
                                                      International Journal of 
                     Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X 

 

262 Website: www.ijeer.forexjournal.co.in                                                                SimCoDe-NET: Similarity Detection in Binary Code 

 
░ ABSTRACT- Binary code similarity detection is a fundamental task in the field of computer binary security. However, 

code similarity is crucial today because of the prevalence of issues like plagiarism, code cloning, and recycling in software due to 

the ongoing increase of software scale. To resolve these issues, a novel similarity detection in binary Code using Deep learning 

NETwork (SimCoDe-NET) has been proposed. Initially, op-code features are extracted from the input data by using reverse 

engineering process and the opcode embedding is generated using N-skip gram method. The extracted features are fed into Bi-GRU 

neural network for classifying the similarity of the binary codes. The Bi-GRU neural network compares two data samples in feature 

space to identify whether they belong to similar data or non-similar data. The SimCoDe-NET framework is evaluated by using 

generated dataset to assess the efficiency of this method. The efficacy of the proposed SimCoDe-NET framework is assessed in 

terms of precision, accuracy, sensitivity, recall, similarity detection time and similarity detection rate. The accuracy of the proposed 

method is 99.10% which is relatively high compared to the existing method. The proposed SimCoDe-NET approach improves the 

accuracy by 84.9%, 88.58%, and 93.9% better than jTrans, UPPC, and HEBCS respectively. 
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░ 1. INTRODUCTION   
Similarity detection offers a wide range of applications in high-

end property and cybersecurity. The number of noticeable flaws 

more than doubled in 2017, and open-source flaws are being 

discovered with increasing frequency [1]. The Internet of 

Things (IoT) has seen significant growth and adoption in recent 

years. IoT development is under pressure to get products to 

market quickly, yet this presents security and privacy risks [2]. 

An effective strategy for assuring the security of IoT devices is 

IoT firmware security analysis. Given the absence of source 

code, examining binary code has inevitably grown to be a 

crucial tool for firmware security analysis. These peer 

vulnerabilities in various firmware are rapidly found using 

Binary Code Similarity Discovery (BCSD) [3,4]. 

BCSD focuses on identifying additional peer-to-peer 

vulnerability functions where known vulnerability functionality 

exists.  Malware detection [5, 6], patch analysis [7, 8], code 

plagiarism detection [9, 10], and patch analysis are additional 

security applications.  

 In this study, a method is offered for binary similarity detection 

that is both extremely accurate and faster than any existing 

method for binary similarity search, enabling real-world 

workloads to be scanned in a realistic amount of time [11,12]. 

A significant quantity of global information will be lost as a 

result of the sequential execution strategy [13]. To address these 

drawbacks, a novel Similarity detection in binary Code using 

Deep Learning Network (SimCoDe-NET) technique is 

proposed. The following is a summary of the research’s primary 

contributions:  

• The main goal of this research is to develop a novel 

Similarity detection in binary Code using Deep Learning 

Network (SimCoDe-NET) to improves the effectiveness of 

identifying the similarity of binary codes. 

• Initially, a reverse engineering process extracts the features 

of the op-codes from the input data, and then an N-skip gram 

method is used to generate the opcode embedding. 

• The gathered characteristics are fed into the Bi-GRU neural 

network, which classifies the degree of similarity between 

binary codes. 

• The Bi-GRU neural network compares two data samples in 

feature space to identify whether they belong to similar data 

or non-similar data.  

The following sections of this work are organized as follows: 

The literature review is covered in section 2, the workings of 

the proposed SimCoDe-NET are explained in section 3, the 

experimental findings and discussion are covered in section 4, 

and conclusions and future work are covered in section 5. 
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░ 2. RELATED WORK 

In order to enhance binary code similarity identification using 

the Bi-GRU neural network, researchers have recently 

developed a number of machine learning (ML) and deep 

learning (DL) techniques. We briefly go over a few strategies in 

this section.  

In 2022 H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, Qiu, J. 

Zhuge, and C. Zhang [14] suggested jTrans, a transformer-

based method, is used to learn the representation of binary 

codes. The Binary Group dataset is used to assess the jTrans 

method, which performs 32.0% to 62.5% better than SOTA 

alternatives on this more complicated dataset in a single task. 

However, the performance of the jTrans framework is very low. 

In 2022 W. Zhang, Z. Xu, Y. Xiao, and Y. Xue [15] suggested 

utilizing the capability of pseudocode for a comparison of 

binary codes. The UPPC framework is evaluated by using the 

vulnerabilities dataset and achieves an overall accuracy of 

33.2% for binary code similarity detection. However, the de-

compilation is only supported for a few architectures by the 

UPPC framework. 

In 2022 S. X Jiang, X. Wang, Yu, and Y. Gong [16] suggested 

a cross-platform technique for binary function similarity 

identification using dual-layer positional encoding. Using the 

MISA dataset for evaluation, the DP-MIRROR technique 

outperformed the advanced method with an accuracy of 

approximately 35%. However, the accuracy of the DP-

MIRROR technique is very low. 

In 2023 X. Sun, Q. Wei, J. Du, and Y. Wang [17] suggested a 

HEBCS a very environment-friendly binary code seek method. 

The F1 score, accuracy, and precision of the HEBCS method's 

evaluation of the GNU device were each 0.943%, 0.938%, and 

0.964%, respectively. However, the HEBCS method's precision 

is not always as accurate as anticipated. Strength and weakness 

of the proposed and Existing Methods shown in table 1. 

 

░ Table 1. Strength and weakness of the proposed and Existing Methods 
 

S.No. Author Proposed Method Strength Weakness 

1.  H. Wang, W. Qu, 

G. Katz, W. Zhu, Z. 

Gao, Qiu, J. Zhuge, 

and C. Zhang 

Transformer with jump 

awareness for binary code 

similarity (jtrans). 

The jtrans approach routinely 

outperforms the state-of-the-art methods 

with considerable improvements on 

BCSD tasks. 

The performance of the 

jTrans framework is very 

low. 

 

2.  W. Zhang, Z. Xu, 

Y. Xiao, and Y. 

Xue 

Analyze binary code 

similarities using 

pseudocode to realize 

its potential. 

A deep pyramidal convolutional neural 

network (DPCNN) is used to learn the 

semantic properties of binary function 

sequences and decompiled pseudocode. 

Other binary similarity analysis 

activities, such code matching and 

vulnerability screening, are then 

performed on this network. 

The de-compilation is only 

supported for a few 

architectures by the UPPC 

framework. 

 

3.  S. XJiang, X. 

Wang, Yu, and Y. 

Gong 

The two-layer positional 

encoding embedding 

approach (DP-MIRROR) is 

utilized for cross-platform 

binary function similarity 

recognition. 

Using the cross-platform binary function 

similarity index, or DP-MIRROR, two-

layer positional encoding is utilized in 

place of single-layer encoding to prevent 

OOV issues while integrating 

instructions. 

The accuracy of the DP-

MIRROR technique is very 

low. 

4.  X. Sun, Q. Wei, J. 

Du, and Y. Wang 

High Efficiency Binary Code 

Search (HEBC). 

   A range of characteristics, such as 

guiding features, syntactic features, and 

structural features, might take the place 

of the challenging semantic 

representation and extraction process 

which attains semantic extraction at the 

effective level. 

The HEBCS method's 

precision is not always as 

accurate as anticipated. 

 

5.  G. Liu, X.  Zhou, J.  

Pang, F. Yue, W. 

Liu, and J. Wang 

A GNN layer transformer 

model (Codeformer) is used 

to find similarities in binary 

codes. 

Using a transformer, this method 

retrieves fundamental semantic 

characteristics from repeating blocks. A 

GNN is then used to update and 

aggregate the basic block features that 

were retrieved. 

The Codeformer approach 

does not provide the 

integration of instructions as 

a dimension of integration. 

6.  Wu, G. and Tang, 

H., 

Using multilayer aggregation 

to find vulnerabilities in 

binary code. 

Using methods including feature 

concatenation, feature addition, and 

weighted feature combination, this study 

explores the effects of various features 

on the binary code vulnerability 

detection problem. 

In the suggested technique 

the data processing phase 

needs to be enhanced. 
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7. Proposed Similarity detection in binary 

COde using DEep learning 

NETwork (SimCoDe-NET). 

The op-code features are extracted from 

the input data by using reverse 

engineering process and the opcode 

embedding is generated using N-skip 

gram method. The Bi-GRU neural 

network compares two data samples in 

feature space to identify whether they 

belong to similar data or non-similar 

data. 

 

   To improve the process 

for creating a graph out of 

malware. 

 

In 2023 G. Liu, X.  Zhou, J.  Pang, F. Yue, W. Liu, and J. Wang 

[18] suggested a nested transformer GNN variant for binary 

encoded similarity recognition. The suggested technique is 

evaluated by using OpenSSL, Clamav, and Curl datasets and 

achieves an overall accuracy of 93.38%. However, the 

Codeformer approach does not provide the integration of 

instructions as a dimension of integration. 

In 2023 Wu, G. and Tang, H.,[19] suggested a version of multi-

step characteristic merging forms the basis of binary coding 

vulnerability identification. The suggested approach achieved 

87.7% F1 score for the NDSS18 dataset and 98.9% F1 score for 

the Juliet Test Suite dataset. However, in the suggested 

technique the data processing phase needs to be enhanced. 

According to the literature study, many ML and DL algorithms 

have been applied in conjunction with the Bi-GRU neural 

network to find similarities in binary encoding. However, the 

existing system faces challenges like low accuracy rate, 

efficiency, and detection rate. To overcome these issues, a novel 

similarity detection in binary code using deep learning network 

(SimCoDe-NET) framework has been proposed. Ther detailed 

explanation of the proposed method is given in section 3. 

 

░3. PROPOSED SIMCODE-NET 

FRAMEWORK 

In this section, the proposed novel similarity detection in binary 

COde using DEep learning NETwork (SimCoDe-NET) 

framework has been developed. Figure 1 displays the actual 

schematic of the proposed SimCoDe-NET framework.  

3.1. Opcode extraction using reverse engineering 
The word embedding model is used to construct embedding 

instructions. By consistently upholding the linkages between 

words' syntactic and semantic components, it achieves this goal. 

Figure 2 depicts the Opcode Extraction and vector conversion 

process. Word2vec and one-pass warm encoding are two 

integrated variants. The entry values are pre-processed and 

given a vector price depending on their indexing in warm 

encoding. Word2vec comes with two models which is the 

Continue Bag of Words (CBOW) version and the Skip Continue 

version.  

3.2. Opcode embedding using n-skip gram 
The N-skip gram word embedding approach is used to encode 

opcodes. A popular NLP version for Word2Vec is the bypass 

gamut version. Figure 3 illustrates the combination of opcodes 

using the N-Skip-Gram process. The mathematical expression 

of the N-Skip-Gram model is given in equation (1),   

1

𝑁
∑ ∑ log 𝑃𝑟(𝐶𝑜𝑑𝑒𝑖+𝑗|𝐶𝑜𝑑𝑒𝑖)−𝑡≤𝑗≤𝑖≠0

𝑁
𝑖=1                                (1) 

 

Where, 𝐶𝑜𝑑𝑒1,…, 𝐶𝑜𝑑𝑒𝑚 are the training texts and the volume 

of the training is denoted as 1 and N is the embedding vector. 

𝑃𝑟(𝐶𝑜𝑑𝑒𝑖+𝑗|𝐶𝑜𝑑𝑒𝑖) is the core probability. The mathematical 

expression of the prediction error is given in equation (2), 

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ ∑ log 𝑃𝑟(𝐶𝑡+𝑗|𝐶𝑡)−𝑎≤𝑗≤𝑎

𝑁
𝑛=1                                (2) 

 

The variables N and a stand for the quantity of words and 

context size, and 𝑃𝑟(𝐶𝑡+𝑗|𝐶𝑡) is the core probability of 

predicting the word. Using some of the design benefits of the 

Text-CNN approach, the model created here preserves the 

ordinal information of the opcode sequence. Different feature 

maps can be produced by combining various filters. This is how 

the formula is defined in equation (3): 

𝑐𝑖 = 𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣(𝑀,𝑤𝑖) + 𝑏𝑖)                                             (3)   

 

 
 

Figure 1: Overall Block Diagram of the proposed Simcode-NET 

Framework 

 

 
 

Figure 2: Opcode Extraction and vector conversion process 

http://www.ijeer.forexjournal.co.in/


                                                      International Journal of 
                     Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X 

 

265 Website: www.ijeer.forexjournal.co.in                                                                SimCoDe-NET: Similarity Detection in Binary Code 

 
Figure 3: Opcode Embedding using N-skip gram process 

 

The output matrix is specifically created utilizing the 

convolutional community layer and the opcode collection 

provided by using the entrance matrix. Typically, one or more 

significant features are chosen via feature mapping using the 

max group and k-max group after convolution. 
 

3.3.Classification using Bi-GRU network 

The deep learning model for categorizing binary code similarity 

via Bi-GRU is displayed in figure 4. The GRU is composed of 

three layers which is input, hidden, and output. Figure 4 shows 

the Deep learning model to discriminate between similar data 

and non-similar data with input binary function and output 

prediction. The number of observed point vectors with the input 

word and input sequence across the temporally indexed period 

is given by the expression t= (1, 2, ..., n), where t is a word-

length vocabulary and y_t is a binary function used by similar 

and non-similar data to obtain data.  

 

Figure 4: Binary code similarity classification using Bi-GRU 

Reset output (𝑠𝑡), replace gate output (𝑢𝑡), and GRU output (ℎ𝑡) 

definitions are provided. The reset and replacement gates also 

determine the ℎ𝑡 the output of the cutting-edge time by 

simultaneously modifying the ℎ𝑡−1 the output of the previous 

time and the entry of the cutting-edge time. Both the replace 

gate equation and the reset gate equation are contained in the 

equation (4) correctly, as well as equation (5). 

𝑠𝑡 = 𝜎 (𝑊𝑠  [ℎ𝑡−1, 𝑦𝑡])                                                                            (4) 

𝑢𝑡 =  𝜎 (𝑊𝑢[ℎ𝑡−1, 𝑦𝑡])                                                                            (5) 

Where, 𝜎(𝑥) =
1

1+𝑒−𝑦  is the sigmoid function, and the weights 

for the reset and alternative gates, 𝑊𝑠 and 𝑊𝑢, respectively, are 

all present. The equation contains the output equation for the 

calculation of equation (6). 

ℎ𝑡 = (1 − 𝑢𝑡) × ℎ𝑡−1 + 𝑢𝑡  ×  ℎ̅𝑡                                        (6) 

where ℎ𝑡is the GRU candidate state at time t. The expression 

alone proves the computation of ℎ𝑡 equation (7). 

ℎ̅𝑡 = tan ℎ (𝑊ℎ [𝑠𝑡 × ℎ𝑡−1, 𝑦𝑡])                                          (7) 

The candidate state's weight is denoted as 𝑊ℎ. Using GRUs that 

can be represented as equation (8)– (10), Bi-GRU is 

determined. 

ℎ⃗ 𝑡 = 𝐺𝑅𝑈𝑓  (𝑦𝑡 , ℎ⃗ 𝑡−1)                                                                            (8) 

ℎ⃖⃗𝑡 = 𝐺𝑅𝑈𝑏  (𝑦𝑡 , ℎ⃖⃗𝑡−1)                                                                            (9) 

ℎ𝑡 = ℎ⃗ 𝑡  ⨁ ℎ⃖⃗𝑡                                                                                  (10) 

ℎ⃗ 𝑡 and ℎ⃖⃗𝑡 represent the state information of the forward and 

reverse GRUs, respectively. The GRU function is an equation, 

which denotes GRUf for forward and GRUb for backward 

which is composed of equation (8)- (10). ⊕ which denotes 

concatenating the ℎ⃗ 𝑡  and ℎ⃖⃗𝑡. As a result, Bi-GRU, which has a 

bidirectional GRU form, can store both similar and non-similar 

data records. Finally, it might classify the output as either 

similar data or non-similar data. 

 

░ 4. RESULT AND DISCUSSION 
One of the six suggested Linux distributions used to produce 

test datasets is until-Linux, which uses Coreutils, findutils, 

diffutils, sg3utils, and other tools. The package supply code is 

obtained and each software is generated using x86-64 and ARM 

processors, compilers (gcc and clang), and 4 optimization levels 

(O0, O1, O2, and O3).  

 

Dataset generation 
The appropriate functions in various created files use the intact 

information available in the binary to obtain active learning 

versions. To produce negative examples, random vector pairs 

are created that result from non-equivalent processes. After 

making sure that no pairs exist in the match list, these pairs are 

labeled with the value 0 which is no match, and used as a set of 

negatively labelled data. 

 

4.1.Performance analysis 
This section quantifies the efficiency of binary code similarity 

detection using various metrics, including precision, recall, F1 

score, AUC, detection time, and detection rate. Dataset 

Generation Properties is shown in figure 5. 

http://www.ijeer.forexjournal.co.in/
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Figure 5: Dataset Generation Properties 

 

 
Figure 6: (a)Training and testing epochs vs (b)Average MSE among 

multiple Binaries 
 

4.2. Comparative analysis 
The effectiveness of the SimCoDe-NET technique was assessed 

using certain characteristics, including recall, F1 score, 

precision, and specificity. The comparison of the SimCoDe-

NET methodology under consideration with existing methods 

such as jTrans [14], UPPC [15], and HEBC [17] is based on the 

dataset which is presented below. Training and testing epochs 

and Average MSE among multiple Binaries are shown in figure 

6. 

 

Figure 7: Performance metrics of the proposed SimCoDe-NET 

model 

To illustrate the greater efficacy of the proposed SimCoDe-

NET approach, it has been compared with other approaches. 

Performance is affected by TPR, sensitivity, recall, F1 score, 

and precision, among other factors. A graphic representation of 

the F1 score, specificity, sensitivity, recall, and precision are 

shown in figure 7. Performance comparison of proposed 

SimCoDe-NET model shown in table 2. 

 

░ Table 2. Performance comparison of proposed SimCoDe-

NET model 
 
 

Method Accuracy Specificity Precision F1-

Score 

Recall 

jTrans 84.9 71.41 82.13 84.63 82.41 

UPPC 88.58 87.1 84.4 86.3 85.7 

HEBCS 93.9 91 90.44 94.14 88.98 

SimCoDe

-NET 

99.10 96.35 98.2 99 98.99 

 

The accuracy of the proposed method is 99.10% which is 

relatively high compared to the existing method. The proposed 

SimCoDe-NET approach improves the accuracy by 84.9%, 

88.58%, and 93.9% better than jTrans, UPPC, and HEBCS 

respectively. 

 

4.3. Similarity Detection Accuracy 
The Bi-GRU neural network uses at least 60 epochs to assess 

the framework's efficacy. To explain the performance, a metric 

called detection accuracy, which is formally defined in equation 

(11): 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑇𝑒𝑠𝑡 𝐵𝑖𝑛𝑎𝑟𝑖𝑒𝑠

 𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑏𝑖𝑛𝑎𝑟𝑖𝑒𝑠
      (11) 

 

Figure 8 illustrates the relationship between detection accuracy 

and training time by using half of the binaries as instructional 

facts and the other half as checking information. As a result, 

following training, it can attain a detection accuracy of roughly 

90%. It is significant to note that the detection accuracy in this 

instance is 85%, as opposed to the earlier detection accuracy in 

the dataset, which was 90% when the test data came from the 

same categories as binaries [20]. Successive Rate of Existing 

and the Bi-GRU Neural Network shown in figure 9. 

 

 

Figure 8: Validation of accuracy among proposed framework and 

baseline models 

The purpose of this research is to develop a novel similarity 

detection method utilizing the DEep Learning Network 

(SimCoDe-NET) with the goal of increasing the efficiency of 

binary code similarity determination. The overall effectiveness 

of the suggested SimCoDe-NET approach is assessed by 

comparing a number of criteria with the acquired results, 

http://www.ijeer.forexjournal.co.in/
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including recall, F1 score, accuracy, and specificity. Comparing 

the accuracy of the SimCoDe-NET approach to earlier 

techniques like jTrans [14], UPPC [15], and HEBC [17], it is 

very high at 99.10%. The proposed SimCoDe-NET approach 

improves accuracy by 84.9%, 88.58%, and 93.9% in 

comparison to jTrans, UPPC, and HEBCS, respectively. 90% 

detection accuracy for the frame and method detection accuracy 

were obtained by using well-known techniques as InnerEYE 

[23], BinDiff [24], SAFE [25], and jTrans [14]. The SimCoDe-

NET is assessed. SimCoDe-NET. A number of deep learning 

techniques, such as RNN [21], Tree-LSTM [22], and DPCNN 

[14], were employed to assess the Bi-GRU method's 

classification performance. Particular standards were taken into 

account, such as recall, accuracy, precision, specificity, and F1 

score. Furthermore, the same objective is also accomplished by 

the proposed SimCoDe-NET approach, which also determines 

the similarity of actual binary codes. 

 

 

Figure 9: Successive Rate of Existing and the Bi-GRU Neural 

Network 

 

░ 4. CONCLUSIONS 
In this research, a novel SIMilarity detection in binary COde 

using DEep learning NETwork (SimCoDe-NET) has been 

proposed. The Bi-GRU neural network compares two data 

samples in the feature space to determine whether the given data 

belongs to similar data or dissimilar data. With a test dataset and 

an unknown dataset, the model's accuracy was 0.920 and 0.704, 

respectively. The accuracy of the proposed method is 99.10% 

which is relatively high compared to the existing method. The 

proposed SimCoDe-NET approach improves the accuracy by 

84.9%, 88.58%, and 93.9% better than jTrans, UPPC, and 

HEBCS respectively. As compared to current approaches, the 

experimental results provide promising results in terms of 

detection accuracy and computational efficiency. In future, we 

will enhance the process for creating a graph out of malware. 

Improve the way DLL functions are processed, learn where to 

look for the important functions, and stop using the default 

functions that the compiler produces. 
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