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░ ABSTRACT- In communication systems, deep learning techniques can provide better predictions than model-based 

methods when the hidden features of the problem are prone to deviating substantially from the formulated assumptions. Severe 

signal impairments due to multipath fading and higher channel noise levels degrade the performance of conventional receivers. To 

overcome this, a novel intelligent receiver based on a deep learning network is presented, achieving better performance in terms of 

reduced bit error rate than a standalone conventional receiver. The experimental result shows that the relative decrement in the 

symbol error ratio due to the proposed method is about 9% compared to the traditional receiver when the Rician channel fading is 

relatively high. 
 

Keywords: Confusion matrix, Deep learning, intelligent receiver, Percentage training error, Rician flat channel, Symbol Error 

Ratio. 

 

 

 

░ 1. INTRODUCTION   
The basic task of a wireless communication receiver is to 
faithfully recover the transmitted data despite the distortions 
due to channel impairments. Conventionally, the channel 
distortion effects are compensated using channel equalization 
techniques [1–2] and noise cancellation methods [3–4]. 
However, the equalization process may be incomplete when the 
channel state is challenging to estimate due to environmental 
fluctuations and unseen inter-channel interferences. The noise 
cancellation could also be imprecise when the actual channel 
noise differs from the assumed noise model. Then, the 
traditional model-based methods fail to compensate for the 
channel distortion fully. In such a scenario, the deep learning-
assisted receiver design can provide improved data recovery 
with reduced latency. 
 

Deep learning (DL) is realized using deep learning networks 
(DLNs), which are essentially extended versions of artificial 
neural networks. DLNs implement complex algebraic 
operations [5] embedded within their intermediate layers to 
capture and learn the features and patterns of the input data. 
Inspired by the admirable success of DL techniques in image 
classification and encouraged by the earlier successful 
applications of adopting DLNs in digital wireless 

communication, we have developed a novel intelligent receiver, 
a combination of the traditional receiver and the proposed DLN. 
It is basically a symbol-by-symbol detector, unlike a sequence 
detector. Here, DLN is implemented using a custom 
Convolutional Neural Network, and the proposed scheme is 
denoted as CNN-IR (CNN-Assisted IR). The main objective of 
CNN-IR is to minimize the data recovery error at the receiving 
end.  

 

░ 2. PREVIOUS WORK 
Recently improved techniques of DL with proven designs have 
paved the way for their applications in modern wireless 
communication systems like 5G, wireless LANs, software-
defined radios (SDRs), OFDM with MIMO, etc. Several 
authors have used machine learning (a superset of DL)-based 
methods for the channel equalization and the receiver design, 
where the channel distortion due to multipath fading and the 
Gaussian noise are compensated. 
 

In [6], Osvaldo Someone has given a substantial introduction to 
the applications of machine learning to solve problems in 
wireless communication systems where conventional modeling 
may not be accurate due to adverse environmental conditions 
with excessive channel fading and distortions. The author has 
discussed several scenarios where super skilled learning can be 
adopted to achieve reliable communication. 
 

In [7], various DL-based techniques available for improved and 
more reliable communication experiences in IoT and 5G 
systems have been reviewed. The authors have discussed the 
application of DL techniques for the design of wireless 
receivers, transmitters, and channel estimators to achieve their 
optimal performances. Apart from this, the various challenges 
to be conquered to adopt DL for wireless communication 
successfully have been elaborated. 
In [8], the authors have reviewed different DL-based schemes 
available for the physical layer to enhance its performance. 
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Different DL-based designs for signal compression with 
subsequent detection have been presented, which are useful in 
the case of redundant data sources. Additionally, a few end-to-
end communication system models implemented using DL 
techniques have been reviewed. Finally, the authors have 
indicated the possible future research direction in this field. 
 

In [9], the application of DL to five broad topics has been 
reviewed. These are channel estimation, cognitive radio 
receivers, communication with edge computing, end-to-end 
encoder-decoder, and communication using visible light. The 
prospects and challenges of further research and development 
in these areas are discussed in detail. 
 

In [10], the author used an AI-aided receiver design that mainly 
uses DL techniques to realize an intelligent receiver. The 
receiver is specially designed for linear block-coded 
(Hamming, Reed Solomon, etc.) transmission. At the receiver, 
multiple binary classifiers are used for classifying symbols in 
the range [0 to (M‒1)] in the case of M-PSK. Therefore, the DL 
net gets complex, and the training time will be relatively large. 
The performance is suboptimal when used without error-
correcting channel encoders. 
 

In [11], the end-to-end communication system is treated as an 
autoencoder, and then its working is optimized to achieve a 
higher degree of performance jointly by the transmitter as well 
as the receiver. The authors have introduced the ‘Radio 
Transformer Network’ (RTN) to assist the signal processing by 
the autoencoder to get better overall performance. Additionally, 
a convolutional neural network has been presented to detect the 
type of modulation adopted by the transformer by observing the 
received signal patterns. 
 

In [12], a deep receiver is designed using a one-dimensional 
convolutional network, DenseNet, that can decode transmitted 
data streams of different lengths. Multi-bit data classification is 
achieved using multiple binary classifiers in this scheme. The 
authors have shown that the deep receiver is capable of 
discovering the transmitted data in the case of multiple 
modulation and coding schemes. The use of multiple binary 
classifiers increases the computational cost of the scheme and 
may not give the correct result when the modulation type is 
QAM.  
 

In [13], the DL techniques are used to implement different sub-
systems of the receiver for joint optimal performance, and it is 
shown that these methods provide better information recovery 
compared to the traditional methods in MIMO communication. 
The authors have described in detail the use of ResNet and 
DenseNet to implement an intelligent receiver. Additionally, 
MobileNetV2 has been adopted with suitable modifications to 
act as the intelligent receiver. 
 

In [14], the authors have described the application of DL for 
decoding the polar-encoded data packets. Even though this 
method works well in the presence of AWGN in the channel, it 
cannot handle distortion due to the fading channels. 
 

In [15], DL is used to solve two associated problems in digital 
communication systems: algorithmic approximation and signal 
detection. In algorithmic approximation, a known iterative 

algorithm that takes a long time (hence may not be suitable for 
online high-speed communication) is replaced by a DL network 
to get quick results. For example, power allocation in MIMO, 
iterative estimation of channel coefficients, etc. In signal 
detection, DL is used as an intelligent receiver that can replace 
a complex hardware unit. 
 

In [16], the author has used DL techniques to detect the 
transmitted symbols. A CNN carries out symbol-by-symbol 
detection. Additionally, sequence-by-sequence detection has 
been implemented using a Long Short-Term Memory (LSTM) 
network. Here, molecular communication is used to test the 
algorithms. 
 

In [17], the LSTM deep learning (DL) scheme is implemented 
to detect the signal in a multiple-access multi-carrier 
modulation scenario with generalized Gaussian noise and 
fading. Signal detection in the uplink and downlink modes is 
realized without the use of the Successive Interference 
Cancellation Unit. 
 

In [18], the authors have presented a DL-based detector for a 
single-carrier non-orthogonal multi-access communication 
system with index modulation. The detector eliminates the 
successive interference cancellation unit and is found to 
perform better in the presence of severe interchannel 
interference. 
 

2.1 Main contributions 

Several DL-based techniques have been published for the 
detection of the transmitted signal without direct knowledge of 
the present channel state or the noise levels. However, their 
performances are application-specific and not fully error-free. 
Therefore, in DLA-IR, our contribution is to provide error-free 
symbol detection in the case of the M-PSK single carrier 
modulation system. 
 

░ 3. PRELIMINARIES  
This paper considers an M-PSK transmitter-receiver system 
with M = 4. However, the principle can be easily extended to 
other values of M, namely 2, 8, 16, etc., and also to the various 
QAM configurations. Here, the wireless communication system 
is simulated using the MATLAB communication toolbox, and 
the various signals involved therein are obtained by running the 
simulation to cover the desired range of values. 
 

3.1 Baseband Communication Model 
The baseband communication model under consideration, with 
a Recian Flat Fading Channel, is shown in figure 1. 
 

The different symbols used here are represented as follows; 
Symbol 𝒙 is the input data stream of length N expressed as 

 

 
 

Figure 1: Base band block diagram of a basic Wireless 

Communication System 

https://www.ijeer.forexjournal.co.in/
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𝒙 = [𝑥(𝑡0), 𝑥(𝑡0 + 𝜏), … , 𝑥(𝑡0 + 𝑛 ∗ 𝜏), … , 𝑥(𝑡0 + (𝑁 −

1)) ∗ 𝜏 ]  
 

Without loss of generality, for simplicity in explaining, 𝑡0  is 

taken as 0, and the symbol interval 𝜏 s set to 1. We also use array 

indexing, starting with 1 instead of zero. Then, in its simplified 

form, the column vector is written as, 
 

𝒙 = [𝑥(1), 𝑥(2), … , 𝑥(𝑛), … , 𝑥(𝑁)]T                                     (1) 
 

Here, T stands for the transpose of the array. In the M-PSK 

modulation scheme, element 𝑥(𝑛) ∈ [0 to (M‒1)], for n = 1 to 

N. The size of x is N×1. As a baseband unit, the wireless 

transmitter essentially operates as an M-PSK modulator. The 

output of the modulator is given by 𝒙𝑴 as, 
 

𝒙𝑴 = [𝑥𝑀(1), 𝑥𝑀(2), … , 𝑥𝑀(𝑛), … , 𝑥𝑀(𝑁)]T                        (2)  

                                                                                                               

In (2), the M-PSK modulated Output 𝑥𝑀(𝑛) corresponds to the 

data input 𝑥(𝑛) for n = 1 to N and 𝑥𝑀(𝑛) is a complex number 

related to  𝑥(𝑛) as [19], 
 

 𝑥𝑀(𝑛) = exp(𝑖 ∗ 𝜃(𝑛,𝑀)) where  𝜃(𝑛,𝑀) = 𝜋 ∗ (
2∗𝑥(𝑛)+1

𝑀
)      (3) 

 

For two consecutive x(n)’s, the corresponding phase vectors 

differ by (2 ∗ 𝜋)/𝑀  radians. In figure 1, in terms of the 

baseband, the vector (stream) 𝑥𝑀   is the output of the 

modulator, which is the input to the Rician Flat channel. 
 

3.1.1 Rician Flat Channel  

In the proposed scheme (CNN-IR), the Rician Flat Channel 

(RFC) model is adopted, assuming the existence of a dominant 

line of sight (LoS) path from the transmitter to the receiver. The 

RFC is assumed to be a non-frequency selective channel with 

stationary fading characteristics. The RFC is represented by the 

Tapped Delay Line (TDL) model, as shown in figure 2. 

 

 
Figure 2: L-tap Rician Flat Channel Model 

 

The channel gain coefficients are taken as follows: 
 

ℎ =   [ℎ(1), ℎ(2), … , ℎ(𝐿)]T                                                 (4) 
 

The coefficients are generated based on the Rician distribution 

[20]. In eq. (4) L represents the number of wireless paths from 

the transmitter to the receiver. Here, ℎ(1) is the gain of the LoS 

path. The normalized path gain of successive paths are taken as 

[pg(1), pg(2),…,pg(L)] and pg(1) is set to 1. The output of the 

TDL unit is represented by 𝒅,  and it is obtained by the 

convolution of 𝑥𝑀 and ℎ as 𝒅 = 𝒙𝑴𝒉. 

 

3.1.2 AWGN Noise 

The AWGN noise of the channel is added after the tapped delay 

line. The AWGN noise vector 𝒘 of length N is represented by, 
 

𝒘 = [𝑤(1), 𝑤(2), … 𝑤(𝑛), … ,𝑤(𝑁)]T                                  (5) 
 

The value of 𝑤  is chosen to provide the specified snr. The 

resulting signal stream after the noise addition is denoted by the 

vector 𝑦𝑀 (see figure 1). 𝒚𝑴 is given by,  
 

𝒚𝑴 = 𝒅 + 𝒘 = 𝒙𝑴𝒉 + 𝒘                                                 (6) 
 

The elements of 𝒚𝑴 , which are complex numbers, are 

represented as, 
 

𝑦𝑀 = [𝑦𝑀(1), 𝑦𝑀(1), … 𝑦𝑀(𝑛), … , 𝑦𝑀(𝑁)]T                    (7) 
 

Signal stream 𝒚𝑴 is the input to the M-PSK demodulator, as 

shown in figure 1. The size of the output of the demodulator is 

𝒚 which is a vector (discrete signal stream) of length N as,  
 

𝒚 = [𝑦(1), 𝑦(2), … 𝑦(𝑛), … , 𝑦(𝑁)]T                                     (8) 
 

3.2 Simulation of the communication system 

The baseband communication system, shown in figure 1, is 

realized using the built-in functions available from the 

MATLAB communication toolbox as shown in table 1. 
 

░ Table 1: Realization of the variables and parameters in 

figure 1 
 

Variables and parameters Brief description 

M = 4; %QPSK 

x = randi([0 M-1],N,1); %Random Input vector of 

size N×1 

xM = pskmod(x,M); %Modulated 

samples(complex) 

%of size N×1 

L = 1; 

h = andn(L,1)+1i*randn(L,1); 

% Length specification 

%normal random value of 

length 1 

h = [1, 0.2*h/norm(h)]; %Normalized Rician 

channel 

% coefficients of length 2 

 

d = conv(xM,h); %convolution 

d = d(1: end-1); %adjust the length(d)= N 

while 

%neglecing the last term 

yM = awgn(d,10,'measured'); %snr =10 dB Noise is 

added 

y = pskdemod(yM,M); %Demodulated output of 

%conventional Receiver 

for ground %truth 

verification 

https://www.ijeer.forexjournal.co.in/
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3.3 Convolution Receiver and the Intelligent 

Receiver 
The Conventional Receiver (CR) and the intelligent receiver of 

CNN-IR are shown in figures 3(a) and 3(b). The CR has the 

channel estimator and the equalizer units to compensate for the 

channel distortion. On the other hand, the Intelligent Receiver 

(IR), shown in figure 3(b), is essentially a well-trained 

Convolutional Neural Network for the Intelligent Receiver 

(CNN-IR) that compensates for the Channel Estimator (CE) and 

the Equalizer. 

 

The CNN-IR accepts the channel distorted and noisy input 𝑦𝑀 

and generates the output 𝑦. The CNN-IR is trained such that its 

output y is equal to the original transmitted data  𝑥, when the 

training is perfect. Therefore, under ideal conditions, the output 

y of the IR is equal to the transmitted input x itself. Thus, the IR 

eliminates the need for the CE and the Equalizer. In this way, 

the errors due to the inaccurate design/realization of the CE and 

the Equalizer are eliminated by using the IR. 
 

 
 

Figure 3: Conventional Receiver and Intelligent Receiver 
 

3.4 Learning Process in CNN 

CNN-IR operates on the principle of supervised deep learning. 

To appreciate it better, let us consider the functional relation 

between the input data vector 𝑥 at the transmission side and the 

corresponding receiver input vector 𝑦𝑀 of figure 3(b). 
 

3.5 Functional dependency between 𝒙 𝒂𝒏𝒅 𝒚𝑴 

From figure 3(b), it can be seen that the receiver output 𝒚 

depends on its input 𝑦𝑀.  Let this complex dependency be 

represented by a function G(…) as, 
 

𝒚 = 𝐺(yM)                                                                            (9) 
 

However, for an ideal receiver, the expected (target) output 𝒚 

should be equal to x. That is,  
 

𝒚 = 𝒙                                                                                   (10)    
 

From equation (9) and (10),  
 

𝒙 = 𝐺(𝒚𝑴)                                                                         (11) 
 

Functional relation equation (11) is nonlinear [20], and cannot 

be accurately expressed in closed form. However, based on the 

principle of machine learning, a CNN can learn the complex 

relation G (…), between 𝑥 and 𝑦𝑀, when it is trained using a 

large set of known samples of 𝑥 and 𝑦𝑀.  
 

Once the CNN learns the functional relation eq. (11), it can 

predict the value of 𝑥  given 𝑦𝑀 . In M-PSK system, the 

elements of vector 𝑥 are integers in the finite range [ 0 to (M‒

1)], and there are N elements in each 𝑥. Therefore, the recovery 

of the discrete integer vector 𝑥 of size N×1 is achieved using 

the classification mode where the prior knowledge that the 

variable to be predicted is a discrete integer in a finite range 

improves the classification accuracy. 
 

░ 4. BASIC WORKING OF THE CNN-IR 
4.1 Block diagram of the CNN-IR 

The block diagram of the CNN used in CNN-IR is shown in 

figure 4. The CNN operates in three stages, namely, the training 

stage, the test stage, and the deployment stage. 
 

4.2 Generation of Training Data  
For the CNN-IR the basic input is y𝑀, and the target output is 

𝒙. However, a relatively large dataset is required for efficient 

learning during the training stage. Therefore, four arrays, 

namely xTrain, xValid, and yTrain, yValid are used in training 

the CNN-IR. The detailed objectives of these four arrays are 

given in [21-22]. 
 

 
 

Figure 4: Basic Block Diagram of the CNN 
 

4.2.1 Generation of yTrain, yValid and yTrue 

Here, yTrain and yValid are obtained by splitting the vector 𝒙 

(as given in table 1) of length N into three parts of length R, V, 

and S as, 
 

 yTrain = 𝒙(1: 𝑅)                                                                (12)  

 yValid = 𝒙(1 + 𝑅: 𝑅 + 𝑉)                                                 (13) 
 

Here, the first R elements of 𝒙 form yTrain, and the next V 

elements of 𝒙 form 
 

yValid. The remaining N‒(R+V) elements form the yTrue array 

(see figure 4) as, 
 

yTrue = 𝒙(1 +  𝑅 + 𝑉: 𝑅 + 𝑉 + 𝑆) = 𝒙(1 +  𝑅 + 𝑉:𝑁)    (14) 
 

Where,  

 R+V+S = N                                                                           (15) 
 

In CNN -IR training, the ratio (R:V:S) is taken at (80:10:10) as 

 

(R:V:S) = (80:10:10)                                                          (16) 
 

Here, it is assumed that N is an integer multiple of 100. The 

(R:V:S) ratio could be slightly different as (70:10:20) or 

(60:10:30) or near these values.  
 

4.2.2 Generation of xTrain, xValid and xTest  

From figure 3(b), the CNN input is yM, a complex vector. But 

xTrain and xValid have to be arrays of real numbers. Hence, the 

contribution of yM towards the formation of xTrain, xValid, and 

xTest is obtained innovatively using the complex type property 

https://www.ijeer.forexjournal.co.in/
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of yM. To achieve this, let a multi-dimensional array XT be 

formed as, 
 

𝑿𝑻 = [𝒙𝒕[1], 𝒙𝒕[2], … , 𝒙𝒕[𝑛], … , 𝒙𝒕[𝑁]]                          (17) 
 

The nth term 𝑥𝑡[𝑛] is formed based on the components of the 

complex number yM(n), as shown in table 2. 
 

░ Table 2: Formation of the Primary Segment of xt [n] 
 

Part Description Built-in function used for 

parts 1 to 4 

Part 

1 

Real part of yM(n) real(yM(n)) 

Part 

2 

Imaginary part of 

yM(n) 

imag(yM(n)) 

Part 

3 

Absolute value of 

yM(n) 

abs(yM(n)) 

Part 

4 

Phase angel of 

yM(n) 

atan2(imag(yM(n)), 

real(yM(n))) 

 

Here, the real part, the imaginary part, the absolute value 

(magnitude), and the argument (phase angle) of yM are used in 

the formation of the Primary Feature Vector (PFV). The PFV is 

formed by stacking the four parts vertically, one below the other 

as, 

𝑃𝐹𝑉[𝑛] =

[
 
 
 
 
 

real(𝑦𝑀(𝑛))

imag(𝑦𝑀(𝑛))

abs(𝑦𝑀(𝑛))

atan2 (imag(𝑦𝑀(𝑛)), real(𝑦𝑀(𝑛)))]
 
 
 
 
 

           (18) 

 

In eq. (18), the size of the column vector 𝑃𝐹𝑉[𝑛] is (4 ×1). The 

CNN-IR requires a large-sized xt [n] for better performance. 

Hence, the 𝑃𝐹𝑉[𝑛]  is extended by vertically cascading the 

reversed 𝑃𝐹𝑉[𝑛] with the original 𝑃𝐹𝑉[𝑛] as,     

                                 

𝐸𝑃𝐹𝑉[𝑛][1] = [
𝑃𝐹𝑉[𝑛]

𝑓𝑙𝑖𝑝𝑢𝑑(𝑃𝐹𝑉[𝑛])
]                                   (19) 

 

In [19], 𝐸𝑃𝐹𝑉[𝑛][1] represents the level 1 extended 𝑃𝐹𝑉[𝑛]. 
The flip up-down function 𝑓𝑙𝑖𝑝𝑢𝑑(𝑃𝐹𝑉[𝑛]) gives the the 

vertically reversed 𝑃𝐹𝑉(𝑛). Now, the length of EPFV[n][1] is 

twice that of 𝑃𝐹𝑉[𝑛]. Thus, the size of 𝐸𝑃𝐹𝑉[𝑛][1] is ((4×2) 

×1). To increase the size further, 𝐸𝑃𝐹𝑉[𝑛][1] is extended to 

level 2 as, 
 

𝐸𝑃𝐹𝑉[𝑛][2] = [
𝐸𝑃𝐹𝑉[𝑛][1]

𝑓𝑙𝑖𝑝𝑢𝑑(𝐸𝑃𝐹𝑉[𝑛][1])
]       

        

Now, the length is doubled. The recursive extension is carried 

out further to get the uth level extension as, 
 

  𝐸𝑃𝐹𝑉[𝑛][u] = [
𝐸𝑃𝐹𝑉[𝑛][𝑢 − 1]

𝑓𝑙𝑖𝑝𝑢𝑑(𝐸𝑃𝐹𝑉[𝑛][𝑢 − 1])
]                     (20) 

 

The size of 𝐸𝑃𝐹𝑉[𝑛][u] will be (4 × 2𝑢)  × 1.  The uth level 

extended  𝐸𝑃𝐹𝑉[𝑛][u]  represents the hidden feature vector of 

the received data yM(n) corresponding to the transmitted data 

x(n). Now, 𝐸𝑃𝐹𝑉[𝑛][u] forms the training vector xtrain(n) as 

 xt[n] = 𝐸𝑃𝐹𝑉[𝑛][𝑢]                                                            (21) 
 

Here, u is the extension parameter corresponding to the nth 

symbol transmission. (Experimentally, it is found that u = 8 

gives good training performance). For good diversity, the 

elements of the column vector xt [n] are thoroughly shuffled. 

For successful training as well as validation, xt [n] is generated 

for n = 1 to N to get the multi-dimensional array XT as, 
 

 𝑋𝑇 = [𝑥𝑡[1], 𝑥𝑡[2],… , 𝑥𝑡[𝑛], … , 𝑥𝑡[𝑁]]                         (22) 
 

The size of 𝑋𝑇 is (4 × 2𝑢)  × 𝑁). The matrix XT is split into 

three parts XTR, XTV, and XTS, where XTR is used for training, 

XTV for validation, and XTS for testing. The first R columns of 

XT form XTR as, 
 

𝑋𝑇𝑅 = [𝑥𝑡[1], 𝑥𝑡[2], … , 𝑥𝑡[R]]                                        (23) 
 

The size of XTR is (4 × 2𝑢)  × 𝑅). 
 

The next V columns form XTV as, 
 

𝑋𝑇𝑉 = [𝑥𝑡[R + 1], 𝑥𝑡[R + 2], … , 𝑥𝑡[𝑅 + 𝑉]]                    (24) 
 

The size of 𝑋𝑇𝑉 is (4 × 2𝑢)  × 𝑉). The remaining columns of 

XT form the test set XTS as, 
 

𝑋𝑇𝑆 = [𝑥𝑡[1 + R + V], x𝑡[R + V + 2], … , 𝑥𝑡[𝑅 + 𝑉 + 𝑆]](25) 
 

The size of XTS is (4 × 2𝑢)  × 𝑆). 

  

Here also, (R+V+S) = N as in (14). For correct training of CNN-

IR, the split ratio (R:V:S) should be the same as used in (15), 

which is used for yTrain, yValid, and yTest 
 

4.3 Reshaping of XTR, XTV and XTS 

The actual training input xTrain, xValid, and xTest are obtained 

by reshaping XTR, XTV, and XTS to get the corresponding 4D 

matrices (as required by the input layer of the CNN) as, 
 

𝑥𝑇𝑟𝑎𝑖𝑛 = reshape(𝑋𝑇𝑅,𝑁1, 𝑁2, 𝑁3, 𝑅)                        (26) 

𝑥𝑉𝑎𝑙𝑖𝑑 = reshape(𝑋𝑇𝑉, 𝑁1,  𝑁2, 𝑁3, 𝑉)                        (27) 

𝑥𝑇𝑒𝑠𝑡 = reshape(𝑋𝑇𝑆,  𝑁1,  𝑁2,  𝑁3, 𝑆 )                         (28) 

 

The dimensional parameters 𝑁1, 𝑁2 and 𝑁3  are chosen for 

minimum training error, subjected to the constraint, 
 

𝑁1 ∗ 𝑁2 ∗  𝑁3 = 4 ∗ 2𝑢                                                         (29) 

 

4.4 Test stage of CNN 

The testing scheme is shown in figure 4. The purpose of testing 

a trained CNN_IR is to verify whether it is performing its task 

correctly or not by comparing its output with the expected 

(target) values. A known sequence of test input, denoted by 

xTest, as given by (28), is applied to the input of the CNN, and 

the resulting predicted output, ytest, is compared with the 

known ground truth values represented by yTrue as given by 

eq. (14). 
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4.4.1 Test Error and the Percentage Test Error 

The test error is represented by Error vector, and it is given by, 

Error = yTrue ‒ yTest                                                         (30) 
 

The size of YTrue is S×1. In eq. (30), YTest is the output of the 

CNN classifier. The sizes of YTest and Error vectors are also 

S×1. Ideally, for zero error, all the elements of Error have to be 

zeros. Otherwise, the degree of error is given by the number of 

non-zero elements of Error. Hence, the Test Error, TE is given 

by, 
 

TE = Number of non-zero elements of Error                        (31) 
 

Consequently, the Percentage Test Error (PTE) is given by,     
 

𝑃𝑇𝐸 =
𝑇𝐸∗100

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐸𝑟𝑟𝑜𝑟 
=

𝑇𝐸∗100

𝑆
                       (32) 

 

4.5 Deployment of CNN-IR 

After satisfactory training and testing, the CNN-IR, in the 

classification mode, is ready for the in-situ deployment at the 

receiver side, where it accepts the incoming data stream and 

classifies it into its correct class. Thus, the trained CNN-IR 

detects the present transmitted data stream by accepting the 

received distorted/noisy signal. Thus, the CNN-IR that gets 

trained offline for a reasonably long time provides a fast online 

response.  
 

4.6 CNN-IR Network 

The custom CNN_IR network is formed by the interconnection 

of neurons arranged in multiple cascaded layers, as shown in 

figure 3(b). The CNN-IR that is specifically constructed for the 

Intelligent receiver is inspired by the CNN models designed for 

image classification [22]. The first layer, imageInputLayer([N1, 

N2, N3]), accepts the training and test inputs and forwards them 

to the succeeding layer in the proper format. The last layer, 

classification Layer generates the classified output. 
 

layers = [imageInputLayer([N1, N2, N3])   %Input is generated 

in the form of a 3D matrix 

 

convolution2dLayer(3,8,'Padding','same’) %Kernal size = 3×3. 

Eight such units 
 

    batchNormalizationLayer %Refer [25] 

    reluLayer                  %Rectifier linear unit  

    maxPooling2dLayer(2,'Stride',2) %Refer [26] 

     

    convolution2dLayer(3,16,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

    maxPooling2dLayer(2,'Stride',2) 
     
    convolution2dLayer(3,32,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

    maxPooling2dLayer(2,'Stride',2) 
     
    convolution2dLayer(3,64,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

        convolution2dLayer(12,16,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 
 

    dropoutLayer(0.2)   % 20% deleted 

    fullyConnectedLayer(fcL) %Dense layer 

    softmaxLayer            % Gets the highest probability score            

    classificationLayer];      %which is the classified output 
 

The architectural arrangement of different layers of CNN-IR is 

given in figure 5. 
 

 
 

Figure 5: Architecural arrangement of different layers of CNN-IR 
 

4.7 CNN-IR Training  
The training is carried out based on the specified training 

options where the number of epochs, the rate of learning, and 

other hyperparameters are listed. In CNN-IR, the initial 

transmits, receive, and other signals required for training, 

testing, and deployment stages are generated using the 

MATLAB Communication toolbox and the Deep Learning 

toolbox. The training options used are as follows. 
 

Training Options 

options = trainingOptions('sgdm', ... 

    'MaxEpochs', 200, ... 

    'InitialLearnRate', 2.0*1e-3, ... 

    'LearnRateSchedule','piecewise', ... 
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    'LearnRateDropFactor', 0.075, ... 

    'LearnRateDropPeriod', 300, ... 

    'Shuffle','every-epoch', ... 

    'Plots','training-progress', ... 

    'ValidationData',{xValid,yValid}', ... 

    'ValidationFrequency', 40, ... 

    'MiniBatchSize', 30,... 

    'Verbose', false); 
 

Here, ‘sgdm’ is the abbreviation of ‘stochastic gradient descent 

with momentum.’  For details, refer [21-22]. 
 

4.7.1 CNN-IR Training Algorithm 

The CNN-IR Training Algorithm denoted by ‘Train-CNN-IR’ 

is given below. It is assumed that the training/test data set is 

readily available for implementing the Algorithm. 
 

#Algorithm Train-CNN-IR 
 

Training/test inputs:  𝑥𝑇𝑟𝑎𝑖𝑛, 𝑦𝑇𝑟𝑎𝑖𝑛, 𝑥𝑉𝑎𝑙𝑖𝑑, 𝑦𝑉𝑎𝑙𝑖𝑑,
𝑋𝑇𝑒𝑠𝑡, and 𝑌𝑇𝑟𝑢𝑒 

Output: Satisfactorily Trained CNN-IR. 
 

1. Construct the CNN-IR.  

2. Choose the initial hyperparameters (say as in table 3).  

3. Train CNN-IR using the trainNetwork(…)function as, 

       Net = trainNetwork(xTrain,yTrain,layers,options); 

4. Get the output of the trained network as, 

   yTest = classify(net,XTest);   

5. Evaluate the, TE and PTE using eq. (31) and (32)    

  If  𝑇𝐸 ==  0  // indicates successful training 

              Goto step 6   

          else 

              Adjust the layers parameters and the training 

parameters like [N1, N2, N3], 

              number of epochs, training rate etc., (fine tuning), and 

then 

              goto step 3 (retraining) 

          end 

6. Over // Now the trained CNN_IR is ready for online 

deployment    

 

░ 5. PERFORMANCE AND 

EXPERIMENTAL RESULTS  
5.1 Initial parameters Chosen for the preliminary 

Experiment 

The parameters chosen to demonstrate the basic working of the 

CNN-IR experiment are listed in table 3. 
 

░ Table 3: Values of the Parameters and Variables  
 

 

Parameters and variables Symbol Values 

Order of M-PSK 𝑀 4 

Length of vectors x, w, y 𝑁 10000 

Signal to Noise Ratio 
SNR 10 dB 

Number of taps for h 𝐿 2 

Path gain for h coefficients 

(normalized) 

[pg(1), 

pg(2)] 
[1, 0.2] 

Length of training dataset 𝑅 8000 

Length of validation datasets 
V 1000 

Length of test dataset 𝑆 1000 

Training datasets (Percentage) 100*R/N 80% 

Validation datasets (Percentage) 100*V/N 10% 

Testing datasets (Percentage) 
100*S/N 10% 

Train/Test extension parameter u 8 

Data dimensions for Input layer 𝑁1, 𝑁2, 𝑁3 32, 32, 1 

No. of epochs NE 200 

Optimizer 
----- sgdm 

 

Other unassigned values that are not covered in table 3 are 

selected according to [23].  
 

Training Progress 

Here, the CNN-IR is constructed as given in section 4.6. The 

training and test data sets are generated by simulation, as 

specified in tables 2 and 3. The CNN-IR is trained according to 

the corresponding parameters from table 3. The Rician h vector 

is obtained using the Gaussian distribution with normalized 

path gain = [1, 0.2]. The training is carried out by the function 

net = trainNetwork(…). During training, the training accuracy 

and the training loss [24] are progressively plotted and as shown 

in figure 6. Here, the PTE is found to be zero. 

 

 
 

Figure 6: Training progress plots having 200 epochs 
 

5.2 Performance of CNN-IR 

The performance of the CNN-IR is mainly measured by the 

Percentage Test Error (PTE) incurred during testing. The effect 

of variations of different parameters on PTE is experimentally 

demonstrated in this section. 
 

PTE vs the channel noise  

In this experiment, PTE vs the channel noise, expressed in snr, 

is explored. Here the snr is decremented from 12 dB to 5 dB, 

and for each snr, the number of epochs (NE) is varied from 100 

to 200 in steps of 25. All other parameters are the same as in 

Experiment 1. In a given trial, the resulting variations in PTE 

are shown in table 4. 
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░ Table 4: PTE versus snr for different NE’s 
 

   snr 

     ↓ 

Number of Epochs (NE) 

100 125 150 175 200 

12 dB 0.10 0.10 0.00 0.00 0.00 

11 dB 0.20 0.15 0.10 0.00 0.00 

10 dB 0.30 0.20 0.15 0.10 0.00 

9 dB 1.20 1.00 0.85 0.65 0.50 

8 dB 2.50 2.00 1.50 1.20 1.00 

7 dB 4.40 3.90 3.40 2.50 2.20 

6 dB 7.90 7.00 6.60 5.40 4.30 

5 dB 12.60 11.00 10.20 9.40 7.30 

 

From table 4, it can be seen that the PTE increases 

monotonically as the snr decreases while the reduction in PTE 

gets saturated for higher values of NE. 
 

From table 4, PTE versus snr is plotted for NE = 100, 150, and 

200, as shown in figure 7. 

 

 
 

Figure 7: PTE versus Number of Epochs (NE) 
 

5.3 Confusion Matrix 
The Confusion Matrix (CM) identifies the true and false 

classification counts over the full set of classes. The following 

Experiment demonstrates the classification details of the 4-class 

(M = 4) problem solved by CNN-IR. 
 

Here, the classification is carried out separately, with the length 

of S set at 40 for easy verification. In this case, SNR is set to 5 

db, and the value of NE at 150. Other parameters are the same 

as in table 3. Training is carried out, and the classification result 

is shown in the CM of figure 8. Here, the classes [1, 2, 3, 4] 

correspond to the data symbols [0, 1, 2, 3] respectively. In figure 

8, the off-diagonal elements give the number of errors (total 10) 

and the diagonal elements give the correct number (total 30) of 

classifications of each class. The filled element CM(I, J) gives 

the number of members of true class I predicted as class J. Thus, 

in figure 8, CM(4, 3) = 3 means that 3 members of  class 4 are 

wrongly predicted as the members of class 3. On the other hand, 

CM (3, 3) = 6 means, 6 members of class 3 are correctly 

classified into class 3 itself. 
 

 
 

Figure 8: Confusion matrix with S = 40 
 

5.4 PTE versus the path gain  

Here, the snr in dB is varied from 10 to 12, and for each snr, 

the normalized path gain pg(2) of the Rician coefficient h(2) is 

varied from 0.2 to 0.8 in steps of 0.1. Other parameters are the 

same as in table 2. The resulting variations in PTE is shown in 

table 5. 
 

Table 5. PTE versus the path gain pg(2) 

 

Snr ↓          pg(2) → 0.

10 

0.

15 

0.

20 

0.

25 

0.

30 

0.

35 

0.

40 

0.

45 

 CNN-IR, snr = 10 dB 0.00 0.00 0.00 0.24 1.32 2.88 4.32 6.84 

 CNN-IR, snr = 11 dB 0.00 0.00 0.00 0.20 1.10 2.40 3.60 5.70 

 CNN-IR, snr = 12 dB 0.00 0.00 0.00 0.16 0.88 1.92 2.88 4.56 

Traditional Receiver  

snr = 10 dB 

0.00 0.00 0.00 0.25 1.45 3.26 5.22 8.95 

 

The corresponding plots are shown in figure 9. 
 

From figure 9, it can be seen that PTE increases nonlinearly 

with the Rician path gain coefficient pg(2), as it contributes a 

product term as indicated in figure 2. On the other hand, PTE 

decreases as the channel snr increases, which implies a decrease 

in the noise level compared to the signal strength. 
 

 
 

Figure 9: PTE versus Normalized Path Gain Factor pg(2) 
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5.4.1 Comparison of CNN-IR with the Conventional 

Receiver 

The PTE values obtained using a Conventional Receiver while 

the snr is kept at 10 dB is also included in table 5. Here, at pg(2) 

= 0.3, PTE by the Conventional Receiver is 1.45 while that due 

to CNN-IR is 1.32. Therefore, the percentage reduction in the 

error is: 
 

percentage reduction in the error =
(1.45−1.32)∗100

1.45
=

8.97% ≈ 9%                                                                      (33) 
 

5.5 Performance with Respect to the Degree of 

Modulation M 

In this case, the degree of modulation (M) varies as M = 2, 4, 

and 8. The plots of PTE vs snr are plotted for each M for CNN-

IR and the corresponding Conventional receiver. The result is 

displayed in figure 10, which shows that the PTE decreases as 

the channel snr increases. A higher snr means the signal 

strength is higher compared to the noise level. On the contrary, 

as M (degree of modulation) increases PTE increases. In this 

case, for a given M, the receiver has to choose 1 out of M 

symbols at a time. Hence, the probability of a correct decision 

depends on (1/M) {inverse relation}. Thus, as M increases, the 

likelihood of a correct decision decreases. 
 

Here, the size of the test set is selected as S = 10,000 to get a 

good resolution for PTE. From the plots of figure 10, it can be 

observed that the PTE increases with M while it decreases with 

an increase in snr values. 
 

 
 

Figure 10: PTE versus snr for M= 2, 4, and 8 
 

░ 6. CONCLUSION 

A novel intelligent receiver, assisted by a deep learning 

network, is presented that predicts the transmitted discrete data 

with almost zero error. The intelligent receiver, on average, 

reduces the symbol error rate by 20 to 30 percent compared to 

the stand-alone conventional receiver. The deep learning 

network is trained offline and then deployed online to assist the 

conventional receiver. The proposed scheme is well suited for 

systems using error-correcting block channel codes like Read 

Solomon, BCH, and so on. The accuracy of detection can be 

improved further using transfer or reinforced learning. 
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