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░ ABSTRACT- Steel surface defect detection is of utmost importance for ensuring product quality, cost reduction, enhanced 

safety, and heightened customer satisfaction. To address the limitations of traditional steel surface defect detection algorithms, 

which often yielded singular detection results and suffered from high miss detection rates, we proposed an enhanced Yolov5 steel 

surface defect detection algorithm. In this approach, this paper employed the EfficientNet network as a replacement for the Yolov5 

backbone network. Subsequently, we trained and tested this modified network on a steel surface defect dataset to mitigate the 

challenges associated with high miss detection rates and underperforming evaluation metrics. Our experimental findings 

underscored the superiority of the improved algorithm, particularly when compared to Yolov5. This enhanced algorithm exhibited 

substantial improvements across several key performance metrics, including Precision, Recall, mAP@0.5, parameter count, and pt 

file size. Noteworthy achievements included a 6.39% increase in Precision for Yolov5-EfficientNetB4, a remarkable 7.75% 

improvement in Recall for Yolov5-EfficientNetB0, and a 5.57% boost in mAP@0.5 for Yolov5-EfficientNetB6. Additionally, the 

pt file size for Yolov5-EfficientNetB0 saw a substantial 39.65% reduction, although it was important to note that the inference time 

for the improved algorithm increased. Among the models, Yolov5-EfficientNetB6 struck the best balance in terms of performance. 
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░ 1. INTRODUCTION   
The iron and steel industry plays a crucial role in China's 

economic development and is intertwined with various sectors 

of the manufacturing industry. Steel, as a fundamental material, 

impacts industries ranging from mining and energy to 

construction and home appliances. However, steel often 

exhibits surface defects like scratches and cracks during 

production and use, undermining its quality and performance. 

Effectively monitoring these defects is essential to maintain 

steel quality. Current methods, including manual, infrared, and 

eddy current detection, have limitations [1-2]. 
 

Recent advancements in machine vision, artificial neural 

networks, and deep learning revolutionized image processing, 

increasing efficiency and accuracy. Scholars explored deep 

learning for steel surface defect detection. FU G et al. [3] 

proposed a CNN model combined with multiple receptive fields 

to obtain the deep semantic features of the target and achieve 

rapid classification and detection of steel surface defects. 

However, the accuracy rates dropped on images with severe 

camera noise, non-uniform illumination, and motion blur. Xing 

Jianfu [4] built a strip steel surface defect classification model 

based on AlexNet, expanded the data of various strip steel 

defects, and produced a strip steel surface defect dataset. 

Comparative experiments verified that this model improved the 

strip steel surface defect classification ability compared to 

traditional methods, but further refinement was needed in the 

derivation of system functions and the classification of defect 

types. Akhyar et al. [5] added the FPN structure to RetinaNet 

and proposed a defect detection network based on an improved 

RetinaNet. However, due to the complexity of the overall model 

and the large amount of calculation, it could not meet the 

requirements of real-time detection. Weimer et al. [6] evaluated 

the effectiveness of 5–11-layer CNN networks in defect 

detection, but the method they proposed extracted small patches 

of images and classified them separately, which was inefficient. 

The Yolo network, a One-Stage detection algorithm, gained 

popularity due to its speed and accuracy in steel defect 

detection. Xu et al. [7] replaced the original feature extraction 

network with a lightweight MobileNet network based on 

Yolov3. They used the Inception structure to improve the real-

time performance of detection and improved the ability to 

extract small target features. However, better detection results 

could not be obtained on mobile devices with poor performance, 

and there was still room for improvement in terms of 

lightweighting.  
 

To tackle the multi-category issue in steel surface defects, this 

paper leveraged the EfficientNet network to replace the Yolov5 

backbone. The feature maps of three scales of steel surface 

defects were extracted through the EfficientNet network, and 

then fused by the feature pyramid structure in the Yolov5 
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network to improve the overlapping target detection ability. We 

conducted comparative experiments involving EfficientNetB0-

B7 and Yolov5 to assess fusion effects. 

 

░ 2. DEEP LEARNING YOLOV5 

ALGORITHM 

The network structure of Yolov5 followed the design principles 

of the Yolo [8-9] series, which consists of four key components: 

input, Backbone, Neck, and prediction result output. To 

expedite model convergence, Mosaic data augmentation is 

applied at the input stage. In the backbone network, Yolov5 

draw inspiration from CSPNet, similar to Yolov4 [10-11], but 

introduces two CSP structures and incorporates the Focus 

module. Specifically, in the Yolov5 architecture, CSP1_X is 

utilized for the Backbone, while CSP2_X is implemented for 

the Neck. This configuration in the Neck phase facilitates multi-

scale feature fusion through the amalgamation of top-down up-

sampling from the FPN structure and bottom-up down-

sampling from the PAN structure. Consequently, it seamlessly 

integrates both semantic and feature information from feature 

maps of varying sizes. To provide a visual representation of the 

network structure, please refer to figure 1. 
 

 For defining the boundary loss function at the output stage, the 

CIOU_loss is employed. After the predictions, a weighted NMS 

(Non-Maximum Suppression) is applied to filter prediction 

frames, ultimately outputting the coordinates of the frame with 

the highest confidence for successful target detection. 

 

 
 

Figure 1. Yolov5 network structure 

 

░3. IMPROVED DEEP LEARNING 

ALGORITHMS 
3.1. EfficientNet deep learning network 
When dealing with limited data, deep learning models typically 

aim for higher accuracy by increasing the depth and width of 

the model or enhancing the image resolution. However, 

conventional convolutional neural networks require manual 

adjustments for these three dimensions, and improper tuning 

can lead to reducing model performance and efficiency. To 

address these challenges, TanM et al. introduced a 

groundbreaking network architecture called EfficientNet [12] in 

2019. EfficientNet represented a significant innovation in 

network modelling as it established a direct relationship 

between the depth of the model and the number of layer 

structures, the width of the model and the number of 

convolution kernels in the convolution operation, and the image 

resolution and input image size. 
 

In essence, high-resolution images encompass more 

information, demanding a larger receptive field and a deeper 

network structure to capture more comprehensive features. 

EfficientNet employs composite coefficients to consistently 

expand the width, depth, and resolution of the network. The 

specific expansion rules are detailed in equation (1): 
 

:depth d a=  

:width w =  

:resolution r =                                               (1) 

1, 1, 1a      

In equation (1),  、  、   represent constants determined 

through neural architecture search, while


 signifies the 

composite coefficient. EfficientNet has achieved an impressive 

Top5 accuracy of 97.0% on the ImageNet [13] dataset. When 

compared to models achieving similar accuracy levels, 

EfficientNet reduces the number of parameters by 7/8 and 

shortens training time by 5/6. This demonstrates the network's 

remarkable efficiency. 
 

The overall architecture of the EfficientNet base network was 

visually represented in figure 2. It boasted a relatively intricate 

structure, primarily composed of 16 MBConv (Mobile Inverted 

Bottleneck Convolution) modules. Within this module, an 

attention mechanism inspired by SENet (Squeeze and 

Excitation Network) was introduced, commonly referred to as 

the SE module. Figure 3 provides a visual representation of the 

comprehensive structure of the MBConv module. Within the 

mobile inverted bottleneck convolution operation, the input 

feature matrix undergoes several critical steps: 
 

1. Firstly, it goes through a point-by-point convolution with 

a 1x1 kernel, adjusting the output channel dimension 

based on the expansion ratio. 

2. If the expansion ratio exceeds 1, batch normalization is 

applied, followed by the Swish activation function. 

3. Subsequently, depth convolution is executed, followed by 

compression and excitation operations, as depicted in 

figure 4. 

4. Finally, a 1x1 point-by-point convolution is employed to 

reduce dimensionality and restore the original channel 

dimensions. 
 

This process concluded with connection inactivation and skip 

operations, exclusively applied to the last layer of MBConv 

within each stage. This approach introduced variability in the 

model's depth while simultaneously reducing the time required 

for model training. 

 

https://www.ijeer.forexjournal.co.in/
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Figure 2. EfficientNet structure

Figure 3. MBConv module 

 

 

Figure 4. SE module 

 
 

3.2 Deep learning network based on Yolov5-
EfficientNet 
In the past, the majority of research in steel surface defect 

detection relied on traditional image processing methods, 

resulting in limited generalization ability within most detection 

models. This paper addressed a detection task involving six 

distinct defect types, each varying in shape, color, and scale. 

Detecting complex and diverse steel surface defects directly 

with existing detection networks demanded a high level of 

network generalization. 

 

EfficientNet models, spanning from B0 to B7, constitute a 

series of convolutional neural network models that utilize 

Compound Scaling. They create models of different sizes by 

simultaneously adjusting depth, width, and resolution. B0 

represents the smallest model with relatively fewer parameters 

and computational demands, making it well-suited for resource-

constrained environments. Slightly larger than B0, B1 

introduces a width multiplier, augments the channel count, and 

enhances performance, catering to mobile devices and  

 

embedded systems. B2 to B7 further increases both width and 

depth while maintaining heightened resolution for improved 

accuracy and performance, albeit requiring more computational 

resources. This family of models offers flexible options to strike 

a balance between performance and computational cost, 

accommodating various computer vision tasks and resource 

limitations. 

 

Experiments revealed that when the Yolov5 network was 

employed for steel surface defect detection, a substantial 

portion of true positive samples was erroneously classified as 

negative, indicating a significant issue with "missed detection". 

To tackle these challenges, the Yolov5 backbone network was 

replaced with the Efficient Net network. The feature maps 

extracted were subsequently passed through multiple 

convolutions and a feature fusion module up sampling to reach 

the output prediction module, as shown in figure 5.  

 

These improvements enhanced the network's capacity to extract 

features from small, defective targets while significantly 

reducing missed detection rates and other detection metrics. 

https://www.ijeer.forexjournal.co.in/
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Figure 5. EfficientNet-YOLOv5 network structure diagram 

 

░4.Experimental verification and 

comparison 
4.1 Experimental environment and data set 
The experiment was conducted on a Windows 10 system, 

utilizing an Intel i7-11700 CPU operating at 2.50GHz. The 

GPU employed was an NVIDIA GeForce RTX 3080 Ti, with 

32 GB of available RAM. The development environment 

consisted of PyCharm Community 2018.3.5 as the compiler and 

Python 3.8 as the interpreter. 

 

    
                 (a)                                                        (b) 

 

    
                  (c)                                                      (d) 

                  
               (e)                                                         (f) 

Figure 6. NEU-CLS data set (a) crazing; (b) pitted_surface; (c) 

inclusion; (d) rolled-in_scale; (e) patches; (f) scratches. 

 

The experimental dataset used in this study was sourced from 

the NEU-CLS dataset, featuring a selection of six distinct defect 

types. Each defect category comprised 300 images, resulting in 

a total of 1,800 steel surface defect images, as depicted in figure 

6. 
 

4.2 Experimental results 
4.2.1. Enhanced Yolov5-EfficientNetB4 Model 

After 200 training epochs to acquire the optimal weights, the 

performance on the test dataset yielded an mAP@0.5 of 0.706 

and an F1 score of 0.670. These outcomes were visually 

represented in figure 7. 
 

  
                                                      (a) 
 

 
                                                 (b) 
 

https://www.ijeer.forexjournal.co.in/
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                                                  (c)   
 

 
                                                    (d) 

Figure7. Enhanced Yolov5-EfficientNetB4 result chart (a) confusion 

matrix; (b) PR curve; (c) F1 diagram; (d) Verification test chart. 
 

4.2.2. Enhanced Yolov5-EfficientNetB6 Model 

Following 200 training epochs to obtain the optimal weights, 

the performance on the test dataset yielded an mAP@0.5 of 

0.720 and an F1 score of 0.71. These results were visually 

presented in figure 8. 
 

 

  
                                                 (b)  

 

 
                                                   (c) 

 

 
                                                   

(d) 
 

Figure 8. Enhanced Yolov5-EfficientNetB6 result chart (a) confusion 

matrix; (b) PR curve; (c) F1 diagram; (d) Verification test chart 

(a)  

https://www.ijeer.forexjournal.co.in/
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4.2.3. Enhanced Yolov5-EfficientNetB7 Model 

After 200 training epochs to acquire the optimal weights, the 

performance on the test dataset yielded an mAP@0.5 of 0.716 

and an F1 score of 0.690. These results were visually presented 

in figure 9. 
 
 

 
(a) 

 

 
(b) 

 

 
 

(c) 

 
 

(d) 

Figure 9. Yolov5-EfficientNetB7 result chart (a) confusion matrix; 

(b) PR curve; (c) F1 diagram; (d) Verification test chart. 

 

░ 5. DISCUSSION 
The comparison of detection results between Yolov5-

EfficientNetB0-B7 and Yolov5 was presented in table 1. The 

test results clearly indicated that the EfficientNet-Yolov5 

network demonstrated improvements across various metrics 

when compared to Yolov5. EfficientNetB0-B7 exhibited 

distinct enhancements over Yolov5. 
 

The comparison in table 1 revealed several noteworthy 

observations. When compared to Yolov5: 
 

Yolov5-EfficientNetB4 exhibited a 6.39% increase in 

Precision. 
 

Yolov5-EfficientNetB0 achieved a significant improvement in 

Recall, reaching 7.75%. 
 

Yolov5-EfficientNetB6 demonstrated a 5.57% increase in 

mAP@0.5. 
 

Yolov5-EfficientNetB0 witnessed an 39.65% reduction in pt 

file size.The reduced parameter count and smaller model file 

size had significant advantages in resource-constrained 

deployment scenarios. This not only reduced storage 

requirements but also enhanced network transmission 

efficiency, making it more suitable for environments with 

limited resources, such as embedded systems and mobile 

devices. Consequently, it provided a more economical and 

efficient solution for practical applications. 
 

Based on table 1, YOLOv5-EfficientNetB0-B7 had longer 

inference times compared to YOLOv5. This may have been due 

to YOLOv5-EfficientNet having more parameters, leading to 

increased model complexity and consequently affecting 

inference speed. 

https://www.ijeer.forexjournal.co.in/
mailto:mAP@0.5
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░ Table 1. Comparison of results from different networks 
 

 

 

Type Precision Recall mAP@.5 parameters InferenceTi

me（ms） 

pt file 

size 

Yolov5 
0.689 0.671 0.682 20873139 3.9 

40.

1 

Yolov5-EfficientNetB0 
0.64 0.723 0.709 12484867 5.6  

24.

2 

Yolov5-EfficientNetB1 
0.68 0.692 0.703 13808869 5.1 

26.

7 

Yolov5-EfficientNetB2 
0.61 0.722 0.693 16943371 5.6 

32.

8 

Yolov5-EfficientNetB3 
0.649 0.712 0.708 24071211 6.9 

45.

5 

Yolov5-EfficientNetB4 
0.733 0.641 0.706 35134739 8.0 

67.

8 

Yolov5-EfficientNetB5 
0.651 0.706 0.704 47805115 8.9  

92.

1 

Yolov5-EfficientNetB6 0.721 0.699 0.720 71131827 10.7 136 
       

Yolov5-EfficientNetB7 0.693 0.703 0.716 92216465 11.8 177 

For scenarios with extremely high demands on inference time, 

various alleviation strategies were employed. Model pruning 

effectively reduced model complexity and improved inference 

speed by eliminating redundant parameters. Model quantization 

transformed parameters into integer representations, 

significantly reducing model size, accelerating inference, and 

having limited impact on accuracy. Hardware optimization 

involved the use of higher-performance hardware such as GPUs 

or specialized neural network accelerators, markedly enhancing 

inference speed. Distributed inference distributed tasks to 

multiple devices for parallel processing, improving overall 

inference speed. These strategies, while maintaining accuracy, 

significantly reduced inference time, making them suitable for 

applications with stringent real-time requirements. 

 

In summary, this experiment involved 200 epochs of training to 

select the best model and showcased performance 

improvements in Precision, Recall, and mAP@0.5 on the steel 

surface defect dataset. Yolov5-EfficientNetB6 stood out with 

improved Precision, Recall, and mAP@0.5 performance, along 

with relatively minor increases in inference time and pt file size, 

representing the best balance in terms of 

performance.YOLOv5-EfficientNetB6 demonstrated 

outstanding performance in precision, recall, and mAP@.5 

metrics for object detection tasks, surpassing YOLOv5 

comprehensively in all aspects (other improved algorithms 

achieved superiority in only one or two metrics over YOLOv5). 

Simultaneously, it exhibited moderate characteristics in terms 

of parameter count, inference time, and model file size, 

presenting a well-balanced performance. The model's 

equilibrium across various performance metrics positioned it as 

the optimal choice during testing, suitable for real-time 

applications. Striking a favourable balance between complexity 

and performance, it provided superior cost-effectiveness. 

 

░ 6. CONCLUSION 
This paper proposed a steel surface defect detection algorithm 

based on Yolov5, utilizing the Efficient Net network. By 

replacing the Yolov5 backbone network with the Efficient Net 

series network, the algorithm was enhanced for steel surface 

defect detection. The Northeast China University's steel surface 

defect dataset was used to train and test the improved network, 

aiming to reduce the missed detection rate of steel surface 

defects and improve other related detection indicators. The 

experimental results showed significant improvements in 

Precision, Recall, mAP@0.5, number of parameters, and pt file 

size when compared to Yolov5. Yolov5-EfficientNetB4 

exhibited a 6.39% increase in Precision, Yolov5-

EfficientNetB0 achieved a 7.75% increase in Recall, and 

Yolov5-EfficientNetB6 demonstrated a 5.57% increase in 

mAP@0.5. Furthermore, the pt file size of Yolov5-

EfficientNetB0 decreased by 39.65%. These findings indicated 

that improving the network structure could effectively enhance 

the steel defect detection performance of Yolov5. Future 

research endeavours will focus on reducing inference time, 

refining the network architecture, and further enhancing 

detection speed. 
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