
 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

262 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

░ ABSTRACT- Binary code similarity detection is a fundamental task in the field of computer binary security. However,

code similarity is crucial today because of the prevalence of issues like plagiarism, code cloning, and recycling in software due to

the ongoing increase of software scale. To resolve these issues, a novel similarity detection in binary Code using Deep learning

NETwork (SimCoDe-NET) has been proposed. Initially, op-code features are extracted from the input data by using reverse

engineering process and the opcode embedding is generated using N-skip gram method. The extracted features are fed into Bi-GRU

neural network for classifying the similarity of the binary codes. The Bi-GRU neural network compares two data samples in feature

space to identify whether they belong to similar data or non-similar data. The SimCoDe-NET framework is evaluated by using

generated dataset to assess the efficiency of this method. The efficacy of the proposed SimCoDe-NET framework is assessed in

terms of precision, accuracy, sensitivity, recall, similarity detection time and similarity detection rate. The accuracy of the proposed

method is 99.10% which is relatively high compared to the existing method. The proposed SimCoDe-NET approach improves the

accuracy by 84.9%, 88.58%, and 93.9% better than jTrans, UPPC, and HEBCS respectively.

Keywords: Binary code analysis, N-skip gram, Deep Learning, Bi-GRU Network, Internet of Things.

░ 1. INTRODUCTION
Similarity detection offers a wide range of applications in high-

end property and cybersecurity. The number of noticeable flaws

more than doubled in 2017, and open-source flaws are being

discovered with increasing frequency [1]. The Internet of

Things (IoT) has seen significant growth and adoption in recent

years. IoT development is under pressure to get products to

market quickly, yet this presents security and privacy risks [2].

An effective strategy for assuring the security of IoT devices is

IoT firmware security analysis. Given the absence of source

code, examining binary code has inevitably grown to be a

crucial tool for firmware security analysis. These peer

vulnerabilities in various firmware are rapidly found using

Binary Code Similarity Discovery (BCSD) [3,4].

BCSD focuses on identifying additional peer-to-peer

vulnerability functions where known vulnerability functionality

exists. Malware detection [5, 6], patch analysis [7, 8], code

plagiarism detection [9, 10], and patch analysis are additional

security applications.

 In this study, a method is offered for binary similarity detection

that is both extremely accurate and faster than any existing

method for binary similarity search, enabling real-world

workloads to be scanned in a realistic amount of time [11,12].

A significant quantity of global information will be lost as a

result of the sequential execution strategy [13]. To address these

drawbacks, a novel Similarity detection in binary Code using

Deep Learning Network (SimCoDe-NET) technique is

proposed. The following is a summary of the research’s primary

contributions:

• The main goal of this research is to develop a novel

Similarity detection in binary Code using Deep Learning

Network (SimCoDe-NET) to improves the effectiveness of

identifying the similarity of binary codes.

• Initially, a reverse engineering process extracts the features

of the op-codes from the input data, and then an N-skip gram

method is used to generate the opcode embedding.

• The gathered characteristics are fed into the Bi-GRU neural

network, which classifies the degree of similarity between

binary codes.

• The Bi-GRU neural network compares two data samples in

feature space to identify whether they belong to similar data

or non-similar data.

The following sections of this work are organized as follows:

The literature review is covered in section 2, the workings of

the proposed SimCoDe-NET are explained in section 3, the

experimental findings and discussion are covered in section 4,

and conclusions and future work are covered in section 5.

SimCoDe-NET: Similarity Detection in Binary Code using

Deep Learning Network

S. Poornima1 and R. Mahalakshmi2
1Research Scholar, Department of Computer Science Engineering, Presidency University, Bangalore, Karnataka, India.
2Professor, Department of Computer Science Engineering, Presidency University, Bangalore, Karnataka, India.

*Corresponding Author: S. Poornima; Email: poornima.spa@gmail.com

ARTICLE INFORMATION

Author(s): S. Poornima, R. Mahalakshmi;

Received: 31/10/23; Accepted: 15/01/24; Published: 28/03/24;
E- ISSN: 2347-470X;

Paper Id: IJEER231022;

Citation: 10.37391/IJEER.120136;
Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120136.html

Publisher’s Note: FOREX Publication stays neutral with regard to

jurisdictional claims in Published maps and institutional affiliations.

http://www.ijeer.forexjournal.co.in/
https://doi.org/10.37391/IJEER.120136
https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120136.html

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

263 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

░ 2. RELATED WORK

In order to enhance binary code similarity identification using

the Bi-GRU neural network, researchers have recently

developed a number of machine learning (ML) and deep

learning (DL) techniques. We briefly go over a few strategies in

this section.

In 2022 H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, Qiu, J.

Zhuge, and C. Zhang [14] suggested jTrans, a transformer-

based method, is used to learn the representation of binary

codes. The Binary Group dataset is used to assess the jTrans

method, which performs 32.0% to 62.5% better than SOTA

alternatives on this more complicated dataset in a single task.

However, the performance of the jTrans framework is very low.

In 2022 W. Zhang, Z. Xu, Y. Xiao, and Y. Xue [15] suggested

utilizing the capability of pseudocode for a comparison of

binary codes. The UPPC framework is evaluated by using the

vulnerabilities dataset and achieves an overall accuracy of

33.2% for binary code similarity detection. However, the de-

compilation is only supported for a few architectures by the

UPPC framework.

In 2022 S. X Jiang, X. Wang, Yu, and Y. Gong [16] suggested

a cross-platform technique for binary function similarity

identification using dual-layer positional encoding. Using the

MISA dataset for evaluation, the DP-MIRROR technique

outperformed the advanced method with an accuracy of

approximately 35%. However, the accuracy of the DP-

MIRROR technique is very low.

In 2023 X. Sun, Q. Wei, J. Du, and Y. Wang [17] suggested a

HEBCS a very environment-friendly binary code seek method.

The F1 score, accuracy, and precision of the HEBCS method's

evaluation of the GNU device were each 0.943%, 0.938%, and

0.964%, respectively. However, the HEBCS method's precision

is not always as accurate as anticipated. Strength and weakness

of the proposed and Existing Methods shown in table 1.

░ Table 1. Strength and weakness of the proposed and Existing Methods

S.No. Author Proposed Method Strength Weakness

1. H. Wang, W. Qu,

G. Katz, W. Zhu, Z.

Gao, Qiu, J. Zhuge,

and C. Zhang

Transformer with jump

awareness for binary code

similarity (jtrans).

The jtrans approach routinely

outperforms the state-of-the-art methods

with considerable improvements on

BCSD tasks.

The performance of the

jTrans framework is very

low.

2. W. Zhang, Z. Xu,

Y. Xiao, and Y.

Xue

Analyze binary code

similarities using

pseudocode to realize

its potential.

A deep pyramidal convolutional neural

network (DPCNN) is used to learn the

semantic properties of binary function

sequences and decompiled pseudocode.

Other binary similarity analysis

activities, such code matching and

vulnerability screening, are then

performed on this network.

The de-compilation is only

supported for a few

architectures by the UPPC

framework.

3. S. XJiang, X.

Wang, Yu, and Y.

Gong

The two-layer positional

encoding embedding

approach (DP-MIRROR) is

utilized for cross-platform

binary function similarity

recognition.

Using the cross-platform binary function

similarity index, or DP-MIRROR, two-

layer positional encoding is utilized in

place of single-layer encoding to prevent

OOV issues while integrating

instructions.

The accuracy of the DP-

MIRROR technique is very

low.

4. X. Sun, Q. Wei, J.

Du, and Y. Wang

High Efficiency Binary Code

Search (HEBC).

 A range of characteristics, such as

guiding features, syntactic features, and

structural features, might take the place

of the challenging semantic

representation and extraction process

which attains semantic extraction at the

effective level.

The HEBCS method's

precision is not always as

accurate as anticipated.

5. G. Liu, X. Zhou, J.

Pang, F. Yue, W.

Liu, and J. Wang

A GNN layer transformer

model (Codeformer) is used

to find similarities in binary

codes.

Using a transformer, this method

retrieves fundamental semantic

characteristics from repeating blocks. A

GNN is then used to update and

aggregate the basic block features that

were retrieved.

The Codeformer approach

does not provide the

integration of instructions as

a dimension of integration.

6. Wu, G. and Tang,

H.,

Using multilayer aggregation

to find vulnerabilities in

binary code.

Using methods including feature

concatenation, feature addition, and

weighted feature combination, this study

explores the effects of various features

on the binary code vulnerability

detection problem.

In the suggested technique

the data processing phase

needs to be enhanced.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

264 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

7. Proposed Similarity detection in binary

COde using DEep learning

NETwork (SimCoDe-NET).

The op-code features are extracted from

the input data by using reverse

engineering process and the opcode

embedding is generated using N-skip

gram method. The Bi-GRU neural

network compares two data samples in

feature space to identify whether they

belong to similar data or non-similar

data.

 To improve the process

for creating a graph out of

malware.

In 2023 G. Liu, X. Zhou, J. Pang, F. Yue, W. Liu, and J. Wang

[18] suggested a nested transformer GNN variant for binary

encoded similarity recognition. The suggested technique is

evaluated by using OpenSSL, Clamav, and Curl datasets and

achieves an overall accuracy of 93.38%. However, the

Codeformer approach does not provide the integration of

instructions as a dimension of integration.

In 2023 Wu, G. and Tang, H.,[19] suggested a version of multi-

step characteristic merging forms the basis of binary coding

vulnerability identification. The suggested approach achieved

87.7% F1 score for the NDSS18 dataset and 98.9% F1 score for

the Juliet Test Suite dataset. However, in the suggested

technique the data processing phase needs to be enhanced.

According to the literature study, many ML and DL algorithms

have been applied in conjunction with the Bi-GRU neural

network to find similarities in binary encoding. However, the

existing system faces challenges like low accuracy rate,

efficiency, and detection rate. To overcome these issues, a novel

similarity detection in binary code using deep learning network

(SimCoDe-NET) framework has been proposed. Ther detailed

explanation of the proposed method is given in section 3.

░3. PROPOSED SIMCODE-NET

FRAMEWORK

In this section, the proposed novel similarity detection in binary

COde using DEep learning NETwork (SimCoDe-NET)

framework has been developed. Figure 1 displays the actual

schematic of the proposed SimCoDe-NET framework.

3.1. Opcode extraction using reverse engineering
The word embedding model is used to construct embedding

instructions. By consistently upholding the linkages between

words' syntactic and semantic components, it achieves this goal.

Figure 2 depicts the Opcode Extraction and vector conversion

process. Word2vec and one-pass warm encoding are two

integrated variants. The entry values are pre-processed and

given a vector price depending on their indexing in warm

encoding. Word2vec comes with two models which is the

Continue Bag of Words (CBOW) version and the Skip Continue

version.

3.2. Opcode embedding using n-skip gram
The N-skip gram word embedding approach is used to encode

opcodes. A popular NLP version for Word2Vec is the bypass

gamut version. Figure 3 illustrates the combination of opcodes

using the N-Skip-Gram process. The mathematical expression

of the N-Skip-Gram model is given in equation (1),

1

𝑁
∑ ∑ log 𝑃𝑟(𝐶𝑜𝑑𝑒𝑖+𝑗|𝐶𝑜𝑑𝑒𝑖)−𝑡≤𝑗≤𝑖≠0

𝑁
𝑖=1 (1)

Where, 𝐶𝑜𝑑𝑒1,…, 𝐶𝑜𝑑𝑒𝑚 are the training texts and the volume

of the training is denoted as 1 and N is the embedding vector.

𝑃𝑟(𝐶𝑜𝑑𝑒𝑖+𝑗|𝐶𝑜𝑑𝑒𝑖) is the core probability. The mathematical

expression of the prediction error is given in equation (2),

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ ∑ log 𝑃𝑟(𝐶𝑡+𝑗|𝐶𝑡)−𝑎≤𝑗≤𝑎

𝑁
𝑛=1 (2)

The variables N and a stand for the quantity of words and

context size, and 𝑃𝑟(𝐶𝑡+𝑗|𝐶𝑡) is the core probability of

predicting the word. Using some of the design benefits of the

Text-CNN approach, the model created here preserves the

ordinal information of the opcode sequence. Different feature

maps can be produced by combining various filters. This is how

the formula is defined in equation (3):

𝑐𝑖 = 𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣(𝑀,𝑤𝑖) + 𝑏𝑖) (3)

Figure 1: Overall Block Diagram of the proposed Simcode-NET

Framework

Figure 2: Opcode Extraction and vector conversion process

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

265 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

Figure 3: Opcode Embedding using N-skip gram process

The output matrix is specifically created utilizing the

convolutional community layer and the opcode collection

provided by using the entrance matrix. Typically, one or more

significant features are chosen via feature mapping using the

max group and k-max group after convolution.

3.3.Classification using Bi-GRU network

The deep learning model for categorizing binary code similarity

via Bi-GRU is displayed in figure 4. The GRU is composed of

three layers which is input, hidden, and output. Figure 4 shows

the Deep learning model to discriminate between similar data

and non-similar data with input binary function and output

prediction. The number of observed point vectors with the input

word and input sequence across the temporally indexed period

is given by the expression t= (1, 2, ..., n), where t is a word-

length vocabulary and y_t is a binary function used by similar

and non-similar data to obtain data.

Figure 4: Binary code similarity classification using Bi-GRU

Reset output (𝑠𝑡), replace gate output (𝑢𝑡), and GRU output (ℎ𝑡)

definitions are provided. The reset and replacement gates also

determine the ℎ𝑡 the output of the cutting-edge time by

simultaneously modifying the ℎ𝑡−1 the output of the previous

time and the entry of the cutting-edge time. Both the replace

gate equation and the reset gate equation are contained in the

equation (4) correctly, as well as equation (5).

𝑠𝑡 = 𝜎 (𝑊𝑠 [ℎ𝑡−1, 𝑦𝑡]) (4)

𝑢𝑡 = 𝜎 (𝑊𝑢[ℎ𝑡−1, 𝑦𝑡]) (5)

Where, 𝜎(𝑥) =
1

1+𝑒−𝑦 is the sigmoid function, and the weights

for the reset and alternative gates, 𝑊𝑠 and 𝑊𝑢, respectively, are

all present. The equation contains the output equation for the

calculation of equation (6).

ℎ𝑡 = (1 − 𝑢𝑡) × ℎ𝑡−1 + 𝑢𝑡 × ℎ̅𝑡 (6)

where ℎ𝑡is the GRU candidate state at time t. The expression

alone proves the computation of ℎ𝑡 equation (7).

ℎ̅𝑡 = tan ℎ (𝑊ℎ [𝑠𝑡 × ℎ𝑡−1, 𝑦𝑡]) (7)

The candidate state's weight is denoted as 𝑊ℎ. Using GRUs that

can be represented as equation (8)– (10), Bi-GRU is

determined.

ℎ⃗ 𝑡 = 𝐺𝑅𝑈𝑓 (𝑦𝑡 , ℎ⃗ 𝑡−1) (8)

ℎ⃖⃗𝑡 = 𝐺𝑅𝑈𝑏 (𝑦𝑡 , ℎ⃖⃗𝑡−1) (9)

ℎ𝑡 = ℎ⃗ 𝑡 ⨁ ℎ⃖⃗𝑡 (10)

ℎ⃗ 𝑡 and ℎ⃖⃗𝑡 represent the state information of the forward and

reverse GRUs, respectively. The GRU function is an equation,

which denotes GRUf for forward and GRUb for backward

which is composed of equation (8)- (10). ⊕ which denotes

concatenating the ℎ⃗ 𝑡 and ℎ⃖⃗𝑡. As a result, Bi-GRU, which has a

bidirectional GRU form, can store both similar and non-similar

data records. Finally, it might classify the output as either

similar data or non-similar data.

░ 4. RESULT AND DISCUSSION
One of the six suggested Linux distributions used to produce

test datasets is until-Linux, which uses Coreutils, findutils,

diffutils, sg3utils, and other tools. The package supply code is

obtained and each software is generated using x86-64 and ARM

processors, compilers (gcc and clang), and 4 optimization levels

(O0, O1, O2, and O3).

Dataset generation
The appropriate functions in various created files use the intact

information available in the binary to obtain active learning

versions. To produce negative examples, random vector pairs

are created that result from non-equivalent processes. After

making sure that no pairs exist in the match list, these pairs are

labeled with the value 0 which is no match, and used as a set of

negatively labelled data.

4.1.Performance analysis
This section quantifies the efficiency of binary code similarity

detection using various metrics, including precision, recall, F1

score, AUC, detection time, and detection rate. Dataset

Generation Properties is shown in figure 5.

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

266 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

Figure 5: Dataset Generation Properties

Figure 6: (a)Training and testing epochs vs (b)Average MSE among

multiple Binaries

4.2. Comparative analysis
The effectiveness of the SimCoDe-NET technique was assessed

using certain characteristics, including recall, F1 score,

precision, and specificity. The comparison of the SimCoDe-

NET methodology under consideration with existing methods

such as jTrans [14], UPPC [15], and HEBC [17] is based on the

dataset which is presented below. Training and testing epochs

and Average MSE among multiple Binaries are shown in figure

6.

Figure 7: Performance metrics of the proposed SimCoDe-NET

model

To illustrate the greater efficacy of the proposed SimCoDe-

NET approach, it has been compared with other approaches.

Performance is affected by TPR, sensitivity, recall, F1 score,

and precision, among other factors. A graphic representation of

the F1 score, specificity, sensitivity, recall, and precision are

shown in figure 7. Performance comparison of proposed

SimCoDe-NET model shown in table 2.

░ Table 2. Performance comparison of proposed SimCoDe-

NET model

Method Accuracy Specificity Precision F1-

Score

Recall

jTrans 84.9 71.41 82.13 84.63 82.41

UPPC 88.58 87.1 84.4 86.3 85.7

HEBCS 93.9 91 90.44 94.14 88.98

SimCoDe

-NET

99.10 96.35 98.2 99 98.99

The accuracy of the proposed method is 99.10% which is

relatively high compared to the existing method. The proposed

SimCoDe-NET approach improves the accuracy by 84.9%,

88.58%, and 93.9% better than jTrans, UPPC, and HEBCS

respectively.

4.3. Similarity Detection Accuracy
The Bi-GRU neural network uses at least 60 epochs to assess

the framework's efficacy. To explain the performance, a metric

called detection accuracy, which is formally defined in equation

(11):

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑇𝑒𝑠𝑡 𝐵𝑖𝑛𝑎𝑟𝑖𝑒𝑠

 𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑏𝑖𝑛𝑎𝑟𝑖𝑒𝑠
 (11)

Figure 8 illustrates the relationship between detection accuracy

and training time by using half of the binaries as instructional

facts and the other half as checking information. As a result,

following training, it can attain a detection accuracy of roughly

90%. It is significant to note that the detection accuracy in this

instance is 85%, as opposed to the earlier detection accuracy in

the dataset, which was 90% when the test data came from the

same categories as binaries [20]. Successive Rate of Existing

and the Bi-GRU Neural Network shown in figure 9.

Figure 8: Validation of accuracy among proposed framework and

baseline models

The purpose of this research is to develop a novel similarity

detection method utilizing the DEep Learning Network

(SimCoDe-NET) with the goal of increasing the efficiency of

binary code similarity determination. The overall effectiveness

of the suggested SimCoDe-NET approach is assessed by

comparing a number of criteria with the acquired results,

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

267 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

including recall, F1 score, accuracy, and specificity. Comparing

the accuracy of the SimCoDe-NET approach to earlier

techniques like jTrans [14], UPPC [15], and HEBC [17], it is

very high at 99.10%. The proposed SimCoDe-NET approach

improves accuracy by 84.9%, 88.58%, and 93.9% in

comparison to jTrans, UPPC, and HEBCS, respectively. 90%

detection accuracy for the frame and method detection accuracy

were obtained by using well-known techniques as InnerEYE

[23], BinDiff [24], SAFE [25], and jTrans [14]. The SimCoDe-

NET is assessed. SimCoDe-NET. A number of deep learning

techniques, such as RNN [21], Tree-LSTM [22], and DPCNN

[14], were employed to assess the Bi-GRU method's

classification performance. Particular standards were taken into

account, such as recall, accuracy, precision, specificity, and F1

score. Furthermore, the same objective is also accomplished by

the proposed SimCoDe-NET approach, which also determines

the similarity of actual binary codes.

Figure 9: Successive Rate of Existing and the Bi-GRU Neural

Network

░ 4. CONCLUSIONS
In this research, a novel SIMilarity detection in binary COde

using DEep learning NETwork (SimCoDe-NET) has been

proposed. The Bi-GRU neural network compares two data

samples in the feature space to determine whether the given data

belongs to similar data or dissimilar data. With a test dataset and

an unknown dataset, the model's accuracy was 0.920 and 0.704,

respectively. The accuracy of the proposed method is 99.10%

which is relatively high compared to the existing method. The

proposed SimCoDe-NET approach improves the accuracy by

84.9%, 88.58%, and 93.9% better than jTrans, UPPC, and

HEBCS respectively. As compared to current approaches, the

experimental results provide promising results in terms of

detection accuracy and computational efficiency. In future, we

will enhance the process for creating a graph out of malware.

Improve the way DLL functions are processed, learn where to

look for the important functions, and stop using the default

functions that the compiler produces.

░ 5. ACKNOWLEDGMENTS
The authors would like to thank the reviewers for all of their

careful, constructive and insightful comments in relation to this

work.

░ REFERENCES
[1] Shin, E.C.R., Song, D. and Moazzezi, R. 2015. Recognizing functions in

binaries with neural networks. In 24th {USENIX} Security Symposium,

611–626.

[2] Lou, A., Cheng, S., Huang J. and Jiang, F. 2019. Tfdroid: android malware
detection by topics and sensitive data flows using machine learning

techniques. in Proceedings of the 2019 IEEE 2nd International Conference

on Information and Computer Technologies, ICICT, Hawaii, HI, USA,

30–36.

[3] Shalev, N. and Partush, N. 2018. Binary similarity detection using

machine learning. In: Proceedings of the 13th workshop on programming

languages and analysis for security. ACM, New York, NY, USA, 42–47.

[4] Egele, M., Woo, M., Chapman, P. and Brumley, D. 2014. Blanket

execution: Dynamic similarity testing for program binaries and
components. In Proceedings of the 23rd USENIX Conference on Security

Symposium. Berkeley, CA, USA: USENIX Association, 303–317.

[5] Eschweiler, S., Yakdan, K. and Gerhards-Padilla, E. 2016. Discovre:

Efficient crossarchitecture identification of bugs in binary code. In

Proceedings of the 2016 network and distributed systems security

symposium (NDSS)

[6] Wang, Y., Shen, J., Lin, J. and Lou, R. 2019. Staged method of code

similarity analysis for firmware vulnerability detection, IEEE Access, 7,

14171–14185.

[7] Zhao, L., Li, D., Zheng, G. and Shi, W. 2018. Deep neural network based

on android mobile malware detection system using opcode sequences. In:
2018 IEEE 18th International Conference on Communication Technology

(ICCT) 1141–1147.

[8] Ananya Aswathy, Amal, T. R., Swathy, P. G., Vinod, P. and Mohammad,

S. 2020. SysDroid: a dynamic ML-based android malware analyzer using

system call traces. Cluster Computing 23(4), 2789–2808.

[9] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. and Shah, R. Signature
verification using a siamese time delay neural network. Advances in

neural information processing systems, 737–737.

[10] Zhang, X., Sun, M., Wang, J. and Wang, J. 2018. Malware detection based

on opcode sequence and resnet. in Proceedings of the International

Conference on Security with Intelligent Computing and Big-Data

Services, Springer, Guilin, China, 489–502.

[11] Şahın, D.Ö., Kural, O.E., Akleylek, S. and Kiliç, E. 2018. New results on
permission based static analysis for android malware. In 2018 6th

International Symposium on Digital Forensic and Security (ISDFS) 1–4.

[12] Yu, Z.,Cao, R.; Tang, Q., Nie, S., Huang, J. and Wu, S. 2020. Order

matters: semantic-aware neural networks for binary code similarity
detection. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 34, pp. 1145–1152.

[13] Shukla, S., Kolhe, G., PD, S.M. and Rafatirad, S. 2019. Stealthy malware

detection using rnn-based automated localized feature extraction and

classifier. In 2019 IEEE 31st international conference on tools with

artificial intelligence (ICTAI) (IEEE), 590–597.

[14] Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, Zhuge, J. and Zhang,

C. 2022. jtrans: Jump-aware transformer for binary code similarity.

[15] Zhang, W., Xu, Z., Xiao, Y. and Xue, Y. 2022. Unleashing the power of

pseudo-code for binary code similarity analysis. Cybersecurity, 5(1), 23.

[16] XJiang, S., Wang, X., Yu and Gong, Y. 2022. Double‐Layer Positional

Encoding Embedding Method for Cross‐Platform Binary Function

Similarity Detection. Chinese Journal of Electronics, 31(4), 604-611.

[17] Sun, X., Wei, Q., Du, J. and Wang, Y. 2023. HEBCS: A High-Efficiency

Binary Code Search Method. Electronics 12(16), 3464.

[18] Liu, G., Zhou, X., Pang, J., Yue, F., Liu, W. and Wang, J. 2023.
Codeformer: A GNN-Nested Transformer Model for Binary Code

Similarity Detection. Electronics, 12 (7), 1722.

[19] Wu, G. and Tang, H. 2023. Binary Code Vulnerability Detection Based

on Multi-level Feature Fusion. IEEE Access

[20] Guo, J., Zhao, B., Liu, H., Leng, D.; An, Y. and Shu, G. 2023. DeepDual-

SD: Deep Dual Attribute-Aware Embedding for Binary Code Similarity

http://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 1 | Pages 262-268 | e-ISSN: 2347-470X

268 Website: www.ijeer.forexjournal.co.in SimCoDe-NET: Similarity Detection in Binary Code

Detection. International Journal of Computational Intelligence Systems

16(1), 35.

[21] Huang, C., Zhu, G., Ge, G., Li, T. and Wang, J. FastBCSD: Fast and

Efficient Neural Network for Binary Code Similarity Detection.

[22] Yang, S., Dong, C., Xiao, Y., Cheng, Y., Shi, Z., Li, Z. and Sun, L.2003.

Asteria-Pro: Enhancing Deep-Learning Based Binary Code Similarity

Detection by Incorporating Domain Knowledge. ACM Transactions on

Software Engineering and Methodology.

[23] Zuo, F., Li, X.,Young, P., Luo, L., Zeng, Q. and Zhang, Z. 2018. Neural
machine translation inspired binary code similarity comparison beyond

function pairs. arXiv preprint arXiv:1808.04706.

[24] Arutunian, M., Hovhannisyan, H., Vardanyan, V., Sargsyan, S.,

Kurmangaleev, S. and Aslanyan, H. 2021. A Method to Evaluate Binary

Code Comparison Tools. In 2021 Ivannikov Memorial Workshop

(IVMEM), 3-5.

[25] Massarelli, L., Di Luna, G.A., Petroni, F., Baldoni, R. and Querzoni, L.

2019. Safe: Self-attentive function embeddings for binary similarity. In

Detection of Intrusions and Malware, and Vulnerability Assessment. 16th
International Conference, DIMVA 2019, Gothenburg, Sweden, June 19–

20, 2019 Proceedings 16, 309-329.

© 2024 by the S. Poornima, and R.

Mahalakshmi. Submitted for possible open

access publication under the terms and

conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://www.ijeer.forexjournal.co.in/

