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░ ABSTRACT- One powerful technique that can offer a thorough examination of the body's internal structure is magnetic 

resonance imaging (MRI). MRI's lengthy acquisition times, however, may restrict its clinical usefulness, particularly in situations 

where time is of the essence. Compressed sensing (CS) has emerged as a potentially useful method for cutting down on MRI 

acquisition times; nevertheless, the effectiveness of CS-MRI is dependent on the selection of the sparsity-promoting algorithm and 

sampling scheme. This research paper presents a novel method based on adaptive multi-extreme particle swarm optimization 

(AMEPSO) and dual tree complex wavelet transform (DTCWT) for fast image acquisition in magnetic resonance. The method uses 

AMEPSO in order to maximize the sampling pattern and minimize reconstruction error, while also exploiting the sparsity of MR 

images in the DTCWT domain to improve directional selectivity and shift invariance. MATLAB software was used for simulation 

of the proposed method. In comparison with the particle swarm optimized-DTCWT (PSODTCWT) and DTCWT algorithms, 

respectively, the results demonstrated an improvement in the peak signal-to-noise ratio of 8.92% and 15.92% and a higher structural 

similarity index measure of 3.69% and 7.5%. Based on these improvements, the proposed method could potentially make high-

quality, real-time MRI imaging possible, which might improve detection and treatment of medical conditions and increase the 

throughput of MRI machines. 
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░ 1. INTRODUCTION   
Magnetic resonance imaging (MRI), a non-ionizing radiation 

medical imaging technology [1] is widely utilized in medical 

procedures. However, the extensive data collection required for 

one image as necessitated by the Nyquist criterion [2], makes 

the process time-consuming, constrained by technical and 

physiological limitations [3] since more samples are needed for 

optimal resolution. To expedite data acquisition without 

compromising quality, data compression is a viable solution. 

Most natural signals, including those generated by human 

beings, exhibit sparsity in transform domains, enabling data 

representation with only a fewer number of significant 

coefficients [4]. Compressed sensing, resolving 

underdetermined systems, captures and reconstructs images 

from a small number of samples, making it suitable for MRI to 

significantly reduce acquisition times, benefiting patients with 

shorter scan durations [5][6]. Particularly valuable in high-

resolution imaging like brain or musculoskeletal imaging, CS 

acquires a subset of k-space data [7], containing Fourier 

coefficients, to reconstruct images using sparsity-promoting 

algorithms. Since its discovery, CS has undergone extensive 

research, addressing challenges in sampling scheme design [8]. 

The choice of a sparsity-promoting algorithm is equally crucial 

and various schemes, such as random, pseudo-random, and 

deterministic methods, have been proposed in literature [9]. 

Algorithms like L1-norm minimization and total variation 

minimization have been designed and their performance found 

to be dependent on image sparsity, structure, and noise levels 

[10]. 
 

In the realm of Compressed Sensing (CS) for Magnetic 

Resonance Imaging (MRI) reconstruction, various algorithms 

have been designed with the goal of efficiently reconstructing 

high-quality images from limited data, thereby reducing 

scanning time. A particle swarm optimized multilevel 

compression method was introduced in [11], with the MR 

image being divided into frames and computing the sparsity 

index after discrete cosine transform being performed. This 
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method showed ease in setting the different required peak 

signal-to-noise ratio (PSNR) values and compression levels 

(CL). However, there are difficulties in modelling the fitness 

function to maximize both the PSNR and CL values with this 

method.   
 

A multi-rate approach for block-based CS using deep neural 

network was employed in [12]. This approach selectively 

assigns exclusive sampling rates for each block based on image 

information. Excellent abilities were shown relating to the 

reconstruction error correction and successful blocking artifact 

removal. However, because doing so would increase memory 

needs and computing complexity, the model cannot be directly 

extended to large-sized images, which raises questions 

regarding scalability and practical application. 
 

In [13], an Efficient Wavelet Transform (EWT)-based MR 

image compression method with Grey Wolf Optimization 

(GWO) for parameter adjustment was presented. The images 

reconstructed with this approach have the maximum level of 

sharpness and edge preservation with highest artifacts removal 

being emphasized but the improvements are achieved at the 

expense of the central processing unit (CPU) time. Dual tree 

complex wavelet transform using wavelet tree sparsity was 

explored in [14]. The approach showed better enhancement 

when the two algorithms were examined separately but even at 

20% sampling ratio, the achieved SNR of 18dB is still low and 

with insignificant visual enhancement. 
 

The authors of [15] proposed a method called reconstruction 

partial Fourier (RecPF) which used the alternating direction 

method for signal reconstruction from partial Fourier 

measurements with complex-valued convolutional neural 

networks. Although it reduces the number of measurements, its 

speed is still not suitable for practical application with 

insignificant enhancement in the resolution compared to related 

works.  
 

The Low-rank plus Sparse (L+S) with joint sparsity method 

enhancing free-breathing dynamic contrast-enhanced (DCE) 

MRI reconstruction was proposed in [16]. It modifies the 

traditional L+S approach by incorporating a temporal Fast 

Fourier Transform (FFT) constraint, boosting dynamic contrast 

performance. Fast Composite Splitting Algorithm (FCSA) 

efficiently solves the L+S model with multiple sparsity 

requirements. Testing on liver DCE-MRI datasets and 

simulations shows it outperforms Golden-angle Radial Sparse 

Parallel (GRASP) and standard L+S methods, increasing peak 

dynamic DCE signal by 24.8% and 33%, respectively. 

However, scaling to large datasets poses computational and 

memory challenges. 

 

░ 2. THEORETICAL FRAMEWORK 
This section presents theories related to the proposed algorithm 

starting with a brief introduction on compressed sensing, 

magnetic resonance imaging and image quality evaluation. 
 

2.1 Compressed sensing 
Compressed sensing reduces data for faster acquisition, cost-

effectiveness, and lower cost, given signal sparsity, 

incoherence, and adherence to the restricted isometry property 

[17]. Sparsity refers to the property of a signal where a 

significant portion of its coefficients are zero or very close to 

zero when represented in a certain basis. This is crucial in CS 

because it allows for accurate reconstruction from a reduced set 

of measurements [18]. Let's consider a signal x that is sparse in 

a given basis Ψ , meaning that it can be represented by a sparse 

vector s, then the relationship can be expressed as 𝑥 = Ψ𝑠. The 

sparsity constraint is formulated as follows: 

0 ≤ ‖𝑠‖0 ≤ 𝐾 (1) 

where ‖𝑠‖0 denotes the number of non-zero elements in the 

vector s, and K is a predefined sparsity level. The inequality 

expresses that the signal's sparse representation should have at 

most K non-zero coefficients [5]. However, the L0-norm used in 

the above expression, counting the number of non-zero 

elements, is non-convex and computationally challenging to 

work with. Therefore, the L1-norm is often used as a convex 

surrogate for sparsity, leading to a more tractable optimization 

problem [2]. 

‖𝑠‖1 = ∑ |𝑠𝑖|
𝑖

 (2) 

𝑚𝑖𝑛‖𝑠‖1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 = 𝐴𝑠 (3) 

where y represents the measurements obtained, A is the 

measurement matrix, and the objective is to find the sparsest 

solution (s) that still satisfies the measurement constraints. 

Incoherence is a crucial concept in CS as it influences the 

success of the reconstruction process [19]. The goal is to have a 

measurement matrix that is incoherent with the sparsifying 

basis to facilitate accurate and robust signal recovery from a 

reduced set of measurements. The coherence between Ψ and A 

is quantified by the coherence parameter, often denoted as μ 

[20]. It is defined as the maximum absolute inner product 

between the columns of Ψ and the rows of A normalized by the 

square root of the signal length as shown in Equation 4. A low 

coherence, i.e., a small μ, implies that the sparsifying basis and 

the measurement matrix are relatively uncorrelated. This is 

desirable in compressed sensing because low coherence 

enhances the ability of matrix A to capture the sparse structure 

of the signal accurately. Mathematically, with 𝜓𝑖  representing 

the 𝑖𝑡ℎ column of the basis Ψ, and 𝑎𝑗 representing the 𝑗𝑡ℎ row 

of matrix A: 

𝜇 = 𝑚𝑎𝑥𝑖,𝑗|〈𝜓𝑖 , 𝑎𝑗〉| (4) 

The authors in [6] proposed a condition for the measurement 

matrix, A, known as the restricted isometry property (RIP). The 

RIP quantifies how well a matrix preserves the geometry of 

sparse vectors, ensuring that the measurements provide enough 

information for accurate signal reconstruction. The RIP having 

an order of K for A is expressed through the restricted isometry 

constant 𝛿𝑘, where 0 < 𝛿𝑘 < 1. The RIP condition for order K 

asserts that the matrix A behaves almost like an isometry on all 

K-sparse vectors, meaning it approximately preserves their 

norm and pairwise distances enabling the recovery of the 

http://www.ijeer.forexjournal.co.in/
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original sparse signal from a reduced set of measurements [21]. 

Mathematically, for any K-sparse vector x, the RIP is 

characterized by the lower and upper bound conditions as 

shown in Equation 5. The lower bound condition, (1 −
𝛿𝑘)‖𝑥‖2

2, ensures that the squared norm of the sparse vector x is 

not significantly reduced by the action of A while the upper 

bound condition, ‖𝐴𝑥‖2
2 ≤ (1 + 𝛿𝑘)‖𝑥‖2

2, ensures that the 

squared norm of the measurement 𝑨𝑥 is not significantly larger 

than that of the original sparse vector x. In a more compact form, 

the RIP condition for a matrix A of size 𝑚x𝑛 and order K can 

be expressed as follows: 

 (1 − 𝛿𝑘)‖𝑥‖2
2 ≤ ‖𝐴𝑥‖2

2 ≤ (1 + 𝛿𝑘)‖𝑥‖2
2 (5) 

Once the three conditions are satisfied (sparsity, incoherence 

and RIP), the signal can then be reconstructed using the inverse 

transform. In mathematical terms, the reconstructed signal, 𝑥𝑟𝑒𝑐

, is given by 𝑥𝑟𝑒𝑐 = Ψ−1𝑠 [22]. 
 

2.2 Magnetic Resonance Imaging 
The fundamental principle of MRI is based on the behavior of 

atomic nuclei in the presence of strong magnetic fields and 

radiofrequency (RF) pulses. In an external magnetic field, 

certain atomic nuclei (e.g., hydrogen nuclei in the human body, 

abundant in water and fat) align with the magnetic field [1]. 

When exposed to RF pulses, these nuclei absorb energy and, 

upon relaxation, emit signals that can be detected to create 

detailed images. 

During the RF pulse and signal acquisition, gradient magnetic 

fields 𝐺𝑥 , 𝐺𝑦 , 𝐺𝑧  are applied to achieve spatial encoding. This 

results in different frequencies for different locations, providing 

spatial information whose equation is given by: 𝑥(𝑡) = ∫ 𝐺𝑥 𝑑𝑡 

to illustrate how the position (x) is determined by integrating 

the gradient (𝐺𝑥) over time [23]. However, during this process, 

the nuclei tend to spin towards the z-axis, to the equilibrium 

state, denoted as the 𝑀0 or longitudinal magnetization. This 

leads to creation of poor-quality images hence the need to force 

the nuclei spins to deviate towards the transverse plane, leading 

to the generation of useful signals for imaging. 

For excitation, RF pulses are applied to tip the aligned nuclear 

spins away from the z-axis and the tipping angle (θ) is 

determined by the flip angle of the RF pulse [24]. The Larmor 

equation describes the relationship between the angular 

frequency (ω) of precising nuclear magnetic moments and the 

magnetic field strength (B) as given in Equation 6.  

𝜔 = 𝛾Β (6) 

where ω is the Larmor frequency of precession, γ is the 

gyromagnetic ratio of the nucleus and B is the strength of the 

magnetic field. This equation establishes the relationship 

between the frequency of the RF pulse and the strength of the 

magnetic field, which is crucial for controlling the excitation of 

nuclear spins. Afterwards, the RF (receiver) coil detects signals 

emitted by relaxing nuclei during the relaxation processes, and 

this is a time-domain signal, usually represented by the free 

induction decay (FID) [25] signal which undergo Fourier 

Transform for image reconstruction. The FID is mathematically 

expressed in Equations 7, 8 and 9 through the Bloch equations 

in two main components of the longitudinal (𝑀𝑧) and transverse 

magnetization (𝑀𝑥𝑦), which describe the behavior of nuclear 

magnetization in response to RF pulses and during relaxation 

processes. 

𝑑𝑀𝑥𝑦

𝑑𝑡
= 𝛾. Β𝑒𝑓𝑓 . 𝑀𝑧 −

𝑀𝑥𝑦

𝑇2

 (7) 

𝑑𝑀𝑧

𝑑𝑡
= −

𝑀𝑧 − 𝑀0

𝑇1

 (8) 

𝐹𝐼𝐷(𝑡) = 𝑀𝑥𝑦(𝑡) = 𝑀0 .  𝑒−𝑡 𝑇2⁄  .  𝑒𝑖.𝜔.𝑡 (9) 

where Β𝑒𝑓𝑓  is the effective magnetic field, 𝑇1 and 𝑇2 are the 

longitudinal and transverse relaxation times, 𝑡 is time, 𝑖 is the 

imaginary unit and 𝑀0 is the equilibrium magnetization. 

2.3 Image Quality Measures 
Using objective measures, the peak signal-to-noise ratio 

(PSNR) and the structure similarity index measure (SSIM) 

metrics were used to assess how well the suggested technique 

performs [26]. The PSNR is given by: 
 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝐿2

𝑀𝑆𝐸
) (10) 

where, 𝑀𝑆𝐸 =
∑ (𝑥(𝑚, 𝑛) − 𝑦(𝑚, 𝑛))2

𝑀,𝑁

𝑀𝑁
 (11) 

 

where M and N are the total number of rows and columns in the 

input images, 𝑥(𝑚, 𝑛) and 𝑦(𝑚, 𝑛) are the original and 

reconstructed images respectively and L is the maximum 

variation in the input image data type. 

To distinguish the similarity measuring task, the system uses 

three comparisons: luminance, contrast and structure to 

generate specific form of the SSIM for two images of local 

windows x and y given by: 
 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (12) 

  

where 𝜇𝑥 and 𝜇𝑦 are means of x and y respectively, 𝜎𝑥
2 and 𝜎𝑦

2 

are variance values of x and y respectively, 𝜎𝑥𝑦 is the covariance 

of x, y and C1 and C2 are constants introduced to eradicate the 

unstableness caused when SSIM denominator approaches zero. 

 

░ 3. THE PROPOSED COMPRESSED 

SENSING TECHNIQUE - AMEPSO 

ALGORITHM  
In the proposed algorithm as illustrated in Figure 1, the Dual 

Tree Complex Wavelet Transform (DTCWT) is applied to the 

acquired k-space data, unveiling a sparse model in the wavelet 

domain. The Adaptive Multi Extreme Particle Swarm 

Optimization (AMEPSO) algorithm is used on the subsequent 

step to precisely navigate the complex search space inherent in 

sparse recovery problems. Through iterative updates, AMEPSO 

refines particle velocities and positions, optimizing the fitness 

function depending on the L1 norm. The algorithm converges to 

unveil the optimal solution, representing the reconstructed 

http://www.ijeer.forexjournal.co.in/
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image. Finally, the inverse DTCWT is applied, transforming the 

solution back into the spatial domain, yielding a reconstructed 

image of remarkable fidelity. This integrated approach reveals 

the benefits of a combined CS, DTCWT, and AMEPSO 

approach in advancing the frontier of rapid and accurate 

medical image reconstruction. 
 

 
 

Figure 1. Flow chart of the proposed algorithm 

3.1. Compressed Sensing based Dual Tree Complex Wavelet 

Transform 

The Complex Wavelet Transform (CWT) employs analytic 

filters to decompose signals in the transform domain into real 

and imaginary components, facilitating precise energy 

localization of oscillating functions [27]. The wavelet basis 

computes amplitude, phase, and real and imaginary 

coefficients, enhancing the discrete wavelet transform (DWT). 

The Dual Tree Complex Wavelet Transform (DTCWT) 

improves on DWT by employing two parallel decimated trees 

with real-valued coefficients, enabling perfect image 

reconstruction [28]. DTCWT captures features at various scales 

and orientations using two wavelet filters in a dyadic tree 

structure [29]. This dual-tree arrangement is shown in Figure 2, 

with one set shifted by a half sample, yields complex-valued 

signals, allowing representation of both phase and magnitude 

information in the signal [30]. Iterative decomposition produces 

a multiresolution of an input signal denoted by x(n) which is 

under sampled with a two factor at each stage. In the upper tree, 

there is the low-pass and high-pass filters representing the real 

part denoted by h0(n) and h1(n) respectively. Similarly, the 

lower tree includes corresponding filters, g0(n) and g1(n) 

representing the low-pass and high-pass filters, which pertain to 

the imaginary part. The DTCWT exhibits enhanced directional 

selectivity, reduced redundancy, and improved shift invariance. 

 
 

Figure 2. Forward transformation of the Dual Tree Complex Wavelet 

Transform 
 

During Compressed Sensing, the DTCWT involves steps as 

illustrated in Figure 3. The wavelet coefficient matrix, W, 

undergoes thresholding for signal sparsity with the operation 

given in Equations 13, 14 and 15 as [31]: 

 

𝑆𝑜𝑓𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑠𝑖𝑔𝑛(𝑊) . 𝑚𝑎𝑥(|𝑊| − 𝑇, 0)

|𝑊|
 (13) 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑇 = 𝜎2√(
2 log10(𝑘)

𝐿
) (14) 

 

𝜎 = Median(|𝑊|)/0.6745 
(15) 

 

 

where the expression max(∣W∣−T,0) calculates the maximum of 

the absolute value of each element in W from T and 0 setting all 

negative values resulting from subtraction to zero, k and L are 

the coefficients and maximum pixels in the signal respectively, 

sigma, σ, is the noise level estimated using the Median Absolute 

Deviation (MAD) [32].  

0.6745 is the 0.75th quantile of the normal distribution used as 

a scaling factor that aligns the MAD with the standard 

deviation. It ensures consistency of MAD as a standard 

deviation estimator, facilitating robustness against outliers and 

maintaining sensitivity to extreme values. 

 
 

Figure 3. Block diagram of the DTCWT Algorithm 

 

3.2 Adaptive Multi Extreme Particle Swarm Optimization 

Particle Swarm Optimization (PSO) mimics the movement of a 

school of fish or birds in a space that is multidimensional to find 

optimal solutions. PSO involves particles with fitness, 

velocities, and positions values in a swarm exploring the search 

field where the movements are guided by attraction towards 

personal and global best positions, aiming for the best solution. 

However, standard PSO struggles with multiple extrema in the 

http://www.ijeer.forexjournal.co.in/
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global range, impacting sparse signal reconstruction in 

compressed sensing [33].  
 

Addressing this, an Adaptive Multi-Extreme Particle Swarm 

Optimization (AMEPSO) is proposed which uses a multi-

extreme approach to enhance solution search. Adaptive 

parameters regulate the local search probability to fit the 

profitability of each individual particle, ensuring a fair trade-off 

between extraction and exploration [34]. By quickly identifying 

strong scattering zones, AMEPSO speeds up the objective 

function solution and enhances imaging quality during sparse 

target image scanning. 
 

By managing the balance between exploring and profiting in the 

algorithm, the constriction coefficient approach employed for 

selecting PSO parameters, helps keep the particles from moving 

too quickly and improves convergence and stability. This 

ultimately helps to create a sparse representation, which lowers 

artifacts in reconstructed images. Figure 4 illustrates the flow 

of the AMEPSO algorithm. 
 

 
 

Figure 4. Flow-chart of the AMEPSO Algorithm 

The particle positions and velocities are updated iteratively as 

indicated in Equations 16 and 17 respectively [35]. 
 

𝑣(𝑖)𝑛+1 = 𝑤𝑣(𝑖)𝑛 + 𝐶1𝑅1(𝑝𝑏𝑒𝑠𝑡(𝑖)𝑛 − 𝑥(𝑖)𝑛)
+ 𝐶2𝑅2(𝑔𝑏𝑒𝑠𝑡𝑛 − 𝑥(𝑖)𝑛) 

(16) 

  

𝑥(𝑖)𝑛+1 = 𝑥(𝑖)𝑛 + 𝑣(𝑖)𝑛+1𝛿(𝑡) (17) 
  

where w is the inertia weight, C1 and C2 are the acceleration 

constants, R1 and R2 are random positive numbers less than one, 

𝑝𝑏𝑒𝑠𝑡(𝑖)𝑛 and 𝑔𝑏𝑒𝑠𝑡𝑛 are the best position of particle 𝑖 and the 

whole swarm respectively up to the nth iteration and δ(t) is the 

time step. 
 

Higher-probability particles, likely in strong scattering regions, 

enhance local search in these areas. Adaptive parameters, 

including inertia weight (w) and acceleration constants (C1 and 

C2), are updated to balance exploration and exploitation. 

Equations 18, 19 and 20 specify the dynamic parameter 

adjustments throughout iterations, ensuring effective 

optimization in AMEPSO. The parameter rates are controlled 

by constants, providing a flexible and adaptive optimization 

process over the iterations. 

𝑤𝑛+1 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (1 −
𝑛

𝑁
)

𝑝

 (18) 

𝐶1 (𝑛+1) = 𝐶1 min + (𝐶1 𝑚𝑎𝑥 − 𝐶1 𝑚𝑖𝑛)
𝑛

𝑁
 (19) 

𝐶2 (𝑛+1) = 𝐶2 𝑚𝑎𝑥 − (𝐶2 𝑚𝑎𝑥 − 𝐶2 𝑚𝑖𝑛)
𝑛

𝑁
 (20) 

where 𝑤𝑚𝑖𝑛, 𝐶1 min, 𝐶2 min are the minimum values of the 

inertia weight, acceleration constants C1 and C2 respectively 

while, 𝑤𝑚𝑎𝑥 , 𝐶1 𝑚𝑎𝑥, 𝐶2 𝑚𝑎𝑥 are the maximum values, N is the 

maximum number of iterations, n is the current iteration, and p 

is a constant that controls the rate of change of the inertia 

weight. A higher p might lead to stronger exploitation and less 

exploration whereas a lower p might result in more exploration 

and less exploitation allowing the algorithm to explore a larger 

portion of the search field.   

 

░ 4. RESULTS AND DISCUSSIONS 
Simulations were carried out using MATLAB R2023a on a PC 

with 16GB RAM and core i7 processor and the results were 

used to examine and illustrate the performance of the proposed 

technique. This study included six MR images (head, ankle, 

knee, spine, shoulder, and brain) got from MR databases 

[36][37]. 40 iterations, an under-sampling factor of 0.7, and a 

convergence threshold of 1e-5 were used for the evaluation. 

Additionally, two decomposition levels and coif5 wavelet type 

were used in this work.  

The reference images are displayed in column (a) of Figure 5. 

These are subsequently employed in DWT, DTCWT, 

PSODTCWT, and the suggested method in columns (b), (c), 

(d), and (e), in that order. Using DWT, DTCWT, PSODTCWT, 

and the proposed method for reconstruction of the ankle, the 

images have PSNRs of 21.62dB, 21.91dB, 22.89dB, and 

25.47dB, respectively.  

 

 
Figure 5. Image reconstruction using different selected compressed 

sensing (a) Ground-truth image (b) DWT (c) DTCWT (d) 

PSODTCWT (e) Proposed method 
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Figure 6. Difference images resulting from the comparisons of the 

reference and reconstructed images using different selected 

compressed sensing methods (a) Ground-truth image (b) DWT (c) 

DTCWT (d) PSODTCWT (e) Proposed method 

 

As observed, there is insignificant visual difference between 

images reconstructed using the classical DWT, DTCWT and 

PSODTCWT with both images being affected with artifacts 

which could reduce their credibility. However, with similar 

parameters, the proposed method reconstructed the images as 

close to the ground truth images as possible with residues in the 

difference images which can be ignored as illustrated in Figure 

6. 

Table 1 displays the results for the head, ankle, knee, spine, 

shoulder and brain MR images using the proposed, DWT, 

DTCWT and PSODTCWT methods at different under-

sampling factors. PSNR with SSIM quality assessment indices 

are used and it can be observed that the images reconstructed 

with the proposed algorithm have higher PSNR and SSIM 

values than DWT, DTCWT and PSODTCWT methods for all 

the under-sampling factors. 

For example, at 0.6 under-sampling factor, the proposed method 

has approximately 1.62dB, 1.49dB and 0.75dB PSNR with 

0.03, 0.02 and 0.02 SSIM improvements over PSODTCWT for 

the knee, spine and brain MR images respectively. These 

improvements indicate a high degree of similarity and fidelity 

between compared images, suggesting good quality and 

effective preservation of structural information.

Table 1. Performance evaluation using PSNR and SSIM metrics on the proposed method at different under-sampling factors 

MR 

Images 

 

 

 

 

 

 

 

Under- 

sampling 

Factor 

DWT DTCWT PSODTCWT Proposed 

PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM 

0.6 18.86 0.84 19.30 0.85 20.63 0.89 21.36 0.91 

0.7 19.29 0.85 19.78 0.87 21.56 0.91 23.43 0.93 

0.8 19.73 0.87 20.22 0.88 22.19 0.92 23.59 0.94 

0.9 20.23 0.88 20.74 0.90 22.27 0.92 25.37 0.96 

0.6 20.74 0.86 21.19 0.87 22.72 0.91 24.07 0.94 

0.7 21.20 0.87 21.68 0.89 22.79 0.91 25.05 0.95 

0.8 21.69 0.89 22.21 0.90 23.39 0.93 25.53 0.95 

0.9 22.15 0.90 22.74 0.91 24.12 0.93 27.29 0.97 

0.6 21.02 0.86 21.47 0.87 22.11 0.89 23.73 0.92 

0.7 21.48 0.87 21.80 0.88 24.18 0.93 24.62 0.94 

0.8 21.82 0.88 22.44 0.90 24.78 0.93 25.45 0.95 

0.9 22.39 0.90 22.94 0.91 25.28 0.94 26.77 0.96 

0.6 21.10 0.89 21.45 0.90 22.62 0.92 24.11 0.94 

0.7 21.56 0.90 22.01 0.91 23.74 0.94 24.90 0.95 

0.8 22.15 0.91 22.45 0.92 24.32 0.94 28.37 0.98 

0.9 22.83 0.92 23.24 0.93 28.18 0.97 30.84 0.99 

0.6 19.65 0.84 20.03 0.85 21.26 0.89 21.57 0.90 

0.7 20.03 0.85 20.46 0.87 21.89 0.90 23.72 0.93 

0.8 20.54 0.87 21.00 0.88 22.77 0.92 24.31 0.94 

0.9 21.05 0.88 21.60 0.90 23.08 0.94 27.07 0.97 

0.6 16.87 0.80 17.30 0.82 18.54 0.86 19.29 0.88 

0.7 17.30 0.82 17.75 0.84 18.71 0.86 20.73 0.91 

0.8 17.75 0.84 18.30 0.86 18.99 0.87 22.89 0.94 

0.9 18.23 0.85 18.83 0.87 21.26 0.91 23.33 0.94 

http://www.ijeer.forexjournal.co.in/


                                                      International Journal of 
                     Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 2 | Pages 393-402 | e-ISSN: 2347-470X 

 

399 Website: www.ijeer.forexjournal.co.in   Improved Magnetic Resonance Image Reconstruction using 

Compressed Sensing and Adaptive Multi Extreme Particle Swarm Optimization Algorithm 

Figure 7 represents the performance of DWT, DTCWT, 

PSODTCWT and the proposed method using the PSNR metric. 

The proposed method outperforms PSODTCWT and DTCWT 

with PSNR values averaging to 8.92% and 15.92% 

improvements respectively. These improvements correspond to 

8.92% and 15.92% reduction in the scan duration when 

compared with PSODTCWT and DTCWT. The performance 

evaluation is also carried out using SSIM metric as provided in 

Figure 8. While all the methods exhibit good values above 0.8 

SSIM, the proposed method outperforms PSODTCWT and 

DTCWT by 3.69% and 7.5%, respectively. 

 

                    
(a)                                                                                                          (b) 

                    
                                               (c)                                                                                                           (d) 

                   

                                                (e)                                                                                                                (f) 
Figure 7. PSNR evaluation of different selected methods with the proposed method on the MR images (a) head (b) brain (c) knee (d) spine (e) 

shoulder (f) ankle 
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(a)                                                                                                                    (b) 

                       

(c)                                                                                                                (d) 

                         

(e)                                                                                                               (f) 
Figure 8. SSIM evaluation of different selected methods with the proposed method on the MR images (a) head (b) brain (c) knee (d) spine (e) 

shoulder (f) ankle 

 

░ 5. CONCLUSION 
An adaptive multi extreme particle swarm optimized 

compressed sensing technique in MRI reconstruction has been 

presented in this paper. MATLAB simulations have been used 

with the results showing improvements in the image quality of 

8.92% and 3.69% for PSNR and SSIM respectively, over the 

PSODTCWT method. These improvements correspond to 

approximately 8.92% reduction in the scan duration. Despite 

the efficiency improvements achieved, future research work 

will involve experiments with different filter functions to 

further remove artifacts in the reconstructed images. 
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