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░ ABSTRACT- The traditional planning of distribution networks is changing because of the accelerated expansion of 

distributed generation (DG) technologies in various capacities and forms. However, the improper integration of DGs in current 

distribution networks can give rise to several technical difficulties despite the advantages provided by distributed generation 

technologies. This paper presents the optimal DG planning in the distribution system using a Pareto-based many-objective arithmetic 

optimization algorithm (MOAOA) for optimal DG planning problems in the distribution system. This work focuses on improving 

four technical metrics related to distribution systems: mitigation of electrical energy not served (EENS), total voltage deviation 

(TVD) minimization, voltage stability index (VSI) maximization, and energy loss mitigation. Two scenarios are considered: the 

first scenario primarily focuses on optimal planning of DGs supporting active power only (e.g. Micro-Turbines DGs), and the second 

scenario focuses on optimal planning of DGs supporting both active and reactive power support (e.g. BIOMASS DGs). The optimal 

Pareto fronts between the competing objectives are generated using the Pareto-based MOAOA algorithm. The TOPSIS (a technique 

for order performance by similarity to ideal solution) multi-criteria decision-making technique is utilized for selecting the best trade-

off solution from the optimal Pareto front. The posited method is examined on two standard IEEE-69 bus distribution systems. The 

efficacy of the MOAOA is compared with the outcomes of MOPSO, MOGWO and NSGA-II. 
 

Keywords: Distributed generation (DG), Arithmetic optimization algorithm (AOA), Multi objective Particle swam optimization 

(MOPSO), Multi Objective Gray Wolf Optimization (MOGWO), Non dominated sorting Genetic Algorithm (NSGA-II), 

Distribution system, Optimal siting and sizing, stability index (SI). 

 

 

 

░ 1. INTRODUCTION   
The significance of efficient distribution system management 

has grown as a result of the rising demand for electricity and the 

development of distribution networks. Distributed generators 

have been integrated as a result, providing reduced network 

losses, improved voltage profile, reduced environmental 

pollutants, and increased system reliability. [1]. However, the 

effectiveness of DG connectivity in distribution networks is 

primarily dependent on the location and size specifics of the 

DGs. An improperly planned DG (site and size) could have 

unfavourable effects. Reverse power flow, instability problems, 

and an increase in power losses in the distribution network are 

all associated with DGs that are not planned optimally [2]. As a 

result, strategically optimizing DG planning within the 

distribution network is crucial. 
 

Planning for distribution networks (DGs) usually involves 

optimizing several goals to improve the distribution network's 

overall performance. Many researchers use nature-inspired 

metaheuristic optimization algorithms to successfully address 

the DG planning problem because it is a difficult, many-

objective, mixed-integer, non-linear, and non-concave problem.  

[3]. Multiple DGs are planned in the distribution network [4] 

considering multiple technical objectives using particle swarm 

optimization algorithm. The cuckoo search optimization 

algorithm to address the many-objective DG planning problem 

was delineated in [5] wherein the objectives encompass the 

minimization of power loss and the enhancement of voltage 

profile. 
 

░ 2. LITERATURE REVIEW 

In a study outlined in [6], an artificial bee colony algorithm is 

utilized to minimize real power loss while optimally siting and 

sizing DG installations. In reference [7], a multiverse 

optimization methodology has been proposed to address the DG 

planning problem. It is noteworthy that this investigation 

specifically considered the optimization of the electrical energy 

not supplied (EENS) objective in conjunction with several other 

technical objectives.  
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Authors in [8], examined how to plan DGs in the distribution 

network using the butterfly optimization algorithm. An 

approach to many-objective DG planning is introduced in [9], 

accounting for cost, emission, voltage deviation, and voltage 

stability as distinct objectives. The resolution of this 

multifaceted problem is achieved through the implementation 

of the artificial gorilla troops optimizer algorithm. The artificial 

humming bird algorithm [10] is applied to find the best location 

and size of DGs with an objective to minimize losses and total 

voltage deviation. This study places particular emphasis on 

incorporating diverse load models into the optimization 

framework.  
 

Moreover, the literature elucidates that a substantial portion of 

DG planning investigations overlooks the EENS objective. 

Despite being documented in select studies [7], it is noteworthy 

that these investigations, as previously highlighted, amalgamate 

the EENS objective with other parameters utilizing a weighted-

sum methodology. Studies utilizing the Pareto optimality-based 

approach  [11], [12] similarly omitted consideration for the 

EENS objective. Recognizing this research gap, our study 

proposes a many-objective DG optimal planning problem that 

takes into account energy loss, total voltage deviation, voltage 

stability index, and EENS as primary objectives. We 

simultaneously optimize all the four considered objectives 

using a recently developed Pareto optimality-based many-

objective arithmetic optimization algorithm (MOAOA) 

[13].The best trade-off solution from the Pareto front generated 

by MOAOA is chosen through technique for order performance 

by similarity to the ideal solution (TOPSIS) [11].  
 

The contributions of this paper are as follows: 
 

1) In this investigation, addressed four key objectives, 

incorporating the minimization of EENS through the 

application of a Pareto-optimality-based approach for DG 

planning. 
 

2) The planning problem encompasses two distinct types of 

DGs: Type-1 DGs, exclusively proficient in injecting real 

power, and Type-2 DGs, endowed with the capacity to provide 

both active and reactive power. 
 

3) Following the optimization phase, during the decision-

making stage, we capitalize on the capabilities of TOPSIS. 

Multiple combinations of weights are systematically chosen, 

and the planning outcomes for each weight combination are 

systematically presented. 
 

4) A noteworthy aspect of this research lies in the pioneering 

utilization of MOAOA to address the complexities inherent in 

the DG planning problem with four conflicting objectives. 
 

The subsequent sections of the paper are delineated as follows: 

Section 2 introduces the formulation of the objective function. 

Section 3 provides a detailed exposition of the MOAOA and 

TOPSIS. Section 4 expounds upon the results and ensuing 

discussions. The concluding remarks are encapsulated in 

section 5. 

 

░ 3. PROBLEM FORMULATION 
The proposed multi-objective methodology encompasses four 

vital technical objectives of the distribution network that aim to 

enhance the overall performance of the distribution network. It 

is noteworthy that all four objectives are minimized 

simultaneously using the proposed methodology. 

 

3.1 Objective functions 

3.1.1 Energy loss 
The parameter of significant importance in gauging the efficacy 

of the distribution is the energy loss (𝐸𝑙𝑜𝑠𝑠) of the network. 

Efforts should be directed towards minimizing the 𝐸𝑙𝑜𝑠𝑠 within 

the network to the greatest extent possible. Hence, the 𝐸𝑙𝑜𝑠𝑠 is 

taken as one of the minimization objectives of this study. It can 

be computed by using the below expression: 
 

               𝐹1 = 𝐸𝑙𝑜𝑠𝑠 = 𝜁 × ∑ 𝐼𝑗
2𝑅𝑗

𝑛𝑏𝑢𝑠−1
𝑗=1                    (1) 

                                      

Where 𝜁 , 𝐼𝑗 , 𝑛𝑏𝑢𝑠  and 𝑅𝑗  respectively denote the conversion 

factor, current served by branch 𝑗 and resistance of branch 𝑗.  

 

3.1.2 Electrical energy not supplied 
The unmet energy demand, referred to as electrical energy not 

supplied (𝐸𝐸𝑁𝑆), serves as a pivotal metric for assessing the 

reliability of services provided to consumers. 𝐸𝐸𝑁𝑆 empowers 

network utilities to identify vulnerable buses and formulate 

corresponding operational procedures. The 𝐸𝐸𝑁𝑆  of the 

distribution system, framed as a minimization objective, can be 

calculated using the equation outlined below: 
 

              𝐹2 = 𝐸𝐸𝑁𝑆 = ∑ 𝑃𝐷,𝑚𝑈𝑚
𝑛𝑏𝑢𝑠
𝑚=1                       (2) 

                                         

where 𝑃𝐷,𝑚 and 𝑈𝑚 for a given bus 𝑚 respectively denote the 

power demand and the annual failure rate.  
 

It is customary to estimate the reliability of the system based on 

the average rate of failure (𝜏𝑠), annual time of outage (𝑈𝑠) and 

average outage time (𝑟𝑠 ). These parameters are computed as 

shown below [14]: 

  𝜏𝑠 =  ∑ 𝜏𝑚𝑚 ; 𝑈𝑠 =  ∑ 𝜏𝑚𝑟𝑚𝑚 ;𝑟𝑠 =  
𝑈𝑠

𝜏𝑠
=  

∑ 𝜏𝑚𝑟𝑚𝑚

∑ 𝜏𝑚𝑚
        (3) 

                                             

where 𝜏𝑚 , 𝑈𝑚  and 𝑟𝑚  respectively denote average rate of 

failure, annual time of outage and average outage time for the 

component 𝑚 of the system. 
 

Enhancing the reliability of the distribution network is 

achievable through the reduction of line failure rates. The 

failure rate of a given line is typically influenced by the 

magnitude of the current it carries. The integration of DGs into 

the network serves as an effective strategy to diminish the 

current carried by the lines, thereby contributing to the 

reduction of line failure rates. This methodological approach 

aligns with the objective of improving the overall reliability of 

the distribution system. For any given line 𝑘 , with the 

uncompensated failure rate 𝜏𝑘
𝑢𝑛𝑐𝑜𝑚𝑝

and fully compensated 

failure rate 𝜏𝑘
𝑐𝑜𝑚𝑝

, the failure rate post DG accommodation is 

given by: 

https://www.ijeer.forexjournal.co.in/
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      𝜏𝑘
𝐷𝐺 =  

|𝐼𝑘
𝐷𝐺|

|𝐼𝑘
𝑁𝑂𝐷𝐺|

(𝜏𝑘
𝑢𝑛𝑐𝑜𝑚𝑝

− 𝜏𝑘
𝑐𝑜𝑚𝑝

) + 𝜏𝑘
𝑐𝑜𝑚𝑝

               (4)  

                                                     

where 𝐼𝑘
𝑁𝑂𝐷𝐺  and 𝐼𝑘

𝐷𝐺  for a given line 𝑘, respectively indicate 

the current served by the line before and after DG integration.  

 

3.1.3 Total Voltage deviation 
The magnitude of bus voltage serves as a crucial parameter 

indicative of the power quality supplied to consumers. 

Improving the network voltage profile involves mitigating 

deviations in bus voltage. To achieve this goal, a minimization 

objective is formulated, focusing on reducing the total voltage 

deviation(𝑇𝑉𝐷) across the network. The bus voltage being 𝑉𝑚, 

𝑇𝑉𝐷 is mathematically expressed as follows: 
 

            𝐹3 = 𝑇𝑉𝐷 =  ∑ (|1 − 𝑉𝑚|)2𝑛𝑏𝑢𝑠
𝑚=1                     (5)                                                         

 

3.1.4 Voltage stability index 
The demand on the distribution network undergoes frequent 

changes; consequently, the bus voltage may collapse if the 

loading exceeds the critical loading limit. In order to prevent 

such undesirable phenomena, utilities strive to maximize the 

voltage stability index (𝑉𝑆𝐼) of the network. The 𝑉𝑆𝐼 which is 

taken as a maximization objective, is shown in below equation 

[15]: 
 

    𝐹4 = 𝑉𝑆𝐼 =  min (𝑆𝐼𝑛); 𝑛 = 2, 3, … . . , 𝑛𝑏𝑢𝑠          (6)   
 

  (Stability index) 𝑆𝐼𝑛 = |𝑉𝑚|4 − 4[𝑃𝑚𝑋𝑚𝑛 − 𝑄𝑚𝑅𝑚𝑛]2 −
4[𝑃𝑚𝑅𝑚𝑛 + 𝑄𝑚𝑋𝑚𝑛]|𝑉𝑚|2                                          (7)   

    

where 𝑃𝑚  and 𝑄𝑚  indicate the real and reactive power 

respectively injected at bus 𝑚 . 𝑅𝑚𝑛  and 𝑋𝑚𝑛  respectively 

denote the resistance and reactance of the branch joining buses 

𝑚 and 𝑛. 
 

3.2 Constraints 
The four specified objectives, slated for simultaneous 

optimization, are delimited by the ensuing following set of 

constraints: 
 

    |VLL|  ≤ |Vm| ≤ |VUL|                                         (8)    

                                                      

    |VLL|  ≤ |Vm| ≤ |VUL|                                          (9)  

                                                       

   PDG,LL  ≤  PDG ≤  PDG,UL                                        (10)   

                                               

where VLL and VUL denote the lower and upper limits of the bus 

voltage, respectively. Pss , PT,DG , PT,D  and PT,loss  respectively 

indicate sub-station injected power, total power supplied by the 

DGs, total power demand on the distribution system and the 

total distribution system losses.  PDG,LL , PDG  and PDG,UL 

respectively represent the lower limit of the DG rating, rated 

power of the DG and upper limit of the DG rating.  

 

░ 4. MANY OBJECTIVE OPTIMIZATION 

METHODOLOGY  

4.1 Arithmetic optimization algorithm  
The arithmetic optimization algorithm (AOA) [13] represents a 

recent advancement in the domain of metaheuristic 

optimization algorithm. AOA exhibits the capability to address 

optimization problems without necessitating the computation of 

their derivatives. In AOA, two variables, namely math 

optimizer probability (MOP) and math optimizer accelerated 

(MOA) are adjusted prior to position update of the solutions.  

 

      𝑀𝑂𝐴 (𝑡) = 𝑀𝐼𝑁 + 𝑡 × (
𝑀𝐴𝑋−𝑀𝐼𝑁

𝑡𝑀𝐴𝑋
)   (11) 

    

          𝑀𝑂𝑃(𝑡) = 1 − (
𝑡

𝑇
)

1

𝛼
                                              (12) 

                                                      

where 𝑡 , 𝑡𝑀𝐴𝑋 , 𝑀𝐼𝑁 , 𝑀𝐴𝑋  and 𝛼  respectively denote the 

present iteration, maximum iteration number, minimum 

limitation value, maximum limitation value and the parameter 

of sensitivity.  
 

The exploration phase of the AOA aims at exploring the search 

space in quest of locating the optimal solution. This phase is 

guided by the division and multiplication operators. The 

exploration phase of the AOA is mathematically modelled as: 
 

 𝑥(𝑡 + 1) =  {
𝐵𝐸𝑆𝑇(𝑥) ÷ (𝑀𝑂𝑃(𝑡) + 𝛽)  × 𝑌,    𝑖𝑓 𝑟2 < 0.5

𝐵𝐸𝑆𝑇(𝑥) × 𝑀𝑂𝑃(𝑡)  × 𝑌,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (13)       

                                                

                         𝑌 = (𝑈𝐿 − 𝐿𝐿) × 𝜇 + 𝐿𝐿           (14)      

                                           

where  𝑥(𝑡 + 1), 𝐵𝐸𝑆𝑇(𝑥) , 𝛽 , 𝑈𝐿 , 𝐿𝐿 ,  𝜇  and 𝑟2  respectively 

represent the candidate position at iteration 𝑡 + 1, current best 

position, small integer value, upper limit of the search area, 

lower limit of the search area, parameter of control and a 

random number. 
 

The exploitation stage of the AOA aims at refining the obtained 

solutions by performing deep search. This phase is guided by 

subtraction and addition operations. The exploitation phase of 

the AOA is mathematically modelled as: 
 

   𝑥(𝑡 + 1) =  {
𝐵𝐸𝑆𝑇(𝑥) − 𝑀𝑂𝑃(𝑡) + 𝑌,        𝑖𝑓 𝑟3 < 0.5

𝐵𝐸𝑆𝑇(𝑥) + 𝑀𝑂𝑃(𝑡) + 𝑌,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (15) 

                                                  

where 𝑟3 denotes a random number. 

 

4.2 Concept of Pareto optimality 
Pareto optimality facilitates an invaluable framework for 

handling many conflicting objectives simultaneously. The 

majority of the many-objective swarm intelligence-based 

algorithms rely on this concept to generate a Pareto front 

representing the inherent trade-offs between the conflicting 

objectives. Mathematically, Pareto optimality is formulated as 

follows: 

                                                       

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑦1(𝑝), 𝑦2(𝑝), … . 𝑦𝐿(𝑝)}                      (16) 
  

such that 𝑝 ∈ 𝑃 , where 𝑃  denotes the array of all feasible 

solutions and 𝐿 ≥ 2 . One solution say 𝑝1  dominates other 

solution 𝑝2, provided the following two conditions are met [11]: 

https://www.ijeer.forexjournal.co.in/
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1. 𝑦𝑖(𝑝1) ≤ 𝑦𝑖(𝑝2) for all objectives 𝑖 ∈ {1,2, … , 𝐿} and 
 

2. 𝑦𝑗(𝑝1) < 𝑦𝑖(𝑝2)  for at least in one objective 𝑗 ∈

{1,2, … , 𝐿}                                                                          (17) 
 

If any of the stated conditions are not met, solutions 𝑝1 and 𝑝2 

do not share a dominant relationship; instead, they are 

incorporated into a non-dominant solution frontier commonly 

known as the Pareto front. The primary goal of any many-

objective algorithm is to effectively trace this front. In the 

proposed methodology, Many Objective arithmetic 

optimization algorithm (MOAOA) is applied to generate the 

Pareto front, and TOPSIS is applied to identify the best trade-

off solution from the Pareto front. 

 

4.3 Technique for order preference by similarity 
to ideal solution 
The best trade-off solution from the Pareto front generated by 

the MOAOA is selected using TOPSIS method. The various 

stages involved in this method are in [11]: 

 

Stage I: In this stage, the decision matrix 𝑋 = (𝑥𝑎𝑖) of the order 

𝑛1 × 𝑛2  is framed where 𝑎 = 1,2, … , 𝑛1  denotes the 

alternatives and 𝑖 = 1,2, … , 𝑛2 denotes the objectives. 

 

Stage II: Transform the decision matrix into a normalized form 

to ensure all criteria are on the same scale. Each element (𝑛𝑎𝑖) 

of the normalized matrix is obtained as follows: 
 

     𝑛𝑎𝑖 =
𝑥𝑎𝑖

√∑ 𝑥𝑎𝑖
2𝑛

𝑎=1

                                                       (18)    

                                         

Stage III: Introduce weights for each criterion to reflect their 

relative importance. Multiply each normalized value by the 

corresponding weight (𝑤𝑖). 

 

         𝑢𝑎𝑖 =  𝑤𝑖 × 𝑛𝑎𝑖                                                     (19) 

                                        

Stage IV: Determine the positive-ideal solution (PIS) and 

negative-ideal solutions (𝑁𝐼𝑆) by selecting the maximum and 

minimum values for each criterion, respectively. 
 

 PIS = {
  𝑚𝑎𝑥 (𝑤𝑎𝑖) ∀ 𝑎, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑛𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

𝑚𝑖𝑛 (𝑢𝑎𝑖) ∀ 𝑎, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
            (20)  

 

  𝑁𝐼𝑆 = {
  𝑚𝑖𝑛 (𝑤𝑎𝑖) ∀ 𝑎, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑛𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

𝑚𝑎𝑥 (𝑤𝑎𝑖) ∀ 𝑎, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
             (21)  

                                               

Stage V: Calculate the Euclidean distance (𝐸𝑑𝑎
+  and 𝐸𝑑𝑎

−) of 

each alternative from the ideal and negative-ideal solutions. 

 

𝐸𝑑𝑎
+ = √∑ (𝑤𝑎𝑖 − 𝑃𝐼𝑆)2𝑛1 

𝑎=1                                (22) 

                          

  𝐸𝑑𝑎
− = √∑ (𝑤𝑎𝑖 − 𝑁𝐼𝑆)2𝑛1 

𝑎=1                                         (23)  

                             

Stage VI: Determine the relative closeness of each alternative to 

the ideal solution by the ratio of the negative-ideal distance to 

the sum of the ideal and negative-ideal distances. 
 

   𝐶𝑅 =  
𝐸𝑑𝑎

−

𝐸𝑑𝑎
++𝐸𝑑𝑎

−                                                          (24)                                    

 

The detailed flowchart of MOAOA-TOPSIS technique for 

optimal DG planning is depicted in figure 1.   

 

░ 5. RESULTS AND DISCUSSION  
This section addresses the improvement of distribution system 

technical metrics, including energy loss mitigation, total voltage 

deviation mitigation, voltage stability index maximization, and 

mitigation of EENS by optimal DG planning utilizing Pareto-

based MOAOA & TOPSIS approaches. The IEEE-69 bus 

distribution test systems are considered in this work. The 

following scenarios are considered. 
 

Scenario-0: Without DGs 

Scenario-1: Optimal Planning of DGs operating with unity 

power factor. (Type-1 DGs) 

Scenario-2: Optimal Planning of DGs operating with 0.9 power 

factor. (Type-3 DGs). 

 

Start

Read Radial distribution 
System data

Define Objective functions 
&initialize algorithm 

parameters

Run load flow and determine 
objective 

Function values

Perform Non dominated 
sorting and update the non 
dominated solutions in the 

Archive set using the concept
Discussed in section 3.1 

Set Iteration count t=0

Update the position of 
population using position 

update equations addressed 
in section 3.2

Run the load flow and 
determine objective function 

values

A

A

Perform Non dominated 
sorting and update the non 
dominated solutions in the 

Archive set using the concept
Discussed in section 3.1 

Update the counter 
t=t+1

Check stopping 
criteria t<itermax

Return the Non Dominated 
solutions

Select the best compromised 
solutions using TOPSIS 

method

Print the optimal DGs 
locations,DGs sizes,Objective 

function values

End

Yes

No

 
 

Figure 1. Flowchart of MOAOA-TOPSIS approach 
 

In scenario-0, the load flow algorithm is executed on a 

distribution system that doesn't have any DGs to get an initial 

glance at the system's technical metrics. A thorough analysis of 

the improvement of the above-cited technical metrics resulting 

from optimal planning (or) deployment of DGs operating at 

unity power factor in the system is covered in scenario-1. In 

scenario-2, the improvement of the above-cited metrics 
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resulting from optimal planning of DG units operating at 0.9 

power factor is covered. The optimal Pareto front between the 

competing objectives is determined using the Pareto-based 

many-objective arithmetic optimization method (MOAOA). 

TOPSIS method is executed for deciding on the best tradeoff 

solution from the optimal Pareto front. The outcomes of the 

TOPSIS-MOAOA algorithm are compared with MOGWO, 

MOPSO and NSGA-II algorithms. The weights associated with 

the objectives 

𝐹1 (𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠), 𝐹2 (𝐸𝐸𝑁𝑆), 𝐹2(𝑇𝑉𝐷), 𝐹3(𝑉𝑆𝐼)  are coined 

as 𝑤𝐸𝐿 , 𝑤𝐸𝐸𝑁𝑆 , 𝑤𝑣𝑑 , 𝑤𝑣𝑠 in the third step of the TOPSIS method. 

All of the simulations were made in MATLAB and were run on 

a PC with 8 GB RAM with an Intel(R) Core (TM) i5-7200U 

CPU @ 2.50GHz processor. For all algorithms, a population 

size of 400, an archive size of 200, and a total number of 500 

iterations have been taken into account.  

 

5.1 IEEE-69 bus system 
Figure 2 depicts the single-line diagram of the 69-bus radial 

distribution system [8]. The system's real and reactive power 

demands are 3.801 MW and 2.693 MVAR. Base MVA and kV 

are 12.66 and 100, respectively.  

 

Figure 2. Single diagram of 69 bus system 

 

In scenario 1, load flow analysis is carried out for the system's initial evaluation in the absence of DGs. The results of the load flow 

show an energy loss of 1970 MWh, a TVD of 0.0992 p.u., VSI of 0.6833 p.u. and an EENS of 8.4191*104 kWh/year. The optimal 

Pareto fronts given by the MOAOA, MOPSO, MOGWO, and NSGA-II algorithms for scenarios 1-2 of the 69-bus system are 

portrayed in figure 3.

 
Figure 3. MOAOA, MOPSO, MOGWO, and NSGA-II algorithms' optimal Pareto fronts for scenarios 1-2 of the 69-bus system 
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Table 1 presents the results of the TOPSIS-MOAOA method 

(with equal weightage ( 𝑤𝐸𝐿 , 𝑤𝐸𝐸𝑁𝑆, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 =1/4)) for 

scenarios 1-2, including DG locations, DG sizes and system 

technical metrics. The following observations are drawn from 

the results listed in Table 1 for scenarios 1-2.  
 

░ Table 1. Outcomes of 69 bus system for scenarios 0-2 
 

Technical Metrics Scenario-0 Scenario-1 Scenario-2 

DG loc’s/DG Sizes 

(kVA) 
----------- 

12/0418 

21/0675 

61/2164 

16/0688 

50/1041 

61/2141 

           𝐸𝑙𝑜𝑠𝑠  in MWh 1970 675.31 91.15 

TVD   in p.u 0.0992 0.000568 0.00022 

VSI   in p.u 0.6833 0.9763 0.9831 

EENS in (*104 

kWh/year) 
8.4191 4.0492 3.9356 

% 𝐸𝑙𝑜𝑠𝑠  reduction ----------- 65.74 95.38 

Minimum  Voltage in 

p.u 
0.9092 0.994 0.9958 

 

In scenario-1, due to the connection of DGs operating with upf 

at optimal locations 12, 21, 61 with optimal capacities of 481 

kVA, 675 kVA, and 2164 kVA respectively, system energy loss 

curtailed to 675.31 MWh accounts for 65.74 % loss reduction, 

EENS is diminished to 4.0492*104 kWh/year, TVD is reduced 

to 0.0000568 p. u and VSI is maximized to 0.9763 p.u. In 

scenario 2, the optimal connection of DGs operating with 0.9 pf 

at optimal locations 16, 50, and 61 with optimal capacities of 

688 kVA, 1041 kVA, and 2141 kVA in the system results in 

energy loss mitigated to 91.15 MWh, accounting for 90.64 % 

loss reduction, EENS mitigated to 3.93*104 kWh/year, TVD 

mitigated to 0.00022 p.u. and VSI maximized to 0.9831 p.u. In 

scenario-2, the system's technical metrics show a better 

enhancement as a result of the optimal deployment of Type-3 

DGs working with 0.9 p.f. Fig 4 depicts the voltage profile of 

the 69-bus system for the outcomes quoted in table 1. From 

figure 4, it has been noted that the system voltage profile is 

improved in both scenarios, and better enhancement in the 

system voltage profile is attained due to optimal deployment of 

DGs working with 0.9 p.f. 
 

 
 

Figure 4. Voltage profile of IEEE-69 bus system for the outcomes of 

TOPSIS-MOAOA method (with equal weightage) for scenarios 0-2 

 

5.2 Comparative analysis 
The comparison of the results produced by the MOAOA 

algorithm with those of the MOSPSO, MOGWO, and NSGA-

II algorithms is shown in table 2. It is seen that the MOAOA 

algorithm performs better in all scenarios for 69-bus system 

based on the data given in Table 1. Further evidence of the 

MOAOA algorithm's superiority over the MOSPO, MOGWO, 

and NSGA2 algorithms comes from the Pareto fronts shown in 

figure 3. 
 

░ Table 2. Comparison results of MOAOA, MOPSO, 

MOGWO & NSGA2 for 69 bus system 

  

Scenario No 
Optimization 

Technique 

DG loc’s/DG 

Sizes (kW) 

𝑬𝒍𝒐𝒔𝒔 

in MWh 

 

EENS in (*104 

kWh/year) 

TVD 

in p.u 

VSI 

in p.u 

1 

MOAOA 
12/418, 21/472 

61/2164 
675.310 4.04 0.00056 0.9763 

MOPSO 
18/627, 61/2079 

64/200 
705.240 4.10 0.00087 0.9638 

MOGWO 
11/692, 21/446 

61/2196 
695.480 4.07 0.00063 0.9742 

NSGA2 
18/700, 61/1678 

64/484 
685.031 4.12 0.00088 0.9727 

2 

MOAOA 
16/620, 50/937 

61/1927 
91.154 3.93 0.00022 0.9831 

MOPSO 
21/578, 50/890 

61/1860 
95.590 3.98 0.00043 0.9778 

MOGWO 
21/578, 50/668 

61/1863 
95.616 4.06 0.00043 0.9780 

NSGA2 
21/561, 50/803 

61/1916 
94.207 4.12 0.00036 0.9781 
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░ 6. CONCLUSION 
The study introduces a novel MOAOA algorithm for optimizing 

four technical parameters in a distribution system: energy loss 

reduction, total voltage deviation minimization, voltage 

stability index maximization, and EENS minimization. IEEE-

69 bus radial distribution test systems were tested, with optimal 

planning for DGs with unity power factor and 0.9 pf. The 

optimal planning of DGs with unity pf results in (57-65) % loss 

reduction in both test systems, and optimal planning of DGs 

with 0.9 pf results in (90-95) % loss reduction. The optimal 

planning of Type-3 DGs operating with 0.9 pf results in better 

enhancement in all the technical metrics. The MOAOA 

algorithm outperforms the MOPSO, MOGWO, and NSGA2 

algorithms in terms of reaching the most effective solution. 
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