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░ ABSTRACT- The existing data rate must be greatly increased in order to support the numerous applications of the next 

generation communication systems. Using Large Intelligent Surfaces (LIS), which are a panel with mounted reflective components, 

is one way to address this problem. Their primary function is to divert the electromagnetic signal to the intended user. As a result, 

the received signal's strength and reception quality both improve, improving the Quality of Service (QoS). Machine Learning 

algorithms have been used to implement LIS in a number of ways, including channel estimation and the calculation of phase shifts 

(discrete), to mention a few. Here, it is suggested that the Signal to Noise Ratio (SNR) for a LIS-supported communication system 

be assessed using a Deep Learning (DL) model. On the DL model, the effects of the SGD, Adam RMSProp Adadelta and Adamax 

optimizers are investigated. The Mean Squared Error (MSE) loss function is taken into account. The Adam optimizer offers the 

highest level of precision, making it preferable to other optimizers. The SNR for 10 users is measured using the suggested DL model 

with Adam Optimizer. The outcomes of this work is contrasted with the SNR estimate by an existing technique that calculates SNR 

based on LIS size and the location of transmitter and receiver with an accuracy of 93.5%. The simulation results indicate that the 

accuracy is increased to 96% using the suggested DL model which attains an average error of 3.6. 
 

Keywords: Deep Learning, DeepMIMO, Large Intelligent Surfaces, SNR. 

 

 

 

░ 1. INTRODUCTION   
The implementation of LIS will serve many benefits for 

resolving the problems with 5G communications. The wireless 

communication systems' spectrum, bandwidth, and energy 

efficiency will all be improved by this novel idea. In addition, 

the Machine Learning (ML) Algorithms are crucial to its 

execution. By utilizing ML algorithms at different phases, they 

contribute to making the environment smarter. In heavily 

crowded areas with challenging line-of-sight (LOS) 

communication, the usage of LIS will be more efficient. In a 

heavily crowded area, the losses rise and the signal's strength 

declines. The QoS will be improved fourfold by combining LIS 

and ML methods. Figure 1 depicts a LIS-aided communication. 

These LIS panels are simple to install on any type of structure, 

like a building or indoor offices. As a result, it will be especially 

helpful in areas that are more populated. The LIS panels are also 

known as uniform reflecting arrays since they are made up of 

reflecting arrays that are uniformly spaced apart. Additionally, 

new ideas that weren't previously known are emerging as a 

result of the application of DL algorithms in wireless 

communication systems. An overview of DL applications that 

employ LIS across several wireless communication domains is 

provided in the section that follows.  

 

 
Figure 1: LIS Concept 

 

░ 2. LITERATURE REVIEW 
A review of the possible applications of LIS is summarized in 

[3]. In [10], in a communication system using a LIS, a structure 

for channel estimation is described. The direct and LIS-

supported channel estimations are calculated from the pilot 

signals using two equivalent Convolutional Neural Networks 

(CNNs). The DL techniques in are applied in [9] to build the 

LIS reflection matrix. The simulation shows how to use the LIS 

to respond to a signal incident on it and reflect it to the intended 

user. This reflection is only performed by the panel's active 

components, those wired to the base station. Another ML model 

in [5][8] learns to converse with the phase changes of the 

reflected signals. These phase transitions are essential since the 

user's location is randomly updating. The feasible rate is 

evaluated without the use of any Channel State Information 
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(CSI) [6] [2]. The phase shifts are optimized via DL model 

implementation. A training loss function is developed for the 

model. A DL model can also be utilized to increase the security 

of a wireless system, which raises QoS. Base station beam 

formation optimization and LIS intrusion defense are used to 

achieve this. As a result, the DL algorithms are used in almost 

all phases of LIS. constantly changing, making these phase 

changes important [11] [1].  
 

The literature survey depicts the importance of LIS in the future 

generations of wireless communications. But, the performance 

of any wireless system can be evaluated based on the strength 

of the received signal at the destination. This can be judged 

based on the value of SNR. The field of LIS is very recent and 

not much amount of writing is available. But based on the 

research work available, the other proposed methods are 

summarized in table 1. The comparison reveals the typical 

parameters evaluated using LIS are Channel Capacity, 

Achievable Rate, Bit Error Rate (BER). The calculation of all 

these terms is possible only after evaluating the value of SNR 

to ensure a good QoS. 
 

░ Table 1: Comparison of other proposed methods for 

evaluating various parameters of LIS 
 

Reference  Technique 

Implemented 

Parameters 

calculated 

Modulation 

Technique 

Minimum 

SNR 

[11] 

 

Traditional 

method 

Channel 

capacity 

Achievable 

rate 

Amplitude 

Shift 

Keying 

(ASK) 

-20 db 

[12]  

 

Traditional 

method 

BER 64-QAM -25db 

[13] Traditional 

Method 

BER 64-QAM -45db 

[14] Traditional 

Method 

BER QPSK -20db 

Proposed 

method 

Deep 

Learning 

SNR 64-OFDM -28db 

 

Authors in [7] describes performance analysis with extremely 

large-scale IRS by deriving the upper and lower bound of the 

received SNR considering the changes in signal amplitude with 

respect to various reflecting elements for a uniform planar array 

(UPA). The SNR is evaluated based on the IRS size and the 

positions of transmitter and receiver. The detailed analysis for 

the lower and upper bound of SNR is done by the authors 

considering UPA which indicates that the upper and lower 

bounds approach to the same value. Whereas considering a 

Uniform Linear Array (ULA), the SNR can be maximized or 

the error can be reduced positioning the LIS near to transmitter 

or the receiver location. They also show that the SNR is 

dependent on the two geometric angles that are formed by 

connecting the transmitter and receiver location to the LIS. The 

results of SNR against LIS size can be summarized in table 1. 

It can be perceived that as the size of LIS increases SNR also 

increases and ultimately the error reduces. The average error of 

this system is approximately 6.5. This error in calculating the 

SNR value can further be reduced by using a DL model in 

evaluating the SINR, which is the main contribution of this 

paper. 

░ Table 2: Summary of SNR Evaluation in [7] 
 

LIS  SNR 

evaluated 

(db) 

SNR 

Theoretical 

(db) 

Error 

10-1 m -20 -8 -12 

100 m 0 11 11 

101 m 20 31 11 

102 m 36 52 16 

 

Main contribution of this paper: This paper implements a 

wireless communication system via the LIS panel. The required 

scenario is simulated using DeepMIMO which is available 

online. A Deep Learning model is implemented to train the LIS 

to divert the incoming signal towards the desired user. This is 

done by inducing discrete phase shifts on the incident signal. 

The signals generated from DeepMIMO are used to train and 

validate the DL model. This trained DL model is then used for 

predicting the received power at the receiver. From the 

predicted received power, the SNR at the receiver is calculated. 

The main aim is to maximize the minimum SNR at the receiver 

using DL.   
 

This paper is organized as follows. In section III gives a brief 

description of the optimizers used to implement DL model. The 

implementation of DL model with Adam, SGD, RMSProp, 

Adamax and Adadelta optimizers is explained in section IV. 

The proposed DL model is then used to evaluate an important 

performance metric of LIS viz. SINR which is elaborated in 

section V. 
 

░ 3. OPTIMIZERS IN DEEP LEARNING  
Deep learning optimization is crucial. The complexity of the 

entire system is caused by the neural networks' extensive use of 

non-linear functions. Gradient Descent is the most often used 

optimization approach in DL. In the training process, the size of 

the learning rate is also extremely important. This section 

provides information on the various Deep Learning optimizers. 

Assume that f(x) is the function that needs to be minimized and 

that f(x) is the gradient with the matching step size of k for 

iteration k. 
 

3.1 Batch Gradient Decent  
Following a full scan of the training set, this algorithm updates 

the parameter x: 
 

𝑚(𝑘 + 1) =  𝑚(𝑘) −  𝜕𝑘 ∆𝑓(𝑚𝑘)𝑓𝑜𝑟 (1: 𝑛)        (1) 
 

Convex issues are reduced to the global minimum using the 

method, while non-convex problems are reduced to a local 

minimum. Because it scans the complete dataset before 

updating the gradient, the computation time is dependent on the 

size of the dataset. Given that the training set contains millions 

or even billions of samples, scanning the entire training set to 

identify the gradient in the associated deep learning tasks will 

take a long time. As a result, doing a single parameter update 

takes too long. Additionally, it is difficult to incorporate all the 

data at once into the model due to the restricted processing 

memory. As a result, only a very small fraction of deep learning 

https://www.ijeer.forexjournal.co.in/
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models employs batch gradient descent to solve the 

optimisation problem.  
 

3.2 Stochastic Gradient Decent 

Instead, stochastic gradient descent determines the gradient and 

changes the parameters for each training sample. 
 

𝑚(𝑘 + 1) =  𝑚(𝑘) −  𝜕𝑘 ∆𝑓(𝑚𝑘)𝑓𝑜𝑟 (𝑖)  
 

However, due to the high variance of the training samples, 

frequent parameter adjustments would induce appreciable 

changes in the function. Although they slow down training, 

small step sizes may enable SGD to converge to a desirable 

point. Additionally, when using GPUs for processing, 

performance is decreased by frequent data transfers between the 

GPU and local memory. 
 

3.3 Adagrad 
By dividing the current gradient by the total of previous 

gradients, the update rule essentially scales the step size for 

each parameter based on the history of gradients for that 

parameter: 
 

𝑀(𝑘) = 𝑀(𝑘 − 1) + ∆𝑓 (𝑥(𝑘)2)             (2) 
 

𝑥(𝑘 + 1) = 𝑥(𝑘) −  
𝑡

𝑀(𝑘)+ 𝛼
 ∆𝑓(𝑥(𝑘))      (3) 

 

In this scenario, M is the accumulation of gradients, and is 

referred to as a levelling term that prevents division by zero. A 

different step size is utilized for each of the parameters. Due to 

the small size of M, M is higher for parameters where historical 

gradients were lower and lower for parameters where historical 

gradients were higher. We do not need to manually change the 

step size as a result. 0.01 may be used as the default value.  
 

3.4 Adadelta 
Adadelta is a resultant from Adagrad in an attempt to overcome 

the scheme's two main drawbacks: (1) the requirement for a 

manually selected global learning rate, and (2) the constant 

degradation of learning rates throughout the duration of 

training. Based particularly on the historical gradient, the step 

size is scaled. However, it just makes use of the most recent 

time window, unlike Adagrad. In addition, a component that 

compiles past updates and serves as an acceleration term is 

used. 
 

𝐸[∆𝑓(𝑥)2]𝑘 =  𝜌 𝐸[∆𝑓(𝑥)2]𝑘 − 1 + (1 − 𝜌)∆𝑓(𝑥)2        (4) 
 

𝑥̂ =  √
𝐸[∆𝑓(𝑥)2]𝑘−1+ 𝛼

𝐸[∆𝑓(𝑥)2]𝑘+ 𝛼
∆𝑓𝑥(𝑘)x ̂=            (5) 

 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑥 𝑘̂           (6) 
 

Where ρ is in the order of 0.95. 

 

3.5 RMSprop 
RMSprop is recommended as a solution to the problem of 

Adagrad's step size disappearing. It also uses the declining 

average of the past gradients: 
 

𝐸[∆𝑓(𝑥)2]𝑘 =  𝜌 𝐸[∆𝑓(𝑥)2](𝑘 − 1) + (1 − 𝜌)∆𝑓(𝑥)2      (7) 
 

𝑥(𝑘 + 1) = 𝑥(𝑘) −  
𝑡

𝐸[∆𝑓(𝑥)2]𝑘+ 𝛼
 ∆𝑓(𝑥(𝑘))           (8) 

 

Where ρ is roughly 0.9 which is a constant. 
 

3.6 Adam 
Adam is a different method that establishes the adaptive step 

size for each factor. It uses the decaying average of past 

gradients as well as the squared values of those gradients. The 

Adam update rule includes the following steps: 
 

𝑚𝑘 =  𝛽1 𝑚𝑘−1 + (1 − 𝛽1)∆𝑓𝑥𝑘             (9) 
 

𝑣𝑘 =  𝛽2 𝑣𝑘−1 + (1 − 𝛽2)∆𝑓𝑥𝑘
2           (10) 

 

𝑣𝑘 =  𝛽2 𝑣𝑘−1 + (1 − 𝛽2)∆𝑓𝑥𝑘
2           (11) 

 

𝑣𝑘̂ =  
𝑣𝑘

1− 𝛽2
𝑘                          (12) 

 

𝑥𝑘+1 =  𝑥𝑘 − 
𝑡

√𝑣𝑘̂+ 𝛼
 𝑚𝑘̂                                                    (13) 

 

where β1 may be 0.9, β2 may be 0.999, and α can be 1e − 8. 
 

░ 4. IMPLEMENTATION OF DL MODEL 

WITH VARIOUS OPTIMIZERS 
A communication system is set up, as shown in figure 1. The 

evaluation of several papers leads to the conclusion that the 

most important performance indicators for evaluating the 

efficacy of LIS are SINR, System Attainable rate, Coverage 

area, and Energy Efficiency. Multiple Machine Learning 

approaches are employed in order to achieve the 

aforementioned metrics. Because it is necessary to attaining 

other performance indicators, the SNR computation is 

considered to be of utmost importance. Its duty is to keep the 

required QoS (Quality of Service) in place. The attainable rate 

and coverage area are computed based on the SNR at the 

receiver. 
 

4.1 Proposed DL Model 
The required dataset for training and validation is generated 

using the DeepMIMO dataset, which is available online. The 

DeepMIMO dataset can generate data for two types of 

scenarios: indoor scenarios and outdoor scenarios. For this 

work, the indoor scenario environment from DeepMIMO is 

simulated and the channel vectors are generated. This channel 

vectors are used to train the proposed DL model. The DL model 

was evaluated by variyng the number of hidden layers upto 14 

and the Root Mean Square Error (RMSE) value for every model 

was calculated. The RMSE values for various hidden layers is 

summarized in table 3. It is observed that the model with 12 

hidden layers gives the minimum RMSE. This analysis was 

compared and contrasted with the other existing methods but 

the authors of this paper observed that any ML model with a 

maximum of 4 hidden layers was implemented. The reduced 

RMSE by the proposed model is responsible for enhancing the 

accuracy and reducing the error in calculation of the SNR value. 

The increased accuracy is at the cost of the computation time 

https://www.ijeer.forexjournal.co.in/
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required for training, validation and testing. The dataset 

generated by simulating the indoor environmnet of the 

DeepMIMO is approximately 60k, 80% of which is used for 

training and 20% for testing. 
 

░ Table 3: RMSE Analysis of proposed Deep Learning 

Model for different hidden layers 
 

Sr. No Number of Layers RMSE value 

1 8 1.2512 

2 9 1.1203 

3 10 1.0467 

4 11 0.9812 

5 12 0.7912 

6 13 0.9414 

7 14 0.9833 

 

 
Figure 2: RMSE Analysis of the proposed DL model implementation 

keras 
 

 
Figure 3: Flowchart of DL model implementation in keras 

 

A DL model in Keras with 256 hyper parameters and 12 hidden 

layers was developed to forecast the received power at the 

receiver. The details of the DL model implemented and the 

DeepMIMO dataset parameters is summarized in table 2. The 

flowchart of the DL model implemented is as indicated in figure 

3. The dataset is produced at 2.4 GHz, 28 GHz, and 60 GHz for 

three different indoor scenarioes I1, I2, and I3. There are 

various numbers of Access Points (AP), obstacles, and room 

sizes in each of these three scenarios. You can learn more about 

each of these circumstances online at [6]. Ray tracing 

parameters (R) and dataset parameters (S) are two sets of inputs 

that a DeepMIMO generator uses to construct a dataset. 

Azimuth angle-of-arrival and Zenith angle-of-arrival 

(AoA_phi, AoA_theta), Radiation pattern (isotropic for all 

indoor scenarios), antenna spacing, Time of arrival (ToA), 

Phase, Received Power, Delay Spread (DS), Active paths, and 

Azimuth angle-of-arrival and Zenith angle-of-arrival 

(AoA_phi, AoA_theta) may be used in the simulation. 
 

░ Table 4: DeepMIMO and DL Model Parameters 
 

DeepMIMO Dataset 

Parameter / 

DL Model 

Parameter Value 

Scenario I1: 2.4 GHz, I2: 28 Ghz, I3: 60 GHz 

Radiation Pattern Isotropic 

Antenna Spacing 0.5 m 

Number of OFDM sub 

carriers 
64 

Number of paths 5 

Number of Hidden 

Layers 
12 

DL Model Architecture 14 Layers, 256 hyperparameters, 

Adam Optimizer 

Model Train and Test 

shape 
(151,5), (51,5), 300 epochs 

Number of Users 10 

Loss Root Mean Square Error (RMSE) 

Input parameters to DL 

model 

Time of arrival (ToA), Phase, Delay-

Spread (DS),  Active paths and 

Azimuth Angle-of-Arrival and Zenith 

Angle-of-Arrival (AoA_phi, 

AoA_theta) 

Target Output Received Power 
 

A 64-subcarrier OFDM system has been put into practice. The 

DL model's target is the power prediction. The model's inputs 

include the azimuth and zenith angles of arrival and departure, 

the time of arrival, the phase, the number of pathways, the 

spacing between antennas, and the radiation pattern. Power 

prediction in the presence of additive white Gaussian noise 

(AWGN) is the model's intended use. The system's SINR is 

determined from the projected power: 
 

𝑆𝐼𝑁𝑅 = 𝑃𝑠 
∑ 2ℎ𝑖

∑ 2+𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝜎𝑖
         (14) 

 

Where hi stands for the impulse response of the channel, i for 

noise variance, and Ps for received power. The DL model 

predicts the received power (Ps), and in the presence of AWGN, 

it computes the SNR at the receiver. For each of the three cases 

(I1, I2, and I3), Ten users are considered while calculating the 

SNR at 2.4GHz, 28GHz, and 60 GHz. For the DL model's 

calculation of SNR, the Root Mean Square Error (RMSE) was 

calculated for the Adam, SGD, RMSprop, Adamax, and 

Adadelta optimizers. The proposed DL model's realized 

structure is depicted in figure 2: 

https://www.ijeer.forexjournal.co.in/
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Figure 4: Proposed DL with 12 hidden layers Model 
 

To accomplish the power prediction, a DL model with details 

mentioned in table 4 is used. The essential dataset for training 

and testing is provided by the DeepMIMO dataset generator for 

three indoor environments at frequencies 2.4GHz, 28GHz, and 

60 GHz, respectively. In contrast to the test shape, which was 

(51,5) with 300 epochs, the train shape for the model was 

(151,5), where 5 denotes the number of routes. The RMSE and 

accuracy for each of the different optimizers utilized for the DL 

model with the I1 scenario implemented at 2.4 GHz are listed 

in table 5.  
 

░ Table 5: Performance of various optimizers 
 

 Adam SGD RMSprop Adamax Adadelta 

Average 

Error 

(RMSE) 

0.025 0.259 0.149 0.051 0.915 

Accuracy 

(%) 

97.45 74.02 85.05 94.83 8.42 

 

The graphs of RMSE vs. epochs (300) for various optimizers 

are depicted in figures 5 through figure 9. 

 

 
Figure 5: RMSE calculation with Adam Optimizer 

 
Figure 6: RMSE calculation with SGD Optimizer 

 

 
Figure 7: RMSE calculation with RMSprop Optimizer 

 

 
Figure 8: RMSE calculations with Adamax Optimizer 

 

 
Figure 9: RMSE calculations with Adadelta Optimizer 

 

░ 5. RESULTS AND DISCUSSION 
The comparative study indicated the superiority of Adam 

optimizer in Machine Learning Algorithms. This DL model 

with details mentioned in section IV is used to evaluate an 

important performance metric of LIS viz. SNR. The SNR is 

evaluated using equation (14) which is given by: 
 

𝑆𝐼𝑁𝑅 = 𝑃𝑠 
∑ 2ℎ𝑖

∑ 2+𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝜎𝑖
  

 

Where hi is the impulse response of the system and σi is the 

variance of noise. The SINR in db obtained from the proposed 

DL model is mention as follows 

https://www.ijeer.forexjournal.co.in/
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Figure 10: SNR calculation for 10 users at a frequency of 2.4 GHz 
 

 
 

Figure 11: SNR calculation for 10 users at a frequency of 28 GHz 

 

 
 

Figure 12: SNR calculation for 10 users at a frequency of 60 GHz 
 

The error can be calculated from the actual and the predicted 

values of SNR. The error calculated is expressed in table 6. The 

average error obtained by the proposed system is 3.2 which is 

superior to that obtained in [11] as indicated in table 1. The 

proposed DL model hence contributes an average accuracy of 

96% while evaluating SNR. Table 6 indicates the superiority of 

proposed DL model in calculating the required metric. 
 

░ Table 6: Effectiveness of DL model in calculating SNR 
 

No. of 

Users 

Error at 2.4 GHz Error at 28 

GHz 

Error at 60 

GHz 

1 5 -3 6 

2 3 7 5 

3 4 7 4 

4 -1 6 3 

5 -1 3 -2 

6 -2 3 -2 

7 2 5 3 

8 4 8 4 

9 3 8 5 

10 5 -3 6 

Avg 

Error 

2.2 4.1 3.2 

 

The error is lowest at a frequency of 2.2 GHz and highest at a 

frequency of 28 GHz as indicated in table 3. The I1 scenario 

(2.4 GHz) comprises of a Line of Sight (LOS) communication 

between the end users whereas the I2 (28 GHz) and I3 (60 GHz) 

scenarios contains LOS as well as non-LOS communication. 

The higher values of error for I2 and I3 scenario are due to the 

blockages present in the respective scenarios. Results in figure 

10 between user 5 and 6 indicate the overfitting of the proposed 

model. 
 

5.1 Comparison of the Proposed System with the 

Existing System 
The results obtained from the proposed DL model are compared 

with the results obtained in [7]. Authors in [7] use traditional 

methods in calculating the SNR. The SNR value is dependent 

on the size of the LIS panel and in turn number of reflecting 

elements and also on the locations of transmitter and receiver. 

According to table 1, the SNR degrades as the size of panel 

increases. This effect can be eliminated by use of a DL model 

in order to evaluate Signal to Noise Ratio. Table 5 indicates that 

DL model increases the accuracy in calculating one of the most 

important metrics of LIS i.e., SNR. 
 

░ Table 7: Comparison of work in [6] and proposed work 

 System in [6] Proposed System 

Average Error 6.5 3.16 

Accuracy (%) 93.5 96 

 

░ 6. CONCLUSION 

In this paper, a DL model was implemented to evaluate the SNR 

for a LIS assisted wireless communication system. The results 

were compared with the existing approach. The numerical 

results obtained indicate that the suggested DL model with 

Adam Optimizer performs better than the benchmark model 

highlighting the importance of Machine Learning Algorithms in 

Wireless Communication techniques. Other parameters 

including system attainable rate, system performance gain, and 

energy efficiency can be calculated using this DL model. The 

metrics stated above are calculated using the SNR value 

determined by this model as a starting point. Future research on 

models with RL, which could further increase accuracy, will be 

intriguing. 
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