detecting epileptic 

seizure episodes. The energy characteristics are derived from 

frequency ranges of the brain waves (delta: 0-4 Hz; theta: 4-8 

Hz; alpha: 8-12 Hz; beta: 12-30 Hz; gamma: 30-50 Hz) from 

EEG signals. Seizure and non-seizure signals have vastly 

different patterns of energy distribution. The delta wave makes 

up most of the energy in a typical EEG signal, however in a 

seizure, the delta wave only makes up a small part of the total 

energy. To classify EEG signals, sub-band energy is a 

distinctive feature. The magnitude of the squared spectrum 

components is added to determine the sub-band energy. 
 

2.4 Deep Learning Features 
CNN-GRU was motivated by recent advances in image 

processing and is designed to efficiently work with EEG data. 

In this work, Deep learning features are extracted using CNN-

GRU layers. From the standard CNN model, combined CNN-

GRU model is proposed to further improve performance in 

terms of accuracy and time. It is built by stacking three conv1D 

layers and three deep Gated Recurrent Unit (GRU) layers. The 

architecture of single conv1D block and followed by densely 

connected GRU layers proposed in this work. CNN-GRU can 

combine information from several time scales and extract 

features from mulpile filters.  
 

In this work, every Conv1D layer has multiple filters of 

different sizes, followed by denesely connected GRU layers. 

For each conv1D layer the optimal filter size can be determined 

by multiple filter lengths. The vanishing and exploding 

gradients problem is addressed by the GRU layers that are 

densely interconnected. As a result, it might be possible to 

develop more sophisticated CNN-GRU variations for harder 

problems. Furthermore, in the GRU layers, dense connections 

provide feature reuse and propagation [9]. 

 

2.4.1 CNN with multiple filters 

The inception module [23, 25], in contrast to conventional 

convolutional neural networks, employs filters of varying sizes 

in a convolution layer to collect characteristics at various 

degrees of abstraction. The network can effectively extract 

pertinent features by collecting and processing visual data at 

various scales. In this work, three conv1D layers of 32 filters 

are used, each conv1D has three filters with sizes 2×2, 4×4, and 

8×8. A max pooling operation is performed parallelly with a 

size of 3×3.  
 

2.4.2 Gated Recurrent Unit 

A gated recurrent unit (GRU) derives the current value of the 

hidden state, denoted by ℎ𝑡 provided in equation (1), by linearly 

interpolating between the prior value, denoted by ℎ𝑡−1 and an 

intermediate candidate hidden state ℎ̃𝑡  calculated using 

equation (2). Update gate 𝑧𝑡 and reset ate 𝑟𝑡  are the two gates 

being used by GRU. The amount of data from earlier time steps 

that must be carried forward is calculated by the update gate 𝑧𝑡 

denoted in equation (3). The reset gate 𝑟𝑡 denoted in equation 

(4), regulates how much information from the past must be 

forgotten. The current memory is computed using the reset gate 

to store relevant information from the past. At the final stage, 

ℎ𝑡  vector is calculated such that it transfers current unit data to 

the network. Formally, the GRU can be expressed 

mathematically as follows: 
 

ℎ𝑡 = (1 − 𝑧𝑡)⨀ ℎ𝑡−1 + 𝑧𝑡⨀ℎ̃𝑡            (1) 

ℎ̃𝑡 = 𝑔(𝑊ℎ ⋅  𝑥𝑡 +  𝑈ℎ(𝑟𝑡⨀ℎ𝑡−1) + 𝑏ℎ)           (2) 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)            (3) 

𝑟𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)            (4) 

 

Where ⊙ denotes element-wise multiplication, g and 𝜎 

represents nonlinear activation functions, ℎ𝑡 represents hidden 

state, ℎ𝑡−1 is previous value of hidden state, 𝑧𝑡 denotes update 

gate, 𝑟𝑡 denotes reset gate and 𝑊ℎ represents weights of hidden 

state. 
 

In this work, three conv1D layers with three filters, followed by 

densely connected GRU layers. 
 

2.5 Feature Fusion of Features using CCA 
CCA is an algorithm for unsupervised learning. To increase the 

correlation between the projections, it projects the input data to 

a lower dimensional common subspace [8]. The correlation 

between the combined variables is maximized by finding a 

linear combination of two variables. The feature-level fusion 

performed by CCA is based on linear mixing that maximizes 

the inter-subject covariations of the features of the two 

modalities. Covariance is used to assess the correlation between 

the two modalities. Although it is believed that the converted 

variates will have the highest correlation possible between two 

feature vectors, unrelated to one another. Given that it is 

invariant to a variety of measurement units, modulation 

schemes, and data kinds, the CCA linear combination model is 

regarded as adaptable. In this work, CCA is used to fuse the 

deep learning features and time-frequency features for finding 

correlation between features. 

https://www.ijeer.forexjournal.co.in/
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░ 3. RESULTS  
For epilepsy seizure detection experiments are conducted using 

python programming language. EEG segmentation and noise 

removal are implemented using MNE package, EMD and HSA 

are implemented with EMD package, CNN and GRU 

implementation was accomplished utilizing the Google Colab 

Pro environment, Keras 2.0, and Tensor flow 1.4.0. 
  

3.1 Dataset 
In this work, a publicly available CHBMIT dataset was used. 

Sample raw seizure multi-channel EEG signals are shown in 

figure 2 and non-seizure multi-channel EEG signals are shown 

in figure 3. In the above said figures, x-axis represents time and 

y-axis represents number of channels. Based on the annotations 

available in the dataset, data is labelled as seizure and non-

seizure classes. 
 

Initially the scalp EEG data were pre-processed by applying a 

common average referencing, fourth order zero phase band-

pass Butterworth filter between 1 Hz and 45 Hz. With short 

epochs we can try to reduce the outcome of EEG signal being 

non-stationary so the pre-processed EEG signal segmented into 

2sec segments for 23 channels, resulted in 239 seizure segments 

for 182 minutes, 240 non-seizure segments for 184 minutes. 

The experiments carried out with a training data of 70% and 

testing data of 30% from the total 479 segments or epochs. 

 

 
Figure 2: Sample seizure EEG Signal with multiple channels 

 

 
Figure 3: Sample non-seizure EEG Signal with multiple channels 

 

3.2 Performance Metrics 
For the assessing the performance and for comparative analysis 

of the feature fusion technique, various performance metrics are 

used. Precision, Recall, F-Measure and Accuracy are employed 

in our proposed work, and they are represented in equation (5), 

(6), (7) and (8) respectively. The figure 4, shows the Confusion 

Matrix also known as a contingency table for seizure and non-

seizure classes of epilepsy seizure detection. 
 

 
 

Figure 4: Confusion Matrix for Seizure and Non-seizure 

classification 
 

For prediction, the elements of Confusion Matrix, i.e., True 

Positive (TP) indicates correctly predicted seizure class, True 

Negative (TN) indicates correctly predicted non-seizure class, 

False Positive (FP) indicates incorrectly predicted non-seizure 

class, False Negative (FN) incorrectly predicted seizure class 

values are used to compare the labels of actual class and 

predicted class. 
 

Precision: Precision is defined as the ratio of accurately 

predicted seizure class to all actual seizure and false seizure 

class in a binary classification problem. 
 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
                                                                 (5) 

 

Recall: Recall is the ratio of accurately predicted seizure class 

to all actual seizure and false nonseizure class in a binary 

classification problem. 
 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                            (6) 

 

F-Measure: As Precision and Recall have a harmonic mean; it 

is necessary to tune the system for either Precision or Recall, as 

these factors have a greater impact on the end output. 
 

F-Measure = 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                               (7) 

 

The F-Measure is derived for seizure and non-seizure values in 

the same way as Precision and Recall are obtained for seizure 

and non-seizure classes.  
 

Accuracy: It is the most widely used metric for determining 

classification Accuracy. The ratio of correctly classified classes 

to the total number of classes. 
 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +  𝑇𝑁 + 𝐹𝑁
        (8) 

 

https://www.ijeer.forexjournal.co.in/
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3.4 Feature Extraction  

The time-frequency features extracted using shannon entropy, 

tsallis entropy, renyi entropy and sub-band energy of seizure 

signals. A total of 184 features are extracted which includes 23 

Shannon entropy features, 23 Renyi entropy features and 23 

Tsallis entropy features, for all 23 channels for single EEG 

segment. 115 (5 sub bands x 23 channels) sub-band energy 

feature values extracted from five sub-band rhythms of brain 

single EEG segment. The time-frequency features values of 

seizure and non-seizure signals are given in table 3 and table 4. 
 

From table 3 and table 4, seizure signals sub-band energy and 

entropy feature values are more when compared to non-seizure 

feature values because of lower frequency flatness. we can 

observe that sub-band energy of seizure signal is more when 

compared to non-seizure signal sub-band energy. 

 

░ Table 3: Entropy Features and Sub-Band Energy Features of Seizure Signal for 23 Channels 
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1 4.01 2.34 1.25 0.0824 0.0671 0.0571 0.0478 0.0622 

2 5.39 1.12 1.16 0.0863 0.0661 0.0506 0.0436 0.0387 

3 6.23 3.45 0.89 0.0841 0.0644 0.0512 0.0426 0.0385 

4 5.71 2.01 1.57 0.0856 0.0593 0.0531 0.0476 0.0485 

5 5.92 3.45 0.89 0.0849 0.0647 0.0561 0.0443 0.0526 

6 4.72 4.02 1.31 0.0896 0.0634 0.0512 0.0471 0.0637 

7 5.13 4.12 1.23 0.0929 0.0644 0.0524 0.0482 0.0492 

8 5.89 2.89 1.66 0.0861 0.0655 0.0511 0.0534 0.0605 

9 6.56 3.12 1.05 0.0913 0.0655 0.0556 0.0428 0.0396 

10 4.95 2.65 0.56 0.0891 0.0626 0.0537 0.0437 0.0389 

11 5.45 3.22 1.78 0.0921 0.0655 0.0536 0.0473 0.0564 

12 5.69 4.35 0.23 0.0849 0.0634 0.0535 0.0441 0.0363 

13 4.61 3.87 0.34 0.0862 0.0642 0.0513 0.0434 0.0372 

14 5.82 3.28 0.25 0.0838 0.0661 0.0502 0.0594 0.0634 

15 4.38 4.55 0.22 0.0809 0.0662 0.0551 0.0431 0.0393 

16 4.21 3.67 1.21 0.0869 0.0645 0.0501 0.0542 0.0532 

17 4.45 2.62 0.44 0.0821 0.0644 0.0562 0.0486 0.0374 

18 5.39 1.15 0.87 0.0915 0.0675 0.0523 0.0445 0.0379 

19 5.09 3.45 1.32 0.0834 0.0642 0.0516 0.0423 0.0392 

20 6.02 2.65 0.21 0.0844 0.0650 0.0502 0.0912 0.0694 

21 4.81 3.21 1.34 0.0836 0.0622 0.0497 0.0801 0.0931 

22 4.85 2.12 1.25 0.0867 0.0677 0.0503 0.0488 0.0548 

23 5.44 4.32 1.11 0.0809 0.0662 0.0551 0.0432 0.0393 

 

3.4.1 CNN-GRU Parameters 

CNN with multiple filters of EEG time series data features is 

extracted from CHBMIT input dataset for each 2sec epochs of 

23 channels and fed into GRU that is considered as optimal and 

identified to have improved sequence learning abilities. After 

extracting the spatial features from CNN are provided as input 

to three GRU layers to extract temporal features. In conv1D 

blocks ReLu activation function and in GRU layers Tanh 

activation function is used. These features are trained with three 

dense layers and in the last layer softmax activation function is 

applied to classify seizure and non-seizure classes. The Root 

Mean Square Propagation (RMSprop), Adam and sigmoid 

optimizer that is known to adapt the learning rate for each of the 

parameters. 
 

The input has EEG time series data as of size 512 for 23 

channels. It is fed into three conv1D blocks with each three 

conv1D layers having 32 filters of size two, four and 8 

respectively. Operation max pooling is performed parallelly 
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with size of two. In first conv1D block, after concatenation of 

all the filters and produces 96 feature vectors with size of 256. 

It is the input to second conv1D block, after concatenation of 

all the filters it produces 96 feature vectors with size of 128 

which is passed as an input to the third conv1D block. The third 

conv1D block produces 96 feature vectors of size 64 after 

concatenation of all the filters. This sequence of 2048 extracted 

features becomes input to the GRU part of the network. After 

passing through the GRU layers it produces the output of 736 

features. The parameters of the CNN-GRU model are indicated 

in figure 5. 

 
 

░ Table 4: Entropy Features and Sub-Band Energy Features of Non-Seizure Signal for 23 Channels 
 

Channel no 
Shannon 

Entropy 
Renyi 

Entropy 

Tsallis 

Entropy 

Sub-band energy 

Delta 

 

Theta Alpha Beta gamma 

 

1 4.11 1.23 1.11 0.0231 0.0321 0.0262 0.0286 0.0374 

2 3.04 2.34 1.25 0.0314 0.0311 0.0206 0.0236 0.0187 

3 5.12 1.89 0.21 0.0412 0.0299 0.0312 0.0226 0.0185 

4 6.34 3.07 0.65 0.0355 0.0312 0.0231 0.0276 0.0285 

5 3.88 2.45 0.25 0.0322 0.0356 0.0261 0.0143 0.0226 

6 2.11 1.67 0.24 0.0136 0.0312 0.0312 0.0271 0.0337 

7 6.01 1.99 0.67 0.0134 0.0333 0.0224 0.0282 0.0292 

8 5.34 1.28 1.23 0.0452 0.0387 0.0311 0.0334 0.0305 

9 3.89 2.09 0.45 0.0361 0.0309 0.0256 0.0128 0.0196 

10 2.67 2.45 0.62 0.0098 0.0398 0.0237 0.0237 0.0189 

11 3.77 2.13 1.11 0.0082 0.0354 0.0336 0.0273 0.0364 

12 3.99 1.32 0.87 0.0322 0.0362 0.0335 0.0144 0.0136 

13 4.56 2.11 2.01 0.0131 0.0432 0.0313 0.0234 0.0172 

14 4.67 2.16 0.39 0.0137 0.0331 0.0302 0.0394 0.0334 

15 2.45 1.89 0.87 0.0459 0.0345 0.0355 0.0143 0.0193 

16 3.56 1.45 1.87 0.0321 0.0387 0.0201 0.0154 0.0253 

17 1.24 1.35 0.38 0.0235 0.0322 0.0262 0.0286 0.0174 

18 5.67 2.67 0.46 0.0313 0.0335 0.0223 0.0245 0.0179 

19 3.45 2.88 0.52 0.0131 0.0321 0.0316 0.0223 0.0192 

20 2.65 1.35 1.05 0.0815 0.0339 0.0202 0.0191 0.0194 

21 1.67 1.23 0.21 0.0711 0.0311 0.0297 0.0401 0.0431 

22 1.89 1.11 0.28 0.0212 0.0325 0.0203 0.0288 0.0248 

23 2.44 1.99 1.53 0.0226 0.0331 0.0355 0.0243 0.0193 
 

 
Figure 5. Parameters of CNN-GRU 

3.5 Feature Fusion of Time-Frequency Features 

and Deep Learning Features for Epileptic Seizure 

Detection 

Time-frequency features extracted for single EEG segment of 

23 channels is 184 and 736 deep learning features extracted, a 

total of 920 features are fused using CCA to find correlation 

between the features.  
 

After CCA, the features are reduced to 628 and these feature 

vectors are fed to a shallow neural network using two fully 

connected layers with a sigmoid activation function and a 

softmax activation function for the output layer to classify into 

seizure and non-seizure classes. 
 

Table 5 shows the confusion matrix and performance metrics of 

feature fusion model for analysis of EEG signals to detect 

seizure and non-seizure classes using different optimizers.  
 

The experiments carried out with a training data of 70% and 

testing data of 30% from the total 479 epochs. The performance 

of feature fusion model using RMSProp optimizer in terms of 

accuracy is 95.14 %. 
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░ Table 5: Performance Metrics of feature fusion model for epilepsy seizure detection with different optimizers 
 

 

     Optimizer 

                            Confusion Matrix                                   Performance Metrics in (%) 

 
       Seizure      Non-Seizure       Precision          Recall      F-Measure      Accuracy 

       Adam 

Seizure 94.67 5.33 94.67 94.67 94.67 

94.44 

     Non-Seizure 5.80 94.20 94.20 94.20 94.20 

     RMSprop 

Seizure 92.65 7.35  92.65 96.92 94.74 

95.14 

    Non-Seizure 2.63 97.37 97.37 93.67 95.48 

        SGD 

Seizure 89.23 10.77 89.23 92.06 90.63 

91.67 

    Non-Seizure 6.33 93.67 93.67 91.36 92.50 

Optimizers are algorithms that adjust the characteristics of a 

neural network, such as weights and learning rate, to reduce 

losses. When analysed with different optimizers for feature 

fusion model, the experimental results show that RMSProp 

optimizer because of convergence speed and stability of the 

model training process, proved to achieve a highest accuracy of 

95.14% when compared to others. Figure 6 shows the 

comparative analysis of feature fusion model with different 

optimizers for EEG signal analysis to classify seizure and non-

seizure. 

 

 

 
 

Figure 6: Feature fusion model with different optimizers 

 

In the figure 7 (a) shows plot of accuracy of the model over the 

training and testing data and (b) shows plot of loss of the model 

over the training and testing data. The training accuracy 

increases linearly over time, until it reaches 100%, whereas the 

testing accuracy stalls at 90-94% for adam optimizer. The 

testing loss reaches its minimum only after 20 epochs. 
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Figure 7. Feature Fusion Model with Adam Optimizer(a) Training - Testing Accuracy and (b)Training - Testing loss 

 

In the figure 8(a) shows plot of accuracy of the model over the 

training and testing data for RMSProp optimizer and (b) shows 

plot of loss of the model over the training and testing data for 

RMSProp optimizer. The training accuracy increases linearly 

over time, until it reaches 100%, whereas the testing accuracy 

stalls at 90-95% for RMSProp optimizer. The testing loss 

reaches its minimum only after 25 epochs. 

 
 

 
Figure 8: Feature Fusion Model with RMSProp Optimizer (a) Training - Testing Accuracy and (b)Training - Testing loss 

 

In the figure 9(a) shows plot of accuracy of the model over the 

training and testing data for SGD optimizer and (b) shows plot 

of loss of the model over the training and testing data for SGD 

optimizer. The training accuracy increases linearly over time, 

until it reaches 100%, whereas the testing accuracy stalls at 85-

90 for SGD optimizer. The testing loss reaches its minimum 

only after 25 epochs. 

 
 

 
 

Figure 9: Feature Fusion Model with SGD Optimizer (a) Training - Testing Accuracy and (b)Training - Testing loss 
 

░ 4. DISCUSSION 
In table 6, the Accuracy values obtained using the proposed 

approach and compared the results using other approaches 

described in the literature using the CHBMIT dataset. The table 

shows that the proposed feature fusion approach outperforms 

the results obtained by authors of various articles in the 

literature. 
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░ Table 6: Comparative Results Obtained from baseline 

approaches and proposed approaches in terms of Accuracy 
 

 

Author-Year Methodology Metrics (Accuracy) 

Roy (2019) C-RNN +softmax 83.58 

Yuan (2021) 
1D CNN-LSTM+ 

Sigmoid 
89.73 

Proposed 

approach 

CNN-GRU + Time 

frequency features 

+Softmax 

95.14 

 

░ 5. CONCLUSION 

This work proposes a unique deep fusion method for epileptic 

seizure detection using EEG signal data. The experimental 

results demonstrate the feature fusion model delivers better 

results for Seizure detection when compared to models. A novel 

CNN-GRU, architecture that is adaptable and flexible, that is 

useful in analysis of time-series data like EEG is proposed for 

deep learning feature extraction. Time- frequency features are 

extracted using HMS, which is well suited method for non-

linear EEG signal data. These time-frequency features and 

CNN-GRU features are fused for improving the efficiency. 

Time frequency features and Deep Learning features are fused 

using CCA resulted in 95.14% accuracy. 
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