
 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

228 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

░ ABSTRACT- In communication systems, deep learning techniques can provide better predictions than model-based

methods when the hidden features of the problem are prone to deviating substantially from the formulated assumptions. Severe

signal impairments due to multipath fading and higher channel noise levels degrade the performance of conventional receivers. To

overcome this, a novel intelligent receiver based on a deep learning network is presented, achieving better performance in terms of

reduced bit error rate than a standalone conventional receiver. The experimental result shows that the relative decrement in the

symbol error ratio due to the proposed method is about 9% compared to the traditional receiver when the Rician channel fading is

relatively high.

Keywords: Confusion matrix, Deep learning, intelligent receiver, Percentage training error, Rician flat channel, Symbol Error

Ratio.

░ 1. INTRODUCTION
The basic task of a wireless communication receiver is to
faithfully recover the transmitted data despite the distortions
due to channel impairments. Conventionally, the channel
distortion effects are compensated using channel equalization
techniques [1–2] and noise cancellation methods [3–4].
However, the equalization process may be incomplete when the
channel state is challenging to estimate due to environmental
fluctuations and unseen inter-channel interferences. The noise
cancellation could also be imprecise when the actual channel
noise differs from the assumed noise model. Then, the
traditional model-based methods fail to compensate for the
channel distortion fully. In such a scenario, the deep learning-
assisted receiver design can provide improved data recovery
with reduced latency.

Deep learning (DL) is realized using deep learning networks
(DLNs), which are essentially extended versions of artificial
neural networks. DLNs implement complex algebraic
operations [5] embedded within their intermediate layers to
capture and learn the features and patterns of the input data.
Inspired by the admirable success of DL techniques in image
classification and encouraged by the earlier successful
applications of adopting DLNs in digital wireless

communication, we have developed a novel intelligent receiver,
a combination of the traditional receiver and the proposed DLN.
It is basically a symbol-by-symbol detector, unlike a sequence
detector. Here, DLN is implemented using a custom
Convolutional Neural Network, and the proposed scheme is
denoted as CNN-IR (CNN-Assisted IR). The main objective of
CNN-IR is to minimize the data recovery error at the receiving
end.

░ 2. PREVIOUS WORK
Recently improved techniques of DL with proven designs have
paved the way for their applications in modern wireless
communication systems like 5G, wireless LANs, software-
defined radios (SDRs), OFDM with MIMO, etc. Several
authors have used machine learning (a superset of DL)-based
methods for the channel equalization and the receiver design,
where the channel distortion due to multipath fading and the
Gaussian noise are compensated.

In [6], Osvaldo Someone has given a substantial introduction to
the applications of machine learning to solve problems in
wireless communication systems where conventional modeling
may not be accurate due to adverse environmental conditions
with excessive channel fading and distortions. The author has
discussed several scenarios where super skilled learning can be
adopted to achieve reliable communication.

In [7], various DL-based techniques available for improved and
more reliable communication experiences in IoT and 5G
systems have been reviewed. The authors have discussed the
application of DL techniques for the design of wireless
receivers, transmitters, and channel estimators to achieve their
optimal performances. Apart from this, the various challenges
to be conquered to adopt DL for wireless communication
successfully have been elaborated.
In [8], the authors have reviewed different DL-based schemes
available for the physical layer to enhance its performance.

Design of a Deep Learning based Intelligent Receiver for a

Wireless Communication System

Drakshayini M.N.1, Manjunath R. Kounte2 and Chaya Ravindra3

1,2,3School of Electronics and Communication Engineering, REVA University, Bengaluru, India; 1mndrakshayini@gmail.com,
2manjunath.kounte@gmail.com, 3chaya.ravindra@gmail.com

*Correspondence: Drakshayini M.N; mndrakshayini@gmail.com

ARTICLE INFORMATION

Author(s): Drakshayini M.N., Manjunath R. Kounte and Chaya

Ravindra

Received: 30/11/2023; Accepted: 14/02/2024; Published: 20/03/2024;
e-ISSN: 2347-470X;

Paper Id: IJEER 3011-22;

Citation: 10.37391/IJEER.120132

Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120132.html

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
mailto:1mndrakshayini@gmail.com
mailto:2manjunath.kounte@gmail.com
mailto:3chaya.ravindra@gmail.com
mailto:mndrakshayini@gmail.com
https://doi.org/10.37391/IJEER.120132
https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120132.html

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

229 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

Different DL-based designs for signal compression with
subsequent detection have been presented, which are useful in
the case of redundant data sources. Additionally, a few end-to-
end communication system models implemented using DL
techniques have been reviewed. Finally, the authors have
indicated the possible future research direction in this field.

In [9], the application of DL to five broad topics has been
reviewed. These are channel estimation, cognitive radio
receivers, communication with edge computing, end-to-end
encoder-decoder, and communication using visible light. The
prospects and challenges of further research and development
in these areas are discussed in detail.

In [10], the author used an AI-aided receiver design that mainly
uses DL techniques to realize an intelligent receiver. The
receiver is specially designed for linear block-coded
(Hamming, Reed Solomon, etc.) transmission. At the receiver,
multiple binary classifiers are used for classifying symbols in
the range [0 to (M‒1)] in the case of M-PSK. Therefore, the DL
net gets complex, and the training time will be relatively large.
The performance is suboptimal when used without error-
correcting channel encoders.

In [11], the end-to-end communication system is treated as an
autoencoder, and then its working is optimized to achieve a
higher degree of performance jointly by the transmitter as well
as the receiver. The authors have introduced the ‘Radio
Transformer Network’ (RTN) to assist the signal processing by
the autoencoder to get better overall performance. Additionally,
a convolutional neural network has been presented to detect the
type of modulation adopted by the transformer by observing the
received signal patterns.

In [12], a deep receiver is designed using a one-dimensional
convolutional network, DenseNet, that can decode transmitted
data streams of different lengths. Multi-bit data classification is
achieved using multiple binary classifiers in this scheme. The
authors have shown that the deep receiver is capable of
discovering the transmitted data in the case of multiple
modulation and coding schemes. The use of multiple binary
classifiers increases the computational cost of the scheme and
may not give the correct result when the modulation type is
QAM.

In [13], the DL techniques are used to implement different sub-
systems of the receiver for joint optimal performance, and it is
shown that these methods provide better information recovery
compared to the traditional methods in MIMO communication.
The authors have described in detail the use of ResNet and
DenseNet to implement an intelligent receiver. Additionally,
MobileNetV2 has been adopted with suitable modifications to
act as the intelligent receiver.

In [14], the authors have described the application of DL for
decoding the polar-encoded data packets. Even though this
method works well in the presence of AWGN in the channel, it
cannot handle distortion due to the fading channels.

In [15], DL is used to solve two associated problems in digital
communication systems: algorithmic approximation and signal
detection. In algorithmic approximation, a known iterative

algorithm that takes a long time (hence may not be suitable for
online high-speed communication) is replaced by a DL network
to get quick results. For example, power allocation in MIMO,
iterative estimation of channel coefficients, etc. In signal
detection, DL is used as an intelligent receiver that can replace
a complex hardware unit.

In [16], the author has used DL techniques to detect the
transmitted symbols. A CNN carries out symbol-by-symbol
detection. Additionally, sequence-by-sequence detection has
been implemented using a Long Short-Term Memory (LSTM)
network. Here, molecular communication is used to test the
algorithms.

In [17], the LSTM deep learning (DL) scheme is implemented
to detect the signal in a multiple-access multi-carrier
modulation scenario with generalized Gaussian noise and
fading. Signal detection in the uplink and downlink modes is
realized without the use of the Successive Interference
Cancellation Unit.

In [18], the authors have presented a DL-based detector for a
single-carrier non-orthogonal multi-access communication
system with index modulation. The detector eliminates the
successive interference cancellation unit and is found to
perform better in the presence of severe interchannel
interference.

2.1 Main contributions

Several DL-based techniques have been published for the
detection of the transmitted signal without direct knowledge of
the present channel state or the noise levels. However, their
performances are application-specific and not fully error-free.
Therefore, in DLA-IR, our contribution is to provide error-free
symbol detection in the case of the M-PSK single carrier
modulation system.

░ 3. PRELIMINARIES
This paper considers an M-PSK transmitter-receiver system
with M = 4. However, the principle can be easily extended to
other values of M, namely 2, 8, 16, etc., and also to the various
QAM configurations. Here, the wireless communication system
is simulated using the MATLAB communication toolbox, and
the various signals involved therein are obtained by running the
simulation to cover the desired range of values.

3.1 Baseband Communication Model
The baseband communication model under consideration, with
a Recian Flat Fading Channel, is shown in figure 1.

The different symbols used here are represented as follows;
Symbol 𝒙 is the input data stream of length N expressed as

Figure 1: Base band block diagram of a basic Wireless

Communication System

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

230 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

𝒙 = [𝑥(𝑡0), 𝑥(𝑡0 + 𝜏), … , 𝑥(𝑡0 + 𝑛 ∗ 𝜏), … , 𝑥(𝑡0 + (𝑁 −

1)) ∗ 𝜏]

Without loss of generality, for simplicity in explaining, 𝑡0 is

taken as 0, and the symbol interval 𝜏 s set to 1. We also use array

indexing, starting with 1 instead of zero. Then, in its simplified

form, the column vector is written as,

𝒙 = [𝑥(1), 𝑥(2), … , 𝑥(𝑛), … , 𝑥(𝑁)]T (1)

Here, T stands for the transpose of the array. In the M-PSK

modulation scheme, element 𝑥(𝑛) ∈ [0 to (M‒1)], for n = 1 to

N. The size of x is N×1. As a baseband unit, the wireless

transmitter essentially operates as an M-PSK modulator. The

output of the modulator is given by 𝒙𝑴 as,

𝒙𝑴 = [𝑥𝑀(1), 𝑥𝑀(2), … , 𝑥𝑀(𝑛), … , 𝑥𝑀(𝑁)]T (2)

In (2), the M-PSK modulated Output 𝑥𝑀(𝑛) corresponds to the

data input 𝑥(𝑛) for n = 1 to N and 𝑥𝑀(𝑛) is a complex number

related to 𝑥(𝑛) as [19],

 𝑥𝑀(𝑛) = exp(𝑖 ∗ 𝜃(𝑛,𝑀)) where 𝜃(𝑛,𝑀) = 𝜋 ∗ (
2∗𝑥(𝑛)+1

𝑀
) (3)

For two consecutive x(n)’s, the corresponding phase vectors

differ by (2 ∗ 𝜋)/𝑀 radians. In figure 1, in terms of the

baseband, the vector (stream) 𝑥𝑀 is the output of the

modulator, which is the input to the Rician Flat channel.

3.1.1 Rician Flat Channel

In the proposed scheme (CNN-IR), the Rician Flat Channel

(RFC) model is adopted, assuming the existence of a dominant

line of sight (LoS) path from the transmitter to the receiver. The

RFC is assumed to be a non-frequency selective channel with

stationary fading characteristics. The RFC is represented by the

Tapped Delay Line (TDL) model, as shown in figure 2.

Figure 2: L-tap Rician Flat Channel Model

The channel gain coefficients are taken as follows:

ℎ = [ℎ(1), ℎ(2), … , ℎ(𝐿)]T (4)

The coefficients are generated based on the Rician distribution

[20]. In eq. (4) L represents the number of wireless paths from

the transmitter to the receiver. Here, ℎ(1) is the gain of the LoS

path. The normalized path gain of successive paths are taken as

[pg(1), pg(2),…,pg(L)] and pg(1) is set to 1. The output of the

TDL unit is represented by 𝒅, and it is obtained by the

convolution of 𝑥𝑀 and ℎ as 𝒅 = 𝒙𝑴𝒉.

3.1.2 AWGN Noise

The AWGN noise of the channel is added after the tapped delay

line. The AWGN noise vector 𝒘 of length N is represented by,

𝒘 = [𝑤(1), 𝑤(2), … 𝑤(𝑛), … ,𝑤(𝑁)]T (5)

The value of 𝑤 is chosen to provide the specified snr. The

resulting signal stream after the noise addition is denoted by the

vector 𝑦𝑀 (see figure 1). 𝒚𝑴 is given by,

𝒚𝑴 = 𝒅 + 𝒘 = 𝒙𝑴𝒉 + 𝒘 (6)

The elements of 𝒚𝑴 , which are complex numbers, are

represented as,

𝑦𝑀 = [𝑦𝑀(1), 𝑦𝑀(1), … 𝑦𝑀(𝑛), … , 𝑦𝑀(𝑁)]T (7)

Signal stream 𝒚𝑴 is the input to the M-PSK demodulator, as

shown in figure 1. The size of the output of the demodulator is

𝒚 which is a vector (discrete signal stream) of length N as,

𝒚 = [𝑦(1), 𝑦(2), … 𝑦(𝑛), … , 𝑦(𝑁)]T (8)

3.2 Simulation of the communication system

The baseband communication system, shown in figure 1, is

realized using the built-in functions available from the

MATLAB communication toolbox as shown in table 1.

░ Table 1: Realization of the variables and parameters in

figure 1

Variables and parameters Brief description

M = 4; %QPSK

x = randi([0 M-1],N,1); %Random Input vector of

size N×1

xM = pskmod(x,M); %Modulated

samples(complex)

%of size N×1

L = 1;

h = andn(L,1)+1i*randn(L,1);

% Length specification

%normal random value of

length 1

h = [1, 0.2*h/norm(h)]; %Normalized Rician

channel

% coefficients of length 2

d = conv(xM,h); %convolution

d = d(1: end-1); %adjust the length(d)= N

while

%neglecing the last term

yM = awgn(d,10,'measured'); %snr =10 dB Noise is

added

y = pskdemod(yM,M); %Demodulated output of

%conventional Receiver

for ground %truth

verification

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

231 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

3.3 Convolution Receiver and the Intelligent

Receiver
The Conventional Receiver (CR) and the intelligent receiver of

CNN-IR are shown in figures 3(a) and 3(b). The CR has the

channel estimator and the equalizer units to compensate for the

channel distortion. On the other hand, the Intelligent Receiver

(IR), shown in figure 3(b), is essentially a well-trained

Convolutional Neural Network for the Intelligent Receiver

(CNN-IR) that compensates for the Channel Estimator (CE) and

the Equalizer.

The CNN-IR accepts the channel distorted and noisy input 𝑦𝑀

and generates the output 𝑦. The CNN-IR is trained such that its

output y is equal to the original transmitted data 𝑥, when the

training is perfect. Therefore, under ideal conditions, the output

y of the IR is equal to the transmitted input x itself. Thus, the IR

eliminates the need for the CE and the Equalizer. In this way,

the errors due to the inaccurate design/realization of the CE and

the Equalizer are eliminated by using the IR.

Figure 3: Conventional Receiver and Intelligent Receiver

3.4 Learning Process in CNN

CNN-IR operates on the principle of supervised deep learning.

To appreciate it better, let us consider the functional relation

between the input data vector 𝑥 at the transmission side and the

corresponding receiver input vector 𝑦𝑀 of figure 3(b).

3.5 Functional dependency between 𝒙 𝒂𝒏𝒅 𝒚𝑴

From figure 3(b), it can be seen that the receiver output 𝒚

depends on its input 𝑦𝑀. Let this complex dependency be

represented by a function G(…) as,

𝒚 = 𝐺(yM) (9)

However, for an ideal receiver, the expected (target) output 𝒚

should be equal to x. That is,

𝒚 = 𝒙 (10)

From equation (9) and (10),

𝒙 = 𝐺(𝒚𝑴) (11)

Functional relation equation (11) is nonlinear [20], and cannot

be accurately expressed in closed form. However, based on the

principle of machine learning, a CNN can learn the complex

relation G (…), between 𝑥 and 𝑦𝑀, when it is trained using a

large set of known samples of 𝑥 and 𝑦𝑀.

Once the CNN learns the functional relation eq. (11), it can

predict the value of 𝑥 given 𝑦𝑀 . In M-PSK system, the

elements of vector 𝑥 are integers in the finite range [0 to (M‒

1)], and there are N elements in each 𝑥. Therefore, the recovery

of the discrete integer vector 𝑥 of size N×1 is achieved using

the classification mode where the prior knowledge that the

variable to be predicted is a discrete integer in a finite range

improves the classification accuracy.

░ 4. BASIC WORKING OF THE CNN-IR
4.1 Block diagram of the CNN-IR

The block diagram of the CNN used in CNN-IR is shown in

figure 4. The CNN operates in three stages, namely, the training

stage, the test stage, and the deployment stage.

4.2 Generation of Training Data
For the CNN-IR the basic input is y𝑀, and the target output is

𝒙. However, a relatively large dataset is required for efficient

learning during the training stage. Therefore, four arrays,

namely xTrain, xValid, and yTrain, yValid are used in training

the CNN-IR. The detailed objectives of these four arrays are

given in [21-22].

Figure 4: Basic Block Diagram of the CNN

4.2.1 Generation of yTrain, yValid and yTrue

Here, yTrain and yValid are obtained by splitting the vector 𝒙

(as given in table 1) of length N into three parts of length R, V,

and S as,

 yTrain = 𝒙(1: 𝑅) (12)

 yValid = 𝒙(1 + 𝑅: 𝑅 + 𝑉) (13)

Here, the first R elements of 𝒙 form yTrain, and the next V

elements of 𝒙 form

yValid. The remaining N‒(R+V) elements form the yTrue array

(see figure 4) as,

yTrue = 𝒙(1 + 𝑅 + 𝑉: 𝑅 + 𝑉 + 𝑆) = 𝒙(1 + 𝑅 + 𝑉:𝑁) (14)

Where,

 R+V+S = N (15)

In CNN -IR training, the ratio (R:V:S) is taken at (80:10:10) as

(R:V:S) = (80:10:10) (16)

Here, it is assumed that N is an integer multiple of 100. The

(R:V:S) ratio could be slightly different as (70:10:20) or

(60:10:30) or near these values.

4.2.2 Generation of xTrain, xValid and xTest

From figure 3(b), the CNN input is yM, a complex vector. But

xTrain and xValid have to be arrays of real numbers. Hence, the

contribution of yM towards the formation of xTrain, xValid, and

xTest is obtained innovatively using the complex type property

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

232 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

of yM. To achieve this, let a multi-dimensional array XT be

formed as,

𝑿𝑻 = [𝒙𝒕[1], 𝒙𝒕[2], … , 𝒙𝒕[𝑛], … , 𝒙𝒕[𝑁]] (17)

The nth term 𝑥𝑡[𝑛] is formed based on the components of the

complex number yM(n), as shown in table 2.

░ Table 2: Formation of the Primary Segment of xt [n]

Part Description Built-in function used for

parts 1 to 4

Part

1

Real part of yM(n) real(yM(n))

Part

2

Imaginary part of

yM(n)

imag(yM(n))

Part

3

Absolute value of

yM(n)

abs(yM(n))

Part

4

Phase angel of

yM(n)

atan2(imag(yM(n)),

real(yM(n)))

Here, the real part, the imaginary part, the absolute value

(magnitude), and the argument (phase angle) of yM are used in

the formation of the Primary Feature Vector (PFV). The PFV is

formed by stacking the four parts vertically, one below the other

as,

𝑃𝐹𝑉[𝑛] =

[

real(𝑦𝑀(𝑛))

imag(𝑦𝑀(𝑛))

abs(𝑦𝑀(𝑛))

atan2 (imag(𝑦𝑀(𝑛)), real(𝑦𝑀(𝑛)))]

 (18)

In eq. (18), the size of the column vector 𝑃𝐹𝑉[𝑛] is (4 ×1). The

CNN-IR requires a large-sized xt [n] for better performance.

Hence, the 𝑃𝐹𝑉[𝑛] is extended by vertically cascading the

reversed 𝑃𝐹𝑉[𝑛] with the original 𝑃𝐹𝑉[𝑛] as,

𝐸𝑃𝐹𝑉[𝑛][1] = [
𝑃𝐹𝑉[𝑛]

𝑓𝑙𝑖𝑝𝑢𝑑(𝑃𝐹𝑉[𝑛])
] (19)

In [19], 𝐸𝑃𝐹𝑉[𝑛][1] represents the level 1 extended 𝑃𝐹𝑉[𝑛].
The flip up-down function 𝑓𝑙𝑖𝑝𝑢𝑑(𝑃𝐹𝑉[𝑛]) gives the the

vertically reversed 𝑃𝐹𝑉(𝑛). Now, the length of EPFV[n][1] is

twice that of 𝑃𝐹𝑉[𝑛]. Thus, the size of 𝐸𝑃𝐹𝑉[𝑛][1] is ((4×2)

×1). To increase the size further, 𝐸𝑃𝐹𝑉[𝑛][1] is extended to

level 2 as,

𝐸𝑃𝐹𝑉[𝑛][2] = [
𝐸𝑃𝐹𝑉[𝑛][1]

𝑓𝑙𝑖𝑝𝑢𝑑(𝐸𝑃𝐹𝑉[𝑛][1])
]

Now, the length is doubled. The recursive extension is carried

out further to get the uth level extension as,

 𝐸𝑃𝐹𝑉[𝑛][u] = [
𝐸𝑃𝐹𝑉[𝑛][𝑢 − 1]

𝑓𝑙𝑖𝑝𝑢𝑑(𝐸𝑃𝐹𝑉[𝑛][𝑢 − 1])
] (20)

The size of 𝐸𝑃𝐹𝑉[𝑛][u] will be (4 × 2𝑢) × 1. The uth level

extended 𝐸𝑃𝐹𝑉[𝑛][u] represents the hidden feature vector of

the received data yM(n) corresponding to the transmitted data

x(n). Now, 𝐸𝑃𝐹𝑉[𝑛][u] forms the training vector xtrain(n) as

 xt[n] = 𝐸𝑃𝐹𝑉[𝑛][𝑢] (21)

Here, u is the extension parameter corresponding to the nth

symbol transmission. (Experimentally, it is found that u = 8

gives good training performance). For good diversity, the

elements of the column vector xt [n] are thoroughly shuffled.

For successful training as well as validation, xt [n] is generated

for n = 1 to N to get the multi-dimensional array XT as,

 𝑋𝑇 = [𝑥𝑡[1], 𝑥𝑡[2],… , 𝑥𝑡[𝑛], … , 𝑥𝑡[𝑁]] (22)

The size of 𝑋𝑇 is (4 × 2𝑢) × 𝑁). The matrix XT is split into

three parts XTR, XTV, and XTS, where XTR is used for training,

XTV for validation, and XTS for testing. The first R columns of

XT form XTR as,

𝑋𝑇𝑅 = [𝑥𝑡[1], 𝑥𝑡[2], … , 𝑥𝑡[R]] (23)

The size of XTR is (4 × 2𝑢) × 𝑅).

The next V columns form XTV as,

𝑋𝑇𝑉 = [𝑥𝑡[R + 1], 𝑥𝑡[R + 2], … , 𝑥𝑡[𝑅 + 𝑉]] (24)

The size of 𝑋𝑇𝑉 is (4 × 2𝑢) × 𝑉). The remaining columns of

XT form the test set XTS as,

𝑋𝑇𝑆 = [𝑥𝑡[1 + R + V], x𝑡[R + V + 2], … , 𝑥𝑡[𝑅 + 𝑉 + 𝑆]](25)

The size of XTS is (4 × 2𝑢) × 𝑆).

Here also, (R+V+S) = N as in (14). For correct training of CNN-

IR, the split ratio (R:V:S) should be the same as used in (15),

which is used for yTrain, yValid, and yTest

4.3 Reshaping of XTR, XTV and XTS

The actual training input xTrain, xValid, and xTest are obtained

by reshaping XTR, XTV, and XTS to get the corresponding 4D

matrices (as required by the input layer of the CNN) as,

𝑥𝑇𝑟𝑎𝑖𝑛 = reshape(𝑋𝑇𝑅,𝑁1, 𝑁2, 𝑁3, 𝑅) (26)

𝑥𝑉𝑎𝑙𝑖𝑑 = reshape(𝑋𝑇𝑉, 𝑁1, 𝑁2, 𝑁3, 𝑉) (27)

𝑥𝑇𝑒𝑠𝑡 = reshape(𝑋𝑇𝑆, 𝑁1, 𝑁2, 𝑁3, 𝑆) (28)

The dimensional parameters 𝑁1, 𝑁2 and 𝑁3 are chosen for

minimum training error, subjected to the constraint,

𝑁1 ∗ 𝑁2 ∗ 𝑁3 = 4 ∗ 2𝑢 (29)

4.4 Test stage of CNN

The testing scheme is shown in figure 4. The purpose of testing

a trained CNN_IR is to verify whether it is performing its task

correctly or not by comparing its output with the expected

(target) values. A known sequence of test input, denoted by

xTest, as given by (28), is applied to the input of the CNN, and

the resulting predicted output, ytest, is compared with the

known ground truth values represented by yTrue as given by

eq. (14).

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

233 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

4.4.1 Test Error and the Percentage Test Error

The test error is represented by Error vector, and it is given by,

Error = yTrue ‒ yTest (30)

The size of YTrue is S×1. In eq. (30), YTest is the output of the

CNN classifier. The sizes of YTest and Error vectors are also

S×1. Ideally, for zero error, all the elements of Error have to be

zeros. Otherwise, the degree of error is given by the number of

non-zero elements of Error. Hence, the Test Error, TE is given

by,

TE = Number of non-zero elements of Error (31)

Consequently, the Percentage Test Error (PTE) is given by,

𝑃𝑇𝐸 =
𝑇𝐸∗100

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐸𝑟𝑟𝑜𝑟
=

𝑇𝐸∗100

𝑆
 (32)

4.5 Deployment of CNN-IR

After satisfactory training and testing, the CNN-IR, in the

classification mode, is ready for the in-situ deployment at the

receiver side, where it accepts the incoming data stream and

classifies it into its correct class. Thus, the trained CNN-IR

detects the present transmitted data stream by accepting the

received distorted/noisy signal. Thus, the CNN-IR that gets

trained offline for a reasonably long time provides a fast online

response.

4.6 CNN-IR Network

The custom CNN_IR network is formed by the interconnection

of neurons arranged in multiple cascaded layers, as shown in

figure 3(b). The CNN-IR that is specifically constructed for the

Intelligent receiver is inspired by the CNN models designed for

image classification [22]. The first layer, imageInputLayer([N1,

N2, N3]), accepts the training and test inputs and forwards them

to the succeeding layer in the proper format. The last layer,

classification Layer generates the classified output.

layers = [imageInputLayer([N1, N2, N3]) %Input is generated

in the form of a 3D matrix

convolution2dLayer(3,8,'Padding','same’) %Kernal size = 3×3.

Eight such units

 batchNormalizationLayer %Refer [25]

 reluLayer %Rectifier linear unit

 maxPooling2dLayer(2,'Stride',2) %Refer [26]

 convolution2dLayer(3,16,'Padding','same')

 batchNormalizationLayer

 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,32,'Padding','same')

 batchNormalizationLayer

 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,64,'Padding','same')

 batchNormalizationLayer

 reluLayer

 convolution2dLayer(12,16,'Padding','same')

 batchNormalizationLayer

 reluLayer

 dropoutLayer(0.2) % 20% deleted

 fullyConnectedLayer(fcL) %Dense layer

 softmaxLayer % Gets the highest probability score

 classificationLayer]; %which is the classified output

The architectural arrangement of different layers of CNN-IR is

given in figure 5.

Figure 5: Architecural arrangement of different layers of CNN-IR

4.7 CNN-IR Training
The training is carried out based on the specified training

options where the number of epochs, the rate of learning, and

other hyperparameters are listed. In CNN-IR, the initial

transmits, receive, and other signals required for training,

testing, and deployment stages are generated using the

MATLAB Communication toolbox and the Deep Learning

toolbox. The training options used are as follows.

Training Options

options = trainingOptions('sgdm', ...

 'MaxEpochs', 200, ...

 'InitialLearnRate', 2.0*1e-3, ...

 'LearnRateSchedule','piecewise', ...

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

234 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

 'LearnRateDropFactor', 0.075, ...

 'LearnRateDropPeriod', 300, ...

 'Shuffle','every-epoch', ...

 'Plots','training-progress', ...

 'ValidationData',{xValid,yValid}', ...

 'ValidationFrequency', 40, ...

 'MiniBatchSize', 30,...

 'Verbose', false);

Here, ‘sgdm’ is the abbreviation of ‘stochastic gradient descent

with momentum.’ For details, refer [21-22].

4.7.1 CNN-IR Training Algorithm

The CNN-IR Training Algorithm denoted by ‘Train-CNN-IR’

is given below. It is assumed that the training/test data set is

readily available for implementing the Algorithm.

#Algorithm Train-CNN-IR

Training/test inputs: 𝑥𝑇𝑟𝑎𝑖𝑛, 𝑦𝑇𝑟𝑎𝑖𝑛, 𝑥𝑉𝑎𝑙𝑖𝑑, 𝑦𝑉𝑎𝑙𝑖𝑑,
𝑋𝑇𝑒𝑠𝑡, and 𝑌𝑇𝑟𝑢𝑒

Output: Satisfactorily Trained CNN-IR.

1. Construct the CNN-IR.

2. Choose the initial hyperparameters (say as in table 3).

3. Train CNN-IR using the trainNetwork(…)function as,

 Net = trainNetwork(xTrain,yTrain,layers,options);

4. Get the output of the trained network as,

 yTest = classify(net,XTest);

5. Evaluate the, TE and PTE using eq. (31) and (32)

 If 𝑇𝐸 == 0 // indicates successful training

 Goto step 6

 else

 Adjust the layers parameters and the training

parameters like [N1, N2, N3],

 number of epochs, training rate etc., (fine tuning), and

then

 goto step 3 (retraining)

 end

6. Over // Now the trained CNN_IR is ready for online

deployment

░ 5. PERFORMANCE AND

EXPERIMENTAL RESULTS
5.1 Initial parameters Chosen for the preliminary

Experiment

The parameters chosen to demonstrate the basic working of the

CNN-IR experiment are listed in table 3.

░ Table 3: Values of the Parameters and Variables

Parameters and variables Symbol Values

Order of M-PSK 𝑀 4

Length of vectors x, w, y 𝑁 10000

Signal to Noise Ratio
SNR 10 dB

Number of taps for h 𝐿 2

Path gain for h coefficients

(normalized)

[pg(1),

pg(2)]
[1, 0.2]

Length of training dataset 𝑅 8000

Length of validation datasets
V 1000

Length of test dataset 𝑆 1000

Training datasets (Percentage) 100*R/N 80%

Validation datasets (Percentage) 100*V/N 10%

Testing datasets (Percentage)
100*S/N 10%

Train/Test extension parameter u 8

Data dimensions for Input layer 𝑁1, 𝑁2, 𝑁3 32, 32, 1

No. of epochs NE 200

Optimizer
----- sgdm

Other unassigned values that are not covered in table 3 are

selected according to [23].

Training Progress

Here, the CNN-IR is constructed as given in section 4.6. The

training and test data sets are generated by simulation, as

specified in tables 2 and 3. The CNN-IR is trained according to

the corresponding parameters from table 3. The Rician h vector

is obtained using the Gaussian distribution with normalized

path gain = [1, 0.2]. The training is carried out by the function

net = trainNetwork(…). During training, the training accuracy

and the training loss [24] are progressively plotted and as shown

in figure 6. Here, the PTE is found to be zero.

Figure 6: Training progress plots having 200 epochs

5.2 Performance of CNN-IR

The performance of the CNN-IR is mainly measured by the

Percentage Test Error (PTE) incurred during testing. The effect

of variations of different parameters on PTE is experimentally

demonstrated in this section.

PTE vs the channel noise

In this experiment, PTE vs the channel noise, expressed in snr,

is explored. Here the snr is decremented from 12 dB to 5 dB,

and for each snr, the number of epochs (NE) is varied from 100

to 200 in steps of 25. All other parameters are the same as in

Experiment 1. In a given trial, the resulting variations in PTE

are shown in table 4.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

235 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

░ Table 4: PTE versus snr for different NE’s

 snr

 ↓

Number of Epochs (NE)

100 125 150 175 200

12 dB 0.10 0.10 0.00 0.00 0.00

11 dB 0.20 0.15 0.10 0.00 0.00

10 dB 0.30 0.20 0.15 0.10 0.00

9 dB 1.20 1.00 0.85 0.65 0.50

8 dB 2.50 2.00 1.50 1.20 1.00

7 dB 4.40 3.90 3.40 2.50 2.20

6 dB 7.90 7.00 6.60 5.40 4.30

5 dB 12.60 11.00 10.20 9.40 7.30

From table 4, it can be seen that the PTE increases

monotonically as the snr decreases while the reduction in PTE

gets saturated for higher values of NE.

From table 4, PTE versus snr is plotted for NE = 100, 150, and

200, as shown in figure 7.

Figure 7: PTE versus Number of Epochs (NE)

5.3 Confusion Matrix
The Confusion Matrix (CM) identifies the true and false

classification counts over the full set of classes. The following

Experiment demonstrates the classification details of the 4-class

(M = 4) problem solved by CNN-IR.

Here, the classification is carried out separately, with the length

of S set at 40 for easy verification. In this case, SNR is set to 5

db, and the value of NE at 150. Other parameters are the same

as in table 3. Training is carried out, and the classification result

is shown in the CM of figure 8. Here, the classes [1, 2, 3, 4]

correspond to the data symbols [0, 1, 2, 3] respectively. In figure

8, the off-diagonal elements give the number of errors (total 10)

and the diagonal elements give the correct number (total 30) of

classifications of each class. The filled element CM(I, J) gives

the number of members of true class I predicted as class J. Thus,

in figure 8, CM(4, 3) = 3 means that 3 members of class 4 are

wrongly predicted as the members of class 3. On the other hand,

CM (3, 3) = 6 means, 6 members of class 3 are correctly

classified into class 3 itself.

Figure 8: Confusion matrix with S = 40

5.4 PTE versus the path gain

Here, the snr in dB is varied from 10 to 12, and for each snr,

the normalized path gain pg(2) of the Rician coefficient h(2) is

varied from 0.2 to 0.8 in steps of 0.1. Other parameters are the

same as in table 2. The resulting variations in PTE is shown in

table 5.

Table 5. PTE versus the path gain pg(2)

Snr ↓ pg(2) → 0.

10

0.

15

0.

20

0.

25

0.

30

0.

35

0.

40

0.

45

 CNN-IR, snr = 10 dB 0.00 0.00 0.00 0.24 1.32 2.88 4.32 6.84

 CNN-IR, snr = 11 dB 0.00 0.00 0.00 0.20 1.10 2.40 3.60 5.70

 CNN-IR, snr = 12 dB 0.00 0.00 0.00 0.16 0.88 1.92 2.88 4.56

Traditional Receiver

snr = 10 dB

0.00 0.00 0.00 0.25 1.45 3.26 5.22 8.95

The corresponding plots are shown in figure 9.

From figure 9, it can be seen that PTE increases nonlinearly

with the Rician path gain coefficient pg(2), as it contributes a

product term as indicated in figure 2. On the other hand, PTE

decreases as the channel snr increases, which implies a decrease

in the noise level compared to the signal strength.

Figure 9: PTE versus Normalized Path Gain Factor pg(2)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

236 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

5.4.1 Comparison of CNN-IR with the Conventional

Receiver

The PTE values obtained using a Conventional Receiver while

the snr is kept at 10 dB is also included in table 5. Here, at pg(2)

= 0.3, PTE by the Conventional Receiver is 1.45 while that due

to CNN-IR is 1.32. Therefore, the percentage reduction in the

error is:

percentage reduction in the error =
(1.45−1.32)∗100

1.45
=

8.97% ≈ 9% (33)

5.5 Performance with Respect to the Degree of

Modulation M

In this case, the degree of modulation (M) varies as M = 2, 4,

and 8. The plots of PTE vs snr are plotted for each M for CNN-

IR and the corresponding Conventional receiver. The result is

displayed in figure 10, which shows that the PTE decreases as

the channel snr increases. A higher snr means the signal

strength is higher compared to the noise level. On the contrary,

as M (degree of modulation) increases PTE increases. In this

case, for a given M, the receiver has to choose 1 out of M

symbols at a time. Hence, the probability of a correct decision

depends on (1/M) {inverse relation}. Thus, as M increases, the

likelihood of a correct decision decreases.

Here, the size of the test set is selected as S = 10,000 to get a

good resolution for PTE. From the plots of figure 10, it can be

observed that the PTE increases with M while it decreases with

an increase in snr values.

Figure 10: PTE versus snr for M= 2, 4, and 8

░ 6. CONCLUSION

A novel intelligent receiver, assisted by a deep learning

network, is presented that predicts the transmitted discrete data

with almost zero error. The intelligent receiver, on average,

reduces the symbol error rate by 20 to 30 percent compared to

the stand-alone conventional receiver. The deep learning

network is trained offline and then deployed online to assist the

conventional receiver. The proposed scheme is well suited for

systems using error-correcting block channel codes like Read

Solomon, BCH, and so on. The accuracy of detection can be

improved further using transfer or reinforced learning.

░ REFERENCES
[1] Oyerinde, Olutayo & Mneney, S.H. (2012). Review of Channel

Estimation for Wireless Communication Systems. IETE Technical

Review. 29. 2012, pp. 282-298. doi: 10.4103/0256-4602.101308.

[2] Ahmed, Sheeraz & Khan, Dr.Yousaf & Wahab, Asad. (2019). A Review
on Training and Blind Equalization Algorithms for Wireless

Communications. Wireless Personal Communications (online), 108,

2019, pp 1-25. doi:10.1007/s11277-019-06495-8.

[3] Deepanjali Jain, Dr. Poonam Beniwal, 2022, Review Paper on Noise
Cancellation using Adaptive Filters, INTERNATIONAL JOURNAL OF

ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 11,

Issue 01, 2022, pp. 241-244

[4] Ladvánszky, J. (2020) Noise Reduction for Digital Communications—

The Masterpiece, a Modified Costas Loop. Circuits and Systems, 11,

2021, pp. 57-64. doi: 10.4236/cs.2020.116006.

[5] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. “Review of deep learning:
concepts, CNN architectures, challenges, applications, future directions,”

J Big Data 8, 53 2021. pp. 1-74. https://doi.org/10.1186/s40537-021-

00444-8

[6] O. Simeone, “A very brief introduction to machine learning with
applications to communication systems,” IEEE Trans. Cogn. Commun.

Netw., vol. 4, no. 4, pp. 648–664, Dec. 2018.

[7] L. Dai, R. Jiao, F. Adachi, H. V. Poor and L. Hanzo, "Deep Learning for

Wireless Communications: An Emerging Interdisciplinary Paradigm," in

IEEE Wireless Communications, vol. 27, no. 4, pp. 133-139, August

2020, doi: 10.1109/MWC.001.1900491.

[8] Z. Qin, H. Ye, G. Y. Li, and B. F. Juang, “Deep learning in physical layer
communications,” IEEE Wireless Commun., vol. 26, no. 2, pp. 93–99,

Apr. 2019.

[9] Jiao, J.; Sun, X.; Fang, L. An overview of wireless communication

technology using deep learning. China Commun. 2021, 18, pp. 1–36.

[10] Xu, Wenjie, "Artificial Intelligence Aided Receiver Design for Wireless

Communication Systems" (2021). Theses, Dissertations and Capstones.

1376.

[11] T. O’Shea and J. Hoydis, "An Introduction to Deep Learning for the
Physical Layer," in IEEE Transactions on Cognitive Communications and

Networking, vol. 3, no. 4, pp. 563-575, Dec. 2017, doi:

10.1109/TCCN.2017.2758370.

[12] S. Zheng, S. Chen and X. Yang, "DeepReceiver: A Deep Learning-Based
Intelligent Receiver for Wireless Communications in the Physical Layer,"

in IEEE Transactions on Cognitive Communications and Networking, vol.

7, no. 1, pp. 5-20, March 2021, doi: 10.1109/TCCN.2020.3018736.

[13] B. Wang, K. Xu, S. Zheng, H. Zhou and Y. Liu, "A Deep Learning-Based

Intelligent Receiver for Improving the Reliability of the MIMO Wireless

Communication System," in IEEE Transactions on Reliability, vol. 71, no.

2, pp. 1104-1115, June 2022, doi: 10.1109/TR.2022.3148114.

[14] A. Irawan, G. Witjaksono, and W. K. Wibowo, “Deep learning for polar

codes over flat fading channels,” in Proc. Int. Conf. Artif. Intell. Inf.

Commun., Okinawa, Japan, 2019, pp. 488–491.

[15] E. Bjornson and P. Giselsson, "Two Applications of Deep Learning in the
Physical Layer of Communication Systems [Lecture Notes]," in IEEE

Signal Processing Magazine, vol. 37, no. 5, pp. 134-140, Sept. 2020, doi:

10.1109/MSP.2020.2996545.

[16] Nariman Farsad, “Detection Algorithms for Communication Systems

Using Deep Learning,” arXiv: 1705.08044v2 [cs.LG]. 2017, pp. 1-10.

[17] A. K. Kowshik, A. H. Raghavendra, S. Gurugopinath and S. Muhaidat,
"Deep Learning-Based Signal Detection for Rate-Splitting Multiple

Access Under Generalized Gaussian Noise," in IEEE Open Journal of

Vehicular Technology, doi: 10.1109/OJVT.2023.3238034.

[18] T. Gian, V. -D. Ngo, T. -H. Nguyen, T. T. Nguyen and T. van Luong,

"Deep Neural Network-Based Detector for Single-Carrier Index
Modulation NOMA," 2022 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference (APSIPA ASC),

Chiang Mai, Thailand, 2022, pp. 1805-1809, doi:

10.23919/APSIPAASC55919.2022.9980150.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 228-237 | e-ISSN: 2347-470X

237 Website: www.ijeer.forexjournal.co.in Design of Deep Learning Based Intelligent Receiver

[19] https://in.mathworks.com/help/comm/ref/mpskmodulatorbaseband.html

[20] Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang (2010),

MIMO-OFDM Wireless Communications with MATLAB, John Wiley &

Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01, Singapore 129809.

[21] https://machinelearningmastery.com/how-machine-learning-algorithms-

work/

[22] “Create Simple Deep Learning Network for Classification,”
https://in.mathworks. com/help /deep-learning/ug/ preprocess-images-

for- deep-learning .html

[23] “Set Up Parameters and Train Convolutional Neural Network,” Matlab.

https://in.mathworks.com/help/deeplearning/ug/setting-up-parameters-

and-training-of-a-convnet.html.

[24] “Train neural network for deep learning” https:// in.mathworks. com/

help/deeplearning/ref/trainnetwork.html

[25] https://machinelearningmastery.com/batch-normalization-for-training-

of-deep-neural-networks/, by Jason Brownlee (accessed on 31-july-2023).

[26] https://in.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.maxpooli

ng2dlayer.html

© 2024 by the Drakshayini M.N., Manjunath

R. Kounte and Chaya Ravindra. Submitted for

possible open access publication under the

terms and conditions of the Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

