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░ ABSTRACT- This study leverages the Semantic Segmentation of Underwater Imagery (SUIM) dataset, encompassing 

over 1,500 meticulously annotated images that delineate eight distinct object categories. These categories encompass a diverse array, 

ranging from vertebrate fish and invertebrate reefs to aquatic vegetation, wreckage, human divers, robots, and the seafloor. The use 

of this dataset involves a methodical synthesis of data through extensive oceanic expeditions and collaborative experiments, 

featuring both human participants and robots. The research extends its scope to evaluating cutting-edge semantic segmentation 

techniques, employing established metrics to gauge their performance comprehensively. Additionally, we introduce a fully 

convolutional encoder-decoder model designed with a dual purpose: delivering competitive performance and computational 

efficiency. Notably, this model boasts a remarkable accuracy of 88%, underscoring its proficiency in underwater image 

segmentation. Furthermore, this model's integration within the autonomy pipeline of visually-guided underwater robots presents its 

tangible applicability. Its rapid end-to-end inference capability addresses the exigencies of real-time decision-making, vital for 

autonomous systems. This study elucidates the model's practical benefits across diverse applications like visual serving, saliency 

prediction, and intricate scene comprehension. Crucially, the utilization of the Enhanced Super-Resolution Generative Adversarial 

Network (ESRGAN) elevates image quality, enriching the foundation upon which our model's success rests. This research 

establishes a solid groundwork for future exploration in underwater robot vision by presenting the model and the benchmark dataset. 
 

Keywords: Underwater Object Detection; Deep Learning; Convolutional Neural Network (CNN); Underwater Imaging; Image 

Enhancement. 

 

 

 

░ 1. INTRODUCTION   
Object detection and image segmentation are essential 

techniques in studying marine life, enabling researchers to gain 

insights into underwater ecosystems[1]. However, underwater 

images often suffer from degradation due to light attenuation in 

water, making the extraction of meaningful information through 

segmentation a challenging task. 
 

In recent years, Underwater Object Detection (UOD) has 

emerged as a prominent area in computer vision and image 

processing. UOD focuses on identifying visually distinctive and 

semantically meaningful objects in underwater images, 

separating them from the background. This allows for a better 

understanding of marine organisms and their interactions within 

their environment. 

Saliency detection, a key component of UOD, has been 

extensively studied across various disciplines, including 

computer vision, neuroscience, robotics, and graphics. It 

involves identifying the most visually striking regions in an 

image by analyzing features such as contrast, color, spatial 

information, and texture[2]. This enables the detection of salient 

objects and helps researchers isolate them from the background. 

However, the segmentation of underwater images presents 

unique challenges due to the degradation of image quality 

caused by light attenuation [3]. Overcoming these challenges is 

crucial for obtaining accurate and meaningful segmentation 

results, leading to a better understanding of marine life and the 

underwater environment. 
 

Semantic segmentation and scene parsing for visually-guided 

underwater robots lag behind existing solutions in other 

domains. This is primarily due to two practical limitations. 

Firstly, underwater imagery exhibits distinct visual 

characteristics, including domain-specific object categories, 

unique background patterns, and optical distortion artifacts. 

Consequently [4], state-of-the-art models trained on terrestrial 

data are not directly applicable to underwater scenes. Secondly, 

the absence of comprehensive underwater datasets hinders 

large-scale training and benchmarking of semantic 

segmentation models for general-purpose use. Existing datasets 

are often specific to particular applications, such as coral-reef 

classification [5, 6] or fish detection [7, 8], and lack the diversity 

and breadth required for broader research. Moreover, traditional 

class-agnostic approaches are limited to simpler tasks like 

foreground segmentation or obstacle detection, and they do not 

generalize well to multi-object semantic segmentation. 
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To address the aforementioned limitations, we have chosen to 

utilize the SUIM dataset, which serves as a large-scale 

annotated resource specifically designed for semantic 

segmentation in general-purpose robotic applications [9-11]. 

This dataset offers an extensive collection of object categories, 

such as fish, reefs, aquatic plants, and wrecks/ruins, that hold 

significant interest in the context of underwater exploration and 

surveying. Additionally, it provides essential pixel-level 

annotations for human divers, robots/instruments, and sea-

floor/rocks, which are crucial for facilitating human-robot 

cooperative applications [12, 13]. The SUIM dataset comprises 

a total of 1525 natural underwater images, each meticulously 

paired with corresponding ground truth semantic labels, 

ensuring the availability of accurate training data for our model. 

Furthermore, to comprehensively evaluate the generalization 

capacity of our approach, the dataset includes a distinct test set 

consisting of 110 images that have not been used during the 

model training process. 
 

By leveraging the richness and comprehensiveness of the SUIM 

dataset, our study aims to significantly enhance the accuracy 

and robustness of the semantic segmentation model for 

underwater imagery, making noteworthy contributions to 

advancements in the field of underwater robotics and 

exploration. 
 

In this research paper, we delve into the field of Underwater 

Object Detection, exploring novel methodologies and 

techniques for accurately identifying and extracting objects 

from underwater images. We aim to contribute to the 

advancement of marine research by developing robust 

algorithms that address the specific challenges posed by 

underwater imagery. By leveraging recent advancements in 

computer vision and image processing, we strive to improve the 

accuracy and efficiency of UOD systems, enabling researchers 

to study marine organisms with greater precision. Through our 

research, we hope to deepen our understanding of marine 

ecosystems and contribute to the conservation and management 

of our underwater world.  

 

░ 2. RELATED WORKS 
Underwater detection tasks have a longstanding history of 

employing machine learning algorithms. Traditional 

methodologies have leaned on handcrafted features for 

underwater object detection, encompassing shape, color, and 

texture characteristics. For instance, in a study referenced as 

[10], texture and color features were amalgamated with Support 

Vector Machines (SVM) to discern underwater corals across 

various scales. Convolutional Neural Networks (CNNs) were 

employed by Choi [14] for the classification of fish species, 

addressing real-time detection requirements. Yang et al. [15] 

achieved real-time underwater object detection using the 

YOLOv3 framework [14]. Li et al. [16]utilized the Fast-RCNN 

framework for fish species detection, subsequently enhancing 

the speed of fish detection with Faster-RCNN [17]. Villon et al. 

[18] utilized a deep learning model for the detection of coral 

reef fishes. Real-time detection demands were also fulfilled by 

Yang et al. [19], employing the YOLOv3 framework [20] for 

underwater object detection. Additionally, [18]employed the 

Fast-RCNN framework for fish species detection, later adopting 

Faster-RCNN [21] to optimize fish detection speed. Chuang et 

al. [12] employed texture features extracted using phase Fourier 

transform for fish detection, while other algorithms 

incorporated more sophisticated features such as Scale-

Invariant Feature Transform (SIFT) [13]and Histogram of 

Oriented Gradients (HOG) [22]. 
 

The utilization of handcrafted features, however, had inherent 

limitations. Firstly, their task-specific nature impeded 

generalization, as features tailored for scenes with weak 

illumination might be ill-suited for well-illuminated underwater 

environments or scenarios involving substantial changes in the 

objects to be detected. Secondly, the disjointed nature of feature 

extraction and classification often led to suboptimal 

performance, as exemplified by Villon et al. [22], who 

demonstrated lagging performance in fish classification using 

HOG features with SVM, falling behind end-to-end deep 

learning frameworks. Furthermore, proposing and validating 

effective handcrafted features demanded significant domain 

expertise. 
 

In contrast, supervised deep learning algorithms have 

demonstrated the capacity to autonomously derive features 

from extensive datasets. Deep learning, as a specialized subset 

of machine learning, employs layered structures inspired by 

biological neural networks for data analysis. This approach 

necessitates substantial training data from which it extracts 

useful and discriminative features with minimal human 

intervention [23]. Unlike traditional machine learning models, 

which are often task-specific and require human adjustments, 

deep learning architectures effectively learn features directly 

from input data. Deep learning networks have showcased 

remarkable performance in various computer vision tasks, 

including image classification, segmentation, object detection, 

and tracking, and have been widely deployed in underwater 

object detection. 
 

Despite the advantages of deep learning-based detection models 

over traditional machine learning models, challenges persist. 

Deep learning models may encounter difficulties with noisy 

data and class imbalance, leading to challenges in effectively 

detecting small objects and resulting in high false positives and 

false negatives. Consequently, ongoing efforts are essential to 

address these challenges in deep learning-based underwater 

object detection. Additionally, Kim et al. [11]proposed a 

method based on multi-template object selection and color-

based image segmentation within the broader context of 

underwater object detection. 

 

░ 3. SEMANTIC SEGMENTATION  
Semantic segmentation for underwater object detection is a 

challenging computer vision task that involves the accurate 

classification and delineation of various objects and regions 

within underwater imagery [16]. It plays a critical role in 

understanding the complex underwater environment and has 

significant applications in marine research, environmental 

monitoring, underwater robotics, and ocean exploration [17, 

19]. 

https://www.ijeer.forexjournal.co.in/
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In the context of underwater object detection, the goal of 

semantic segmentation is to partition an input underwater image 

into distinct semantic regions, where each pixel is assigned a 

specific object category label. Unlike object detection, which 

focuses on recognizing and localizing individual objects within 

an image, semantic segmentation provides a more fine-grained 

understanding of the scene by assigning meaningful labels to 

every pixel [10], thereby facilitating a pixel-wise analysis of the 

underwater environment [20]. To achieve semantic 

segmentation for underwater object detection, deep learning-

based approaches have emerged as state-of-the-art techniques. 

Convolutional Neural Networks (CNNs) serve as the 

foundation for these methodologies due to their ability to 

automatically learn hierarchical features from images. Fully 

Convolutional Networks (FCNs) are a popular choice for this 

task, as they are designed specifically for dense pixel-wise 

predictions and allow end-to-end learning. 

 

The process of semantic segmentation begins with the 

acquisition of a sufficiently large and diverse dataset of 

underwater images, each manually annotated with pixel-level 

ground-truth labels corresponding to the different object 

categories present, such as corals, fish, rocks, sand, and other 

marine organisms or structures. During training, the deep 

learning model is fed with the annotated data to learn to identify 

relevant features that characterize each object category. The 

model is optimized to minimize the pixel-wise classification 

loss, ensuring accurate predictions for each pixel's semantic 

label. 

 

In the inference phase, the trained model is applied to new, 

unseen underwater images. The model processes the input 

image and outputs a pixel-wise probability map, where each 

pixel is associated with the likelihood of belonging to a specific 

object category [24]. A thresholding step is often applied to 

obtain the final segmentation mask, where each pixel is 

assigned the label of the most probable object category. 

 

However, the complex nature of underwater imagery poses 

several challenges for semantic segmentation. Underwater 

images are prone to degradation due to absorption, scattering, 

and color attenuation, leading to reduced visibility and image 

quality. Moreover, the presence of unique underwater artifacts, 

such as backscatter and noise, can hinder accurate object 

detection. 

 

░ 4. THE SUIM DATASET 
The SUIM dataset encompasses a range of object categories that 

are crucial for semantic labeling in underwater imagery 

analysis. These categories include waterbody background 

(BW), human divers (HD), aquatic plants/flora (PF), 

wrecks/ruins (WR), robots and instruments (RO), reefs and 

other invertebrates (RI), fish and other vertebrates (FV), and 

sea-floor and rocks (SR) [25]. To represent these categories 

within the image space, a 3-bit binary RGB color coding 

scheme is employed, as illustrated in table 1. 

░ Table 1: Object Categories and Corresponding Color 

Codes in the SUIM Dataset 
 

Object category 

RGB 

color 

Code 

RGB color 

Code 

Background (waterbody) 000 BW 

Human divers 001 HD 

Aquatic plants and sea-grass 010 PF 

Wrecks or ruins 011 WR 

Robots (AUVs/ROVs/instruments) 100 RO 

Reefs and invertebrates 101 RI 

Fish and vertebrates 110 FV 

Sea-floor and rocks 111 SR 

 

For training and validation purposes, the SUIM dataset 

comprises a total of 1525 RGB images, while an additional set 

of 110 test images is provided to facilitate benchmark 

evaluation of semantic segmentation models. These images 

exhibit diverse spatial resolutions, including dimensions such as 

1906 × 1080, 1280 × 720, 640 × 480, and 256 × 256. Careful 

selection of these images was conducted, drawing from a large 

collection gathered during oceanic explorations and human-

robot collaborative experiments conducted in various water 

environments. In addition, a small subset of images from 

existing large-scale datasets, namely EUVP [4], USR-248 [26], 

and UFO-120 [27], was incorporated to introduce a diverse 

range of natural underwater scenes and experimental setups for 

human-robot cooperation. The population distribution of each 

object category, their pairwise correlations, and the 

distributions of RGB channel intensity values within the SUIM 

dataset are visualized in figure 1. 
 

 
 

Figure 1: Statistics of Object Categories Values in the SUIM Dataset 
 

The pixel annotations of all images in the SUIM dataset were 

performed by seven human participants. Figure 2 provides a 

glimpse of some sample images with their corresponding pixel 
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annotations. To ensure consistent classification of potentially 

confusing objects, such as plants/reefs and 

vertebrates/invertebrates, we adhered to the guidelines outlined 

in [28] and [29]. These guidelines helped ensure accurate and 

reliable labeling of objects of interest within the dataset. 
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WR 

RO 

RI 

FV 

SR 

 

    

 

Figure 2: Sample Images and Corresponding Pixel Annotations in the SUIM Dataset 

 

░ 5. PRE-PROCESSING 
Images captured under non-uniform light conditions may suffer 

from color attenuation, scattering effects, and low contrast, 

leading to a loss of information content. Schettini and Corchs 

[30] provided an overview of previous research on underwater 

image enhancement to address this issue and preserve lost 

information. Among the various degradation aspects, contrast 

loss significantly impacts classification performance. To ensure 

consistent image quality and enhance contrast, we have 

incorporated various pre-processing sub-steps as follows: 
 

5.1 Image Super Resolution using ESRGAN 
Image super-resolution is the process of enhancing the 

resolution and quality of a low-resolution image [29]. In 

underwater imaging, this preprocessing step is crucial due to 

challenges that often lead to low-quality and low-resolution 

images [30]. ESRGAN (Enhanced Super-Resolution 

Generative Adversarial Networks) is a state-of-the-art deep 

learning method for image super-resolution. It employs a GAN 

(Generative Adversarial Network) architecture, with a 

generator network creating high-resolution images and a 

discriminator network distinguishing between generated and 

ground truth high-resolution images [31]. 

 

To utilize ESRGAN for underwater image super-resolution, a 

large-scale dataset of high-quality underwater images is 

collected and used for model training. The ESRGAN model 

learns the mapping from low-resolution to high-resolution 

underwater images, taking into account unique underwater 

image features, such as light scattering and absorption-induced 

blur, to generate visually pleasing and informative high-

resolution images [32]. Once trained, the ESRGAN model can 

be applied to enhance the resolution of new underwater images, 

greatly benefiting various underwater applications, including 

object detection and classification. Refer to figure 3 for the 

ESRGAN architecture. 

 

 
 

Figure 3: Architecture of Enhanced Super-Resolution Generative Adversarial Networks (ERSGAN)[31] 
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Figure 4: Architecture of the Proposed End-to-End Model for Semantic Segmentation in Underwater Images 

 

The model utilizes the initial four blocks of a pre-trained VGG-

16 model for encoding, and subsequently employs three 

mirrored decoder blocks along with a deconvolution layer for 

decoding and generating the semantic segmentation map. 
 

░ 6. PROPOSED METHODOLOGY 

Underwater image processing is a challenging task due to 

environmental factors that often degrade image quality. This 

below pseudocode introduces a systematic approach to address 

these challenges, leveraging techniques such as super-

resolution, data augmentation, and morphological operations 

for robust object detection in underwater scenarios. 

 

Input: images 

Output: mask,evaluation_metrics 

# read image from training folder 

for i= to NoTrainingImage(= 1525) 

 image=dataset_training_folder(i) 

 # Super resolution each image using ESRGAN 

 Super_ resolution_image=ESRGAN(image) 

 # Apply augmentation for each image. 

 augmented_data =augmentation(Super_ 

resolution_image,   

 'rotation_range': 0.2,'width_shift_range':   

 0.05,'height_shift_range': 0.05,  'shear_range': 0.05,   

 'zoom_range': 0.05, 'horizontal_flip': True, 'fill_mode':   

 'nearest') 

# resize each image for training using our model 

 resized_images(i) = resize (augmented_data, (320,    

240, 3))  

end          

# Model Initialization 

model = our_model(base, resized_images(all), 

n_classes=5) 

# Training and Testing Loop 

epoch = 1 

best_loss = 0 

while epoch <= 50: 

 if training_mode: 

  loss = train_model(model, train_data_generator) 

  if epoch > 1 and loss < best_loss: 

   # Save Trained Model 

    save_model(model) 

    best_loss = loss          

 # Load Trained Model for Testing 

  trained_model = load_trained_model() 

 # Create Folders for all Classes (5 folders) 

  create_class_folders() 

 # Test all images in the testing folder 

 for j=1 to NoTestingImage(=110) 

  image=dataset_testing_folder(j) 

  Super_ resolution_image=ESRGAN(image)  

  resized_images(j) = resize (Super_ resolution_image, 

(320, 240, 3))  

 Predicated_mask=test_model(trained_model,image(j)) 

  # Morphological Operation 

  mask=morphological_operations(Predicated_mask) 

  # Performance Evaluation 

  evaluation_metrics = evaluate_performance(mask) 

  save(mask) 

end 
 

6.1 Network Architecture 

Our primary focus lies in elevating the performance of our 

model, which leverages a neural network with 12 encoding 

layers obtained from pre-training. A visual representation of the 

architecture details can be found in figure 4. The central goal of 

our research centers around attaining enhanced outcomes and 

results through this model. 
 

The strategy we have delineated is illustrated in figure 5 and has 

been formulated based on a thorough exploration of pertinent 

literature as well as an exhaustive study of existing techniques 

and models. This comprehensive literature review encompassed 

a comparative analysis of diverse models concerning image 

contrast enhancement, image segmentation, and salient object 

detection. The proposed methodology encompasses the 

subsequent stages: 
 

6.1.1. Initial Preprocessing: Underwater Image Super-

Resolution 

The first step involves enhancing the resolution of underwater 

images. Several super-resolution models were considered, and 

after thorough evaluation, ESRGAN [31] was selected as the 

most suitable approach for our super-resolution process. 

6.1.2. Semantic Segmentation Model: Fully Convolutional 

Encoder-Decoder Architecture 

https://www.ijeer.forexjournal.co.in/
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Our proposed model employs a fully convolutional encoder-

decoder architecture with skip connections between mirrored 

composite layers. This model is designed to perform semantic 

segmentation on the enhanced images, facilitating object 

detection and classification. 
 

6.1.3. Post-Processing: Morphological Operations 

After semantic segmentation, we apply morphological 

operations as a post-processing step. These operations help 

refine the segmentation results, making them more accurate and 

enhancing the quality of the images. 
 

6.1.4. Performance Evaluation: F-score and Intersection 

over Union (IOU) 

To assess the effectiveness of our methodology, we evaluate the 

results using two metrics: F-score and IOU. These metrics 

provide insights into the accuracy and quality of object 

detection and segmentation in the processed images. 
 

It's important to underscore that the theoretical justification for 

the effectiveness of our proposed technique is rooted in the 

architectural design choices, preprocessing stages, and the 

specific model components we employ. This effectiveness can 

be attributed to the well-considered integration of these 

elements, allowing our model to excel in terms of performance 

and outcomes, which aligns with the central objective of our 

research. 

 
 

Figure 5: Block Diagram for Underwater Image 

 

6.2 Training Pipeline and Implementation Details 
The present study addresses the task of establishing a mapping 

from the input domain X, which comprises natural underwater 

images, to their corresponding semantic labeling Y in RGB 

space. To achieve this mapping, an end-to-end training 

approach is adopted, where the neural network is trained to 

minimize the cross-entropy loss [33] by comparing the 

predicted pixel labels with the ground truth pixel labels. This 

training strategy is aimed at enabling the network to perform 

semantic segmentation effectively, resulting in accurate and 

meaningful pixel-wise predictions in the RGB space for the 

underwater images. The training settings for semantic 

segmentation are outlined in table 2 These settings encompass 

the hardware utilized, training resolution, parameters to 

mitigate overfitting, learning rate, image augmentation 

techniques, saving of training parameters, and maximum 

iterations. 
 

The training pipeline is implemented using TensorFlow 

libraries [34]  on a Windows host equipped with a Nvidia GTX 

1080 graphics card. For optimization, we utilize the Adam 

optimizer [35] with a learning rate of 10-4 and a momentum of 

0.5. These settings enable iterative learning to improve the 

network's performance over time. To enhance the training 

process and improve generalization, we apply various image 

transformations as part of data augmentation during training. 

These transformations help introduce diversity and variability 

in the training data, contributing to better model robustness and 

performance. 
 

By formulating the problem as a supervised learning task and 

utilizing the aforementioned training pipeline and 

implementation details, we aim to train a model that effectively 

maps natural underwater images to their corresponding pixel-

level semantic labels in RGB space. 
 

░ Table 2: Underwater Object Detection Training Settings 
 

Category 
Configuration 

item 

Configuration 

value 

1. Network 
Deep learning 

network 
CNN 

2. Hardware GPU card used Nvidia GTX 1080 

3. Training 

Resolution 

Image resolution 

during training 

1906 × 1080, 1280 

× 720, 640 × 480, 

and 256 × 256 

pixels 

4. Learning Rate 

Adjustment 
Learning rate 0.0001 

5. Image 

Augmentations 

rotation range 0.2 

Width shift range 0.05 

Height shift range 0.05 

Zoom range 0.05 

Horizontal flip enabled 

6. Epoch Number Number of Epochs 50 

7. Data Saving Save data every 5,000 Iteration 

8. Total Training 

Iterations 
Total Iterations 250,000 Iteration 

https://www.ijeer.forexjournal.co.in/
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░ 7. RESULTS AND DISCUSSION 

We discussed the SUIM dataset and its various use cases for 

semantic segmentation and saliency prediction in section 3. To 

evaluate the performance of state-of-the-art (SOTA) models, 

adopted two distinct training configurations, which are 

described in detail below: 
 

7.1. Semantic Segmentation with Five Major 

Object Categories 
The dataset comprises five major object categories, namely HD, 

WR, RO, RI, and FV. All other objects in the dataset are 

considered as background and are represented by the color 

(000) RGB. To perform semantic segmentation, each model 

was designed to produce five channels of output, with one 

channel dedicated to each of the major object categories. These 

separate pixel masks were then combined to create RGB masks, 

facilitating visualization of the segmentation results. The 

primary objective of this configuration was to enable the models 

to accurately classify and segment input images into the 

specified five object categories (see figure 6). 
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Figure 6: Qualitative Comparison of Semantic Segmentation with Object Categories (HD, WR, RO, RI, and FV) Using Our Model and Ground 

Truth 

 

7.2. Single-Channel Saliency Prediction 

In this specific setup, the focus was on predicting saliency 

regions within the input images. To achieve this, the ground 

truth intensities of pixels belonging to the HD, RO, FV, and WR 

categories were set to 1.0, while pixels corresponding to all 

other categories were set to 0.0. During training, the models 

were tasked with predicting a single-channel output 

representing saliency values. Subsequently, the output was 

thresholded, yielding binary images that depicted the salient 

regions. This configuration aimed to assess the models' ability 

to accurately predict areas of interest within the images. 
 

In our evaluation, we compared the performance of all models 

using standard metrics for region similarity and contour 

accuracy. The region similarity was measured using the F score 

(dice coefficient), considering both precision and recall. 
 

𝐹 =
(2×P×R)

(P+R)
               (1) 

 For contour accuracy, we used the mean IOU (intersection over 

union) scores, assessing the extent of overlap between predicted  

and ground truth masks. These well-established metrics allowed 

us to objectively evaluate the models' segmentation and 

boundary localization capabilities on the SUIM dataset for 

semantic segmentation and saliency prediction tasks. 
 

IOU =
(Area of overlap)

(Area of union)
                            (2) 

 

The quantitative results presented in figure 7 and figure 8 reveal 

a comparative analysis of F-Score and mIOU scores for 

semantic segmentation across each object class, as well as 

saliency prediction scores. Among the evaluated models, 

DeepLabV3 consistently outperforms others, exhibiting the 

three highest F-Score and mIOU scores for both semantic 

segmentation and saliency prediction tasks. Notably, 

PSPNetMobileNet also delivers competitive results; however, 

its performance appears to vary across different object classes. 

In contrast, SUIM-NetRSB and SUIM-NetVGG models, 

demonstrates consistent and competitive performance in terms 

of region similarity and object localization. 

https://www.ijeer.forexjournal.co.in/
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Figure 7: Quantitative performance comparison between models to show the F-Score. 
  

 

 

Figure 8: Quantitative performance comparison between models to show the IOU 

 

Figure 9 provides a comprehensive comparative analysis, 

detailing the average F-score and Intersection over Union (IOU) 

between our model and established techniques in underwater 

semantic segmentation. Notably, our model's F-score of 88.27 

signifies a substantial performance leap over PSPNet (75.01), 

DeepLa (81.27), SUIM-Net (RSB) (76.97), and SUIM-Net 

(VGG) (86.97). This numerical advantage aligns with the visual 

representation in the figure, highlighting our model's 

proficiency in accuracy and precise object boundary 

localization. Specifically, our model showcases remarkable 

accuracy improvements for certain objects, demonstrating 

adaptability and targeted effectiveness. In comparison, PSPNet 

falls short in fine-grained segmentation, and DeepLa is 

surpassed in scene interpretation capabilities. While SUIM-Net 

(RSB) and SUIM-Net (VGG) exhibit competitive performance, 

our model emerges as the superior choice. Despite these 

strengths, considerations for potential limitations, such as 

generalizability and computational complexity, underscore the 

need for future research directions to refine these aspects and 

explore the integration of emerging technologies. This nuanced 
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PSPNet 80.21 70.94 72.04 72.65 79.19

DeepLab 89.68 77.73 72.72 78.28 87.95

SUIM-Net (RSB) 89.04 65.37 74.18 71.92 84.36
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0.00

20.00

40.00

60.00

80.00

100.00

Quantitative performance comparison between models 

(F-Score)

PSPNet DeepLab SUIM-Net (RSB) SUIM-Net (VGG) Our Model

HD WR RO RI FV

PSPNet 75.76 86.82 72.66 85.16 74.67

DeepLab 80.78 85.17 66.03 83.96 79.62
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Our Model 81.96 88.66 78.79 89.87 81.28
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analysis positions our model as an advanced and versatile 

solution in the realm of underwater semantic segmentation, with 

far-reaching implications for diverse applications in underwater 

image analysis. 
 

 
 

Figure 9: The Average of F-Score and IOU 
 

░ 8. CONCLUSION 

This research addressed the crucial requirements of semantic 

segmentation and pixel-level detection of salient objects in 

underwater scenes to empower visually-guided Autonomous 

Underwater Vehicles (AUVs). Despite the rapid advancements 

in terrestrial domain literature, existing solutions have been 

limited by either application-specific nature or outdated 

methodologies. To overcome these limitations, we present the 

first large-scale annotated dataset, SUIM, specifically designed 

for general-purpose semantic segmentation of underwater 

scenes. The dataset comprises 1525 images with pixel 

annotations for eight object categories, including fish, reefs, 

plants, wrecks/ruins, humans, robots, sea-floor/sand, and 

waterbody background. Additionally, we provide a 

comprehensive benchmark evaluation of state-of-the-art 

(SOTA) semantic segmentation approaches on the dataset's test 

set. 
 

Furthermore, we introduce our model, a fully-convolutional 

encoder-decoder architecture. Our model demonstrates 

competitive semantic segmentation performance while offering 

significantly faster runtime compared to existing SOTA 

approaches. This delicate balance between robust performance 

and computational efficiency renders our model suitable for 

near real-time utilization in attention modeling and servoing 

tasks for visually-guided underwater robots. 
 

The effectiveness of our approach is reinforced by the achieved 

result of 88% accuracy in semantic segmentation. This result 

substantiates the superiority of our model over other 

methodologies, affirming its capability to accurately detect and 

classify objects in challenging underwater environments. In 

achieving these results, we employed Image Super Resolution 

using ESRGAN as a preprocessing step, effectively enhancing 

the resolution and quality of low-resolution underwater images. 

Additionally, morphological operations were utilized to further 

refine the segmentation results. 
 

The availability of the SUIM dataset and the performance of our 

model open up new possibilities for various underwater 

applications. In the near future, we plan to extend the utilization 

of the SUIM dataset to explore different learning-based models, 

such as visual question answering and guided search. Our 

objective is to assess their feasibility in underwater human-

robot cooperative applications, thus contributing to the 

advancement of underwater robotics and exploration. 
 

This research represents a significant step towards bridging the 

gap in semantic segmentation and object detection 

methodologies between terrestrial and underwater domains. 

The SUIM dataset and our efficient model pave the way for 

enhanced capabilities and practical use of visually-guided 

AUVs in underwater exploration, marine research, and 

environmental monitoring. The success of our approach 

demonstrates the potential for further advancements in 

underwater computer vision, facilitating progress in the 

understanding and preservation of underwater ecosystems and 

marine resources. 
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