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░ ABSTRACT- This paper aims to optimize the pathloss in 4G/LTE networks obtained by empirical Radio Frequency (RF) 

propagation models to enhance user access quality. The radio wave propagation models are mainly used to predict the pathloss 

which are necessary for planning and optimizing wireless communication systems. In this paper, we propose a parametric 

optimization for loss estimation in a 4G/LTE network leveraging the Particle Swarm Optimization (PSO) algorithm to enhance the 

performances of this type of networks and decrease their complexity. For this sake, comparison and performance analysis were 

conducted using different environments such as urban, sub-urban and rural areas. First, we provide an analysis of radio propagation 

models, namely: Okumura-Hata, Stanford University Interim (SUI) and Ericsson 9999 models that would be used for outdoor 

propagation in LTE. Then, we optimize these empirical models using the PSO algorithm to make them more appropriate to the 

desired coverage area. This is achieved by minimizing the Root Mean Square Error (RMSE) between the optimized predicted data 

and the measured data in the field. Specifically, the measurements are taken in an urban region, as a case study, the city of Tebessa 

located in Algeria was selected. The proposed PSO pathloss optimization method showed better prediction performance with lower 

RMSE values than the analytical method based on empirical pathloss models. 
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░ 1. INTRODUCTION   
The fourth generation (4G) wireless network aims to improve 

spectral efficiency and boost the handling capacity of mobile 

devices in a single cell. It also provides users with improved 

speed while ensuring seamless network transitions, minimizing 

service disruptions during handover, and facilitating the switch 

to all-IP [1-11]. The architecture of the Long-Term Evolution 

(LTE) system is built on Internet Protocol (IP), making it 

specifically designed for efficient packet transmission support. 

The LTE cellular network infrastructure comprises the E-

UTRA/E-UTRAN radio interface and the core network, also 

known as the Evolved Packet Core (EPC). The EPC includes 

gateways, mobility management, and the subscriber database. 

The radio interface and EPC allow the LTE mobile users to 

connect to external data networks such as the Internet. Unlike 

2G and 3G networks, which separate voice and data networks, 

all media are transmitted as IP packets in an LTE network. The 

LTE base station (Evolved Node B: eNode B) connects to the 

EPC via the Serving Gateway (S-GW), and the EPC connects 

to the packet network via the packet data network gateway 

(PDN-GW) [3-9]. Wireless systems continue to grow and 

evolve to meet the demands of increasing traffic following the 

rapid deployment of 4G LTE networks and 5G wireless systems 

and beyond [1-30]. For this reason, the analysis and evaluation 

of 4G LTE network performance is becoming crucial. This later 

has many advantages that will keep it going long after 5G 

becomes widespread, so 4G LTE and 5G may coexist for at least 

a decade [5]. Although 5G is better in many ways, but it does 

not yet have the coverage to exist on their own without the 

backbone of the 4G LTE network and all it provides. Hence, the 

focus on LTE pathloss optimization is relevant due to its 

widespread, especially in areas where 5G and 6G infrastructure 

are not yet available. The 4G radio network coverage planning 

and sizing are achieved by choosing, among different 

propagation models, the most appropriate model in terms of 

reliability which requires the network radio coverage 

optimization, as well as the improvement of the quality 

(coverage, transmission) of mobile network services. The main 

goal of propagation modelling is to predict the attenuation of 

signals, commonly known as Pathloss, as accurately as possible, 

allowing the range of a radio system to be determined before 

installation [1-18]. Pathloss propagation models are key 

elements of planning because they allow to give an estimate 

range of each cell in an outdoor environment based on output 

power, signal strength and ratio to noise and interference 

(SINR). The pathloss is calculated based on the sensitivity of 

the receiver. This information can be used to determine the 
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received power that allows to identify the maximum possible 

data rate that can be transmitted. The pathloss is a major 

component in the analysis and design of the link budget of a 

telecommunication system, in practical cases; it is calculated by 

means of various approximations and statistical methods. 

Selecting a suitable radio propagation (RF) model is essential 

for long-term wireless networks (LTE) since this later describes 

the behaviour of a signal as it moves from its source to its 

destination, and offers a correlation between the 

transmitter/receiver distances and the pathloss which allows to 

understand the maximum cell range and the allowed pathloss. 

The operating frequency, atmospheric conditions, indoor and 

outdoor surroundings, and the distance between the transmitter 

and receiver are some of the variables that affect pathloss. In 

Wireless Communication, there are several empirical or 

statistical models suitable for the outdoor environment 

macrocell and microcell [6-19], such as: Okumurra-Hata [20-

21]; Stanford University Interim (SUI) [23-24]; Ericsson 9999 

[21, 25], etc.  
 

There are several common parameters across propagation 

models that effect the overall performance, such as antenna 

gain, transmission power, and loss, frequency of operation, 

distance between transmitter and receiver, transmitter antenna 

height, receiver antenna height, and terrain type. An optimized 

solution is required in order to use efficiently the spectrum to 

improve coverage, capacity and Quality of Service (QoS). 

However, the performances of traditional models were 

inconsistencies observed if we used the specific model in 

different environments and scenarios for the modeling of 

propagation pathloss. Recently, many new methods have been 

introduced to predict propagation models for wireless 

communications. These later were conducted based on machine 

learning to improve the efficiency and robustness of wireless 

communication systems; such as, fuzzy systems, Artificial 

Neural Network (ANN), Support Vector Machine (SVM), deep 

learning architectures and global optimization algorithms such 

as Genetic Algorithm (GA) and PSO [26-31]. The optimization 

approach proposed in this study makes use of Particle Swarm 

Optimization (PSO) algorithm for setting the best parameters of 

Okumura-Hata and SUI models to make them more appropriate 

to the geographic environment. This algorithm has gradually 

become more popular among researchers and has shown to 

deliver excellent results in a variety of application domains. The 

primary benefit of PSO is that it requires less parameter tuning 

[32]. Furthermore, this later not only produces a solution, but a 

set of possible solutions, from which the best one is selected 

[32-35]. An optimized solution is required in order to use 

efficiently the spectrum to improve coverage, capacity and 

Quality of Service (QoS). In this study, the analysis of predicted 

and measured pathloss over urban environment of the city of 

Tebessa, located in Algeria, is presented. The propagation 

measurements were carried out at a frequency of 1800 MHz. 

The reminder of this paper is organized as follows. Section 2 is 

devoted to the analysis of RF propagation models in LTE and 

the optimization of the pathloss models using PSO algorithm. 

Simulation results and comparison are presented in Section 3. 

Some concluding remarks are presented in Section 4. 

░ 2. BACKGROUND AND 4G/LTE 

PATHLOSS OPTIMIZATION  
In addition to offering a greater range of services, 4G wireless 

networks also make wireless services more effective, scalable, 

and dependable. The main goal of choosing the appropriate 

Radio Frequency (RF) model is to ensure the QoS. The 

propagation model can be used in several system performance 

aspects such as handoff optimization, power level adjustments, 

and antenna placements. No propagation model can be 

considered for all variations experienced in wireless networks; 

it is necessary to experiment several models for determining the 

pathlosses. In this study, three models were considered in 

outdoor propagation, namely Okumura-Hata, Stanford 

University Interim and Ericsson 9999. 
 

2.1.Okumura-Hata Pathloss Model 
The Okumura-Hata Model [20] is the most frequently used 

model, based on several measurements of RSS signal taken in 

the Tokyo area. This model takes into consideration several 

factors, primarily, the nature of the environment by specifying 

its degree of urbanization (urban, dense urban, suburban, rural). 

This model is designed to predict the propagation pathloss 

under operation frequency ranging from 150 up to 1500MHz. 

The pathloss according to this model for, respectively, urban 

and rural environments is given by equations (1) and (2) [16-

22]. 
𝑃𝐿𝑢𝑟𝑏𝑎𝑛 = 69.55 + 26.16 log10(ℎ𝑚) − 𝑎(ℎ𝑚)

+ [44.9 − 6.55 log10(ℎ𝑏)] log10(𝑑)             (1) 
 

with 𝑎(ℎ𝑚) = [1.1 log10(𝑓) − 0.7]ℎ𝑚 − [1.5 log10(𝑓) − 0.8] 
 

𝑃𝐿𝑟𝑢𝑟𝑎𝑙 = 𝑃𝐿𝑢𝑟𝑏𝑎𝑛 − 4.7[log10(𝑓)]
2 + 18.33 log10(𝑓) − 𝛼         (2) 

 

where 𝑃𝐿 𝑟𝑢𝑟𝑎𝑙  and 𝑃𝐿 𝑢𝑟𝑏𝑎𝑛  stand for total Pathloss (dB), 𝑓 : 

Carrier frequency (MHz), 𝑑: Distance between mobile station 

and BTS (Km), ℎ𝑏 , ℎ𝑚 : Height of BTS and mobile station 

(meters) and 𝛼 : Ranges from 35.94 for countryside regions and 

40.94 for desert regions. 
 

2.2 Stanford University Interim Pathloss Model 
SUI is a model developed by Stanford University [23-24], it is 

used for frequencies above 1900 MHz and designed for three 

different types of terrain or areas. This propagation pathloss 

model is formulated by equation (3) [23-24]. 
 

𝑃𝐿 = 𝐴 + 10 𝛾 𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝑓 + 𝑋ℎ + 𝑆    𝑓𝑜𝑟 𝑑 >  𝑑0             (3) 

 

with 𝑑: distance between the transmitter and the receiver,𝑑0: 

reference distance (set to 100 meters), 𝑋𝑓 : frequency correction 

factor, 𝑋ℎ: base station height correction factor, A: free space 

pathloss 𝐴 = 20 𝑙𝑜𝑔 (
4𝜋𝑑0

𝜆
)(𝑑0:is the distance between Tx na 

Rx;  ;  𝜆 :is the wavelenght),  𝛾:  pathloss exponent and 𝑆 : 

Shadowing factor. The pathloss weakening exponent is 

described as exponent:  
 

𝛾 = 𝑎 − 𝑏ℎ𝑏 +
𝑐

ℎ𝑏
                                                                   (4) 

https://www.ijeer.forexjournal.co.in/
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where ℎ𝑏  is the height of the base station and 𝑎, 𝑏 𝑎𝑛𝑑 𝑐  are 

terrain factors listed as shown in. The correction factor for 

frequency and base station height for various terrains is given 

by: 

{
 
 

 
 𝑋𝑓 = 6 𝑙𝑜𝑔 (

𝑓𝑐
2000

)                                                

𝑋ℎ = 10.8 𝑙𝑜𝑔 (
ℎ𝑟
2000

)    for terrain A and B 

𝑋ℎ = 20 𝑙𝑜𝑔 (
ℎ𝑟
2000

)  for terrain C                      

  (5)             

 

: height of the receiver antenna in meters. The shadowing factor 

is given by: 
 

𝑆 = 0.65 (𝑙𝑜𝑔(𝑓𝑐))
2 − 1.3  log (𝑓𝑐) + 𝛼                    (6) 

 

with 𝛼 = 5.2dB for rural and suburban environments (terrain A 

and B) and 6.6 dB for the urban environment (terrain C), see 

table 1. 
 

░ Table 1. Parameters of different terrain for SUI model 
 

Model Parameters Terrain A Terrain B Terrain C 

a 4.6 4 3.6 

B 0.0075 0.0065 0.005 

C 12.6 17.1 20 

 

2.3.Ericsson 9999 Pathloss Model 
The Ericsson model is provided by Ericsson Company for use 

in planning wireless networks [21-25]. This model is an 

extension of the Okumura-Hata model modified to consider 

different propagation environments according to the parameters 

indicated in table 2. The Ericsson pathloss is formulated by 

equation (7).  
 

𝑃𝐿

=
𝛼0 + 𝛼1𝑙𝑜𝑔 (𝑑) + 𝛼2𝑙𝑜𝑔(ℎ𝑏) + 𝛼3𝑙𝑜𝑔(ℎ𝑏) 𝑙𝑜𝑔(𝑑) − 3.2[𝑙𝑜𝑔(11.75 × ℎ𝑏)

2]

+44.9 𝑙𝑜𝑔(𝑓𝑐) − 4.78 (𝑙𝑜𝑔(𝑓𝑐))
2    

 

                                                                                                                      (7) 
 

with 𝛼0, 𝛼1, 𝛼2, 𝛼3 : parameters set according to the 

environments.  
 

░ Table 2. Settings of parameters αn according to the 

environments for Ericsson 9999 Model 
 

Environment 𝛼0 𝛼1 𝛼2 𝛼3 

Rural 45.95 100.6 12 0.1 

Suburban 43.20 68.63 12 0.1 

Urban 36.20 30.20 12 0.1 

 

2.4 4G/LTE Pathloss Optimization 

The current pathloss models present many drawbacks. 

Effectively, these later are frequently generic and might not 

adequately depict contexts or environments. For this reason, 

their forecasts may not be entirely accurate and cause problems 

when put into practice [13, 14, 25-28]. Furthermore, pathloss 

models frequently make assumptions about perfect 

circumstances and fail to consider dynamic phenomena. To 

improve the current pathloss models, we used a PSO algorithm 

to overcome the limitations caused by static assumptions.  For 

this, we develop a more robust and accurate optimized model 

based on real measurement data of a specific environment and 

frequency. 
 

The PSO algorithm is developed by Eberhart and Kennedy in 

1995 as one of random optimization strategies [33]. This 

strategy is inspired from social psychology and dynamic 

behaviour of insects, birds and fish schooling. PSO method 

becomes one of the most used for solving continuous and 

nonlinear optimization problems [32-35]. The objective of our 

approach is to use real measurements to optimize the Okumura-

Hata and SUI models’ parameters in order to obtain a prediction 

with high precision and accuracy, and provide effective and 

stable connection in the coverage area. The used algorithm can 

be easily implemented in a real-valued case study to optimize 

the pathloss via a fitness-function. Each particle of the swarm 

represents a potential solution in the research space of the 

optimum. Let 𝑋𝑖⃗⃗  ⃗(𝑡) the position and 𝑉𝑖⃗⃗ (𝑡) the velocity of the 

particle 𝑃𝑖  at time t, defined by equation (8). 
 

{
 
 

 
 𝑋𝑖⃗⃗  ⃗(𝑡) =  𝑋𝑖⃗⃗  ⃗(𝑡 − 1) + 𝑉𝑖⃗⃗ (𝑡)                                                                      

𝑉𝑖𝑗  (𝑡) =  𝜔 𝑉𝑖𝑗  (𝑡 − 1) + 𝑐1. 𝑟𝑎𝑛𝑑1[𝑃𝑏𝑒𝑠𝑡𝑖𝑗(𝑡 − 1)– 𝑋𝑖𝑗(𝑡 − 1)]

+𝑐2. 𝑟𝑎𝑛𝑑2[𝑔𝑏𝑒𝑠𝑡𝑗(𝑡 − 1)– 𝑋𝑖𝑗(𝑡 − 1)]
 

           (8)  

 

with 𝑖 =  1, 2, … , 𝑁𝑝;  𝑗 =  1, 2, …𝑁𝑑; where 𝑁𝑝 : Number of 

swarm particles, 𝑁𝑑 : Number of problem variables (particle 

dimension). 𝑉𝑖(𝑡) stands for the velocity of a particle in each 

iteration, 𝑋𝑖(𝑡) the particle position at each iteration, 𝑐1 and 𝑐2 

are acceleration constants (𝑐1 controls the cognitive behaviour 

of the particle and 𝑐2 controls the social ability of the particle), 

𝑟𝑎𝑛𝑑1 , 𝑟𝑎𝑛𝑑2  represent random numbers, 𝑃𝑏𝑒𝑠𝑡𝑖𝑗   is the jth 

component of the best position occupied by the ith particle of the 

swarm recorded in previous iterations, 𝑔𝑏𝑒𝑠𝑡𝑗  is the  𝑗𝑡ℎ 

component of the best position occupied by the best overall 

particle of the swarm, and 𝜔  is the inertia weigh coefficient 

updated in each iteration and given by equation (9). 
 

𝜔(𝑖𝑡𝑒𝑟) = 𝜔𝑚𝑎𝑥
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
𝑖𝑡𝑒𝑟   (9) 

 

with 𝑖𝑡𝑒𝑟: the rank of the current iteration, 𝜔𝑚𝑎𝑥  : the initial 

value of the inertia weigh coefficient generally set to 0.9, 𝜔𝑚𝑖𝑛: 

the final value of the inertia weigh coefficient set between 0.3 

and 0.4. The purpose of introducing the inertia weigh is to 

achieve a balance between local research and global research 

commonly known as exploitation and exploration. To adapt the 

empirical pathloss model to our case study, specifically, the city 

of Tebessa; in our work, we focus on the choice of two 

empirical models namely: Okumura-Hata and SUI. The 

pathloss prediction is mapped to an optimization problem with 

constraints. Each problem is formulated as a parametric 

equation with 𝑛  parameters to be adjusted using the PSO 

algorithm by minimization of the error, in terms of RMSE, 

between the predicted pathloss and the real measurements. 

Formally, the optimization problem is given by equation (9) 
 

{

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑖𝑛) = 𝑃𝐿(𝑋𝑖)      𝑤𝑖𝑡ℎ 𝑋𝑖 = (𝑘𝑖1, 𝑘𝑖2, … , 𝑘𝑖𝑛)

min𝑃𝐿(𝑘𝑖1, 𝑘𝑖2, … , 𝑘𝑖𝑛)   

𝑢𝑛𝑡𝑖𝑙 𝑅𝑀𝑆𝐸(𝑃𝐿𝑟𝑒𝑎𝑙 , 𝑃𝐿) ≤ 𝜀                                                                 

  (9) 

https://www.ijeer.forexjournal.co.in/
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The n-factors propagation model of Okumura-Hata is a function 

of five variables defined by equation (10).  
 

𝑃𝐿𝑢𝑟𝑏𝑎𝑛 = 𝑘1 + 𝑘2  log10(𝑓) − 𝑘3 log10(ℎ𝑚) − 𝑎(ℎ𝑚)
+ [𝑘4 − 𝑘 5 log10(ℎ𝑏)] log10(𝑑)               (10) 

 

whereas, the SUI model is defined by Equation (11) with four 

variables.  
 

𝑃𝐿 =  𝐴 +  10𝑘1  log10 (
𝑑

𝑑0
)  + 𝑘2  +  𝑘3  +  𝑘4               (11) 

 

Algorithm (1) describes the steps of the proposed approach. 

 

Algorithm (1): 4G/LTE Pathloss Optimization using PSO 
 

Step 1: Choose 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , Acceleration constants (𝑐1, 𝑐2:  0 ≤
𝑐1 ≤ 2   and 0 ≤ 𝑐2 ≤ 2) 
 

Step 2: Randomize the positions 𝑘1, 𝑘2, . . 𝑘𝑛 and the particle 

velocities with distributed values. 
 

Step3: Evaluate the objective function 

𝑚𝑖𝑛(𝑃𝐿(𝑘1, 𝑘2, . . 𝑘𝑛)) at each position 𝑋𝑖𝑗
0  

 

Step 4: For 𝑖𝑡𝑒𝑟  in range(0,  𝑖𝑡𝑒𝑟𝑚𝑎𝑥);Evaluate the Inertia 

weigh coefficient 𝜔(𝑖𝑡𝑒𝑟) = 𝜔𝑚𝑎𝑥
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
𝑖𝑡𝑒𝑟 ( 

𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 = 0.3)  
 

Step 5: Determine 𝑓𝑖𝑡𝑛𝑒𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑖𝑛)  =  𝑃𝐿(𝑋𝑖)  and 

evaluate the objective function associated with each of the 

position and update the position and velocity of each particle. 

If the value of the position 𝑋𝑖𝑗 is better than its current 𝑃𝑏𝑒𝑠𝑡𝑖𝑗  
; then 𝑃𝑏𝑒𝑠𝑡𝑖𝑗 takes this new value. If the best value 𝑃𝑏𝑒𝑠𝑡𝑖𝑗 is 

better than current 𝑔𝑏𝑒𝑠𝑡𝑗 , then 𝑔𝑏𝑒𝑠𝑡𝑗 is replaced by this best 

value and the position is stored. 
 

Step 6: Check the stop criterion each time. If the constraint is 

not satisfied, go to step 3, otherwise the parameter values 

 𝑋𝑖  =  (𝑘𝑖1, 𝑘𝑖2, . . . , 𝑘𝑖𝑛) have been found and the associated 

patlhloss is determined 𝑃𝐿(𝑋𝑖)  = 𝑃𝐿 (𝑘𝑖1, 𝑘𝑖2, . . . , 𝑘𝑖𝑛). 
 

 

In Algorithm (1), 𝑃𝑏𝑒𝑠𝑡𝑖𝑗 stands for the jth component of the best 

position occupied by the ith particle of the swarm recorded in 

the previous iterations (particle best); 𝑔𝑏𝑒𝑠𝑡𝑗: the jth component 

of the best position occupied by the global best particle of the 

swarm. The Root Mean Square Error (RMSE) is useful in many 

contexts, but it's especially useful for regression analysis and 

assessing models that generate numerical predictions [36]. 

RMSE was calculated between measured Pathloss value and 

those predicted by empirical or measured model using equation 

(12) [27-37] 
 

𝑅𝑀𝑆𝐸 = √∑
(𝑃𝐿𝑚 − 𝑃𝐿𝑟)

2

𝑁 − 1
                                               (12) 

 

where 𝑃𝐿𝑚  stands for the measured pathloss (dB); 𝑃𝐿𝑟  the 

predicted pathloss (dB); 𝑁 the number of measured data. 

 

░ 3. RESULTS AND DISCUSSIONS 

3.1. Pathloss Propagation simulation Results 
The pathloss is calculated using the mathematical equations 

given previously for the RF propagation models. Figure 2 

depicts the resulting attenuations between eNodeB and the 

mobile terminal for the encapsulated models using MATLAB.  
 

In our calculations, we considered different parameters such as 

carrier frequencies, distance between transmitter and receiver, 

height of receiver and height of the base station. The simulation 

parameters of the propagation models were set as follows: 
 

- Distance (d): from 0 up to 10Km ; 

- Frequency (fc): 1800MHz and 2100MHz; 

- Height of eNodeB (Hb1): 10 m and 30 m; 

- Mobile terminal height (Hm): 1.5 m. 
 

The real measurements are taken in the city Tebessa located in 

Algeria. The 4G/LTE local operator Mobilis eNodeB N°12668 

is located in the urban area named 1er Novembre 1954 under the 

coordinates: N35◦25′34′′ and E8◦3′42′′ covering a radius of 2.5 

km. The location of the eNodeB is depicted in figure 1. 

 

 
 

Figure 1. Satellite image of the location eNodeB N° 12668 (Google 

Map) 

 

In Following, eNodeB heights were alternately set to 10m and 

30m. Figure 2 and 3 depict the obtained results in terms of 

pathloss for Okumura model with frequencies 1800 MHz and 

2100 MHz respectively. Figure 4 depicts the effects of 

frequency on the propagation pathloss, the results were obtained 

for different environments and frequencies ranging from 900 up 

to 2100 MHZ. We note that there is a proportional relation 

between the attenuation and the used frequency, and an 

inversely proportional relation between the eNodeB height and 

the attenuation: i.e., if Hb increases the pathloss propagation 

decreases. 
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Figure 2. Okumura Model Pathloss results with 1800 MHz and Tx antenna height=10 and 30 meters for three different environments. 

 

 
 

Figure 3. Okumura Model Pathloss results with 2100 MHz and Tx 

antenna height=10 and 30 meters for three different environments. 

 
 

Figure. 4. Influence of the frequency range variation on the 

Okumura-Hata propagation pathloss. 

 

Following the same experimental protocol and with the same parameters. The obtained plots of propagation pathloss for the SUI 

(see figure 5) and Ericsson (see figure 6) models as a function of distance, then as a function of frequency for the different 

environments (urban, suburban, rural) are shown in the following figures. Figure 6 depicted the pathloss and the influence of 

frequency variation for the Ericsson 9999 model. 
 

 

Figure 5. Simulation results of the propagation pathloss for SUI model with 1800 MHZ and 2100 MHZ for two eNodeB heights Hb1 = 10m and 

30m and terrains A, B and C
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As findings, after comparing the pathloss results found for the three types of environments for Okumura-Hata and SUI models, we 

note that the attenuation increases if we increase the frequency and decreases if the height of eNodeB is increased. Unlike previous 

models, the Ericsson model attenuation decreases when increasing frequency, and rises when increasing eNodeB height.  Okumura-

Hata model gives low pathloss for the three environments (urban, suburban and rural), between 138 and 180 dB compared to SUI 

and Ericsson models (351 to 476 dB and 228 to 413 dB respectively), which makes it more efficient than the other empirical models.  

                                                                                                                                       

Figure 6.  Ericsson 9999 Model simulation for two frequencies 1800MHz and 2100MHz. 

 

3.2. Optimization of pathloss models using PSO 

algorithm 
3.2.1. Optimization of the Okumura-Hata model using the 

PSO algorithm in urban area 

In the field of wireless communication systems, particularly in 

urban and suburban settings, the Okumura-Hata model is a 

commonly used empirical model for pathloss prediction. The 

problem to be solved is formulated as a single mathematical 

equation with five variables (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5). These variables 

must be defined in such a way to make this model appropriate 

for the coverage in urban area of the 4G/LTE network with the 

1800 MHz frequency band. The K-factor propagation model is 

defined by equation (10). The 𝑘i  parameters values depend 

highly on the type of terrain and the characteristics of the 

propagation environment. The proposed protocol uses the PSO 

algorithm to optimize the K-factor model to adapt it to the 

physical environment of the antenna shown in Figure 1. In the 

simulation, the stop criterion of PSO is the minimum of the 

RMSE. Table 3 illustrates the obtained results for five iterations 

(Niter=5). Each parameter of the PSO algorithm has an 

important influence on the behaviour of the particles and 

therefore on the convergence of the algorithm. Even if the PSO 

method presents satisfactory results, the choice of the right 

parameters remains a critical task. Note that, a simple change of 

parameter value can highly affect the results and can even lead 

to premature convergence. Figure 7 shows a comparison 

between the empirical Okumura-Hata model and the results 

obtained for the K-model with 5 iterations and different particle 

sizes. It can be seen that the choice of optimization parameters  

with 30 particles and 5 iterations, gives a better approximation 

of the model with a minimum error value compared to the other 

settings. 
 

░ Table 3. PSO optimization results for Okumura-hata 

pathloss model Niter=5 and different particle numbers 
 

Number of 

particles 
30 50 100 150 200 250 

RMSE 0,62 13,74 6,38 0,87 2,31 11,43 

M
o

d
el

 

p
ar

am
et

er
s k1 38,63 61,64 27,31 28,92 40,89 42,50 

k2 36,65 38,06 37,52 44,57 48,76 32,56 

k3 52,62 46,61 78,51 64,67 52,04 79,63 

k4 15,09 8,19 41,08 24,96 13,18 45,10 

k5 15,55 36,76 6,63 29,83 50,37 2,41 

Execution 

time (s) 
6,12 11,35 19,30 28,44 38,13 47,91 

 

Following the same experimental protocol, figure 7 depicts the 

results obtained by varying the number of iterations (Niter = 5 

and Niter = 100). Table 4 presents a comparative study between 

the two best obtained parameters. We notice that, in terms of 

execution time, the combination (k1 = 38.63, k2 = 36.65, k3 = 

52.62, k4 = 15.09, k5 = 15.55) gives the best model with an 

execution time of 6.123 s.  
 

░ Table 4. Optimization comparison results of the pathloss 

model using the PSO for the Okumura-Hata model 
 

Number of iterations 5 iterations 100 iterations 

Number of particles 30 100 

RMSE 0,62 1.34 

M
o

d
el

 

p
ar

am
et

er
s k1 38,63 26,99 

k2 36,65 50,06 

k3 52,62 70,11 

k4 15,09 31,00 

k5 15,55 41,63 

Execution time (s) 6,12 316,10 
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It is worth noting that, the best pathloss predicted model 

compared with the mathematical model Okumura-Hata in terms 

of mean squared error is given by the following set of 

parameters (see Figure 8) 
 

• 𝑘1 = 38.63,𝑘2= 36.65, 𝑘3= 52.62, 𝑘 4= 15.09, 𝑘5 = 15.55 

for Niter = 5 and Nparticles = 30; 

• 𝑘1 = 26.99, 𝑘2 = 50.06, 𝑘3 = 70.11, 𝑘 4 = 31.04, 𝑘5 = 

41.63 for Niter = 100 and Nparticles = 100. 

 

 

 
 

Figure 7. Optimization Okumura-Hata pathloss using PSO algorithm 

with Niter=5 and 100 with Nparticles = 30, 50,100,150, 250 

 

 
 

Figure 8. Comparison between the Okumura-Hata model and the best 

optimized pathloss model 
 

3.2.2.  Optimization of the SUI model using the PSO algorithm 

in an urban area 

Following the same experimental protocol and keeping the 

same PSO parameters. We optimized the SUI propagation 

model by opting for an empirical K-factor model with four 

parameters. Equation (11) represents the model to be predicted. 

After several tests, we select the best combination with 70 

particles and 15 iterations, the obtained parameters are: k1 = 

5.32; k2 = 0.45; k3 = 82.33 and k4 = 24.97 with a minimum 

RMSE=2.892 and an execution time equal to 18.237 s. The 

obtained results, representing the comparison between the 

empirical mathematical model of SUI in an urban environment 

and the predicted SUI model based on the PSO, are illustrated 

in figure 9. From what follows, we conclude that the 

optimization based on PSO is very efficient and effective in 

terms of pathloss model parameters optimization. The overall 

results of the two empirical models Okumura-Hata and SUI, 

show clearly that the former gives the best optimization results 

with the lowest overall error and execution time compared to 

the SUI model.  
 

 
 

Figure 9.  Pathloss comparison between the empirical and the 

optimized SUI models with Niter = 15 and Nparticles = 70. 
 

Table 5 presents a comparison between the best obtained 

performances. 
 

░ Table 5. Obtained optimization results for the Okumura-

Hata and SUI models 
 

Model 
Number of 

iterations 

Number of 

particles 
RMSE 

Execution 

time 

Okumura-

Hata 
5 30 0,6344 6,12 

SUI 25 70 2,8924 18,24 

 

3.3. Optimization of Okumura-Hata and SUI 

models with real measurements using the PSO 
In the following simulation, real measurements were taken for 

the eNodeB of Tebessa city of the operator Mobilis located in 

the urban area. The site specifications are as follows 
 

• Type of region: urban; 

• Transmitter height (eNodeB): 15 m; 

• Receiver height (mobile): 1.5m; 

• Frequency: 1800 MHz. 
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The measurement of signal strength was obtained by using the 

G-NetTrack ProAndroid application in Tebessa city 

environment with a frequency of 1800 MHz. The reference 

signal received power (RSRP) is measured and recorded for 5 

to 500 meters between the mobile antenna and the transmitter at 

a near constant mobile antenna height of 1.5 m. To calculate the 

attenuation in dB we used the LTE link budget for the downlink 

as follows: 

𝑀𝐿𝐵(𝑑𝐵)  =  𝐸𝐼𝑅𝑃 –  𝑅𝑆𝑅𝑃 
 

where 𝑀𝐿𝐵  stands for the maximum pathloss, 𝐸𝐼𝑅𝑃 : the 

Effective Isotropic Radiated Power (dBm) and 𝑅𝑆𝑅𝑃: the mean 

reference signal received power (dBm). In the first step, we 

simulate the empirical pathloss models Okumura-Hata, SUI and 

the real measured data for a graphical comparison. The 

flowchart of the proposed system is presented in figure 10.  

 

Figure 10. Flowchart of the proposed system based on PSO algorithm for pathloss prediction 

 

Then, we calculate the squared error for the two empirical 

models with the real measurements.  Table 6 shows the obtained 

RMSE for each used model and the real measurements. 
 

░ Table 6. Results of RMSE between empirical models and 

real measurements in the region of Tebessa (eNodeB N° 

12668) 
 

Empirical Model Okumura-Hata SUI 

RMSE 60,51 49,65 
 

From figure 11 and table 6, we notice that the SUI model has a 

minimum overall error value of 49,65 and 60,51 for Okumura-

Hata model. Hence, the SUI predicted pathloss model 

approximates in terms of attenuation the real measurements. 
 

In order to improve the performance of empirical pathloss 

models and make them as close as possible to real measured 

data for Tebessa city, we used the PSO algorithm to optimize 

the empirical pathloss model for acurate prediction in the LTE 

network. Accordingly, to figure 11, Tebessa City's measured 

pathloss levels range from 152 to 185 dB. For the standard 

pathloss models, the Okumura-hata and SUI models vary 

between 52 and 129 dB and between -6 and 217 dB, 

respectively. 

 
 

Figure 11. Comparison of the empirical Okumura-Hata and SUI 

models with the real measured data in eNodeB N°12668 of Tebessa. 
 

To make the Okumura-Hata or SUI model more adapted to the 

real measured values. We opt for the use of the same protocol 

of the PSO optimization algorithm for a K-parameter model. 

After several tests and by varying the number of particles and 

the number of iterations, the optimal obtained results are 

presented in table 7. 
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░ Table 7. Optimization comparison results of the pathloss 

model using the PSO for the Okumura-Hata model 
 
 

Empirical Model Okumura-Hata SUI 

Number of particles 70 70 

Number of iteration 25 25 

RMSE 13,21 23,60 

K
 p

ar
am

et
er

s k1 40,07 4,87 

k2 55,70 0,60 

k3 34,70 67,50 

k4 6,00 30,54 

k5 39,69 / 

Execution time (s) 55.22 49,26 

 

The results obtained using PSO optimizations are presented in 

figure 12. The results demonstrate that the developed model 

fitted the measured loss values obtained from the studied 

location with high efficiency. The suggested approach 

outperforms the traditional analytical technique grounded in 

Okumura-Hata and SUI models with respect to convergence 

velocity, computing effectiveness, and algorithmic stability. 

Compared to the SUI model, whose global error value is 

equivalent to 23.60, the Okumura-Hata model exhibits a 

minimum global error value of 13.21. We have used the PSO 

algorithm to fine-tune the parameters of the Okumura-Hata 

empirical model to bring it as close as possible to the real 

measurements, while also adapting it to the eNodeB site in the 

city of Tebessa, even though the SUI model was closer to the 

real attenuations measured in terms of error. 
 

 
 

Figure 12. Graphical comparison between optimized Okumura-Hata 

and SUI models with the real measured data and optimized K 

parameters. 
 

The proposed PSO optimization method showed good 

prediction performance with lower RMSE values. 
 

░ 4. CONCLUSIONS 
In this paper, several empirical propagation models have been 

described and investigated for their performance for wireless 

communication and optimal coverage with lowest power 

consumption. In order to design efficient wireless 

communication systems, we assessed the performance of 

selected pathloss models and compared them with pathloss 

based on propagation measurements in various environments.  
 

The pathloss of measured data from 4G/LTE operator Mobil is  

eNodeB N° 12668 located in Tebessa city was compared with 

existing predictions models, specifically, Okumura-Hata and 

the SUI models. In the first part of the simulation, we studied 

three empirical macro-cell models and the influence of a set of 

their parameters, such as: the mode of propagation, the variation 

in the distance between the transmitter and the receiver, the 

height of the eNodeB and the frequency, on the performance of 

the 4G / LTE radio link system. The results show that the type 

of environment in which electromagnetic waves propagate 

directly affect the attenuation. In case study, the empirical 

Okumura-Hata model showed better robustness and 

performances. The results show that the choice of system 

parameters and environmental parameters influence the 

pathloss value. In the second part, we proposed to use a 

metaheuristics method to determine the optimal parameters of 

the empirical model to enable optimal prediction of pathloss. 

The predicted and optimized Okumura-Hata model using PSO 

algorithm, was found to be the most accurate for Tebessa city 

environment and was found to be satisfactory for the 

environment. Future research can take many directions, all of 

which can have significant effects on important indoor and 

outdoor applications. In order to develop the future dense 

wireless communication infrastructures for a 4G & 5G co-

existing networks, the validated pathloss model must be used 

with measurement-based approaches and comparative 

validation procedures for different higher frequencies. 

░ REFERENCES 
[1] Rinne M. and Tirkkonen O., Lte, the radio technology path towards 4G, 

Computer Communications, 33 (16), 1894-1906, 2010. 

https://doi.org/10.1016/j.comcom.2010.07.001. 

[2] Nasralla M. M., Khan N. and Martini M. G., Content-aware downlink 

scheduling for LTE wireless systems: A survey and performance 
comparison of key approaches, Computer Communications, 130, 78-100, 

2018. https://doi.org/10.1016/j.comcom.2018.08.009. 

[3] Dahlman E., Parkvall S. and Skold J., 4G: LTE/LTE-Advanced for 
Mobile Broadband, Academic Press, 2011, 423-431, ISBN 

9780123854896, https://doi.org/10.1016/B978-0-12-385489-6.00028-X. 

[4] Priya L. R. and Soundar K. R., Lte: An enhanced hybrid domain downlink 

scheduling, Cognitive Systems Research 52, 550-555, 2018. 

https://doi.org/10.1016/j.cogsys.2018.07.013. 

[5] Jain A., Lopez-Aguilera E. and Demirkol I., "Evolutionary 4G/5G 

Network Architecture Assisted Efficient Handover Signaling," in IEEE 

Access, 7, 256-283, 2019, 

https://doi.org/10.1109/ACCESS.2018.2885344.  

[6] Erceg V., Greenstein L. J., Tjandra S. Y., Parkoff S. R., Gupta A., Kulic 

B., Julius A. A. and Bianchi R., Empirically based path loss model for 
wireless channels in suburban environments, IEEE Journal on Selected 

Areas in Communications 17(7), 1205-1211, 1999. 

https://doi.org/10.1109/49.778178. 

[7] Phillips C., Sicker D. and Grunwald D., A survey of wireless path loss 
prediction and coverage mapping methods, IEEE Communications 

Surveys and Tutorials, 15(1),255-270, 2013. 

https://doi.org/10.1109/SURV.2012.022412.00172. 

[8] Abhayawardhana V. S., Wassellt I. J., Crosby D., Sellars M. P. and Brown 

M. G., Comparison of empirical propagation path loss models for fixed 

wireless access systems, IEEE 61st Vehicular Technology Conference, 
Stockholm, Sweden, 1, 73-77, 2005. 2005. 

https://doi.org/10.1109/vetecs.2005.1543252. 

https://www.ijeer.forexjournal.co.in/


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 2 | Pages 557-566 | e-ISSN: 2347-470X 

 

566 Website: www.ijeer.forexjournal.co.in                               Analysis and optimization of 4G / LTE network 

pathloss 

[9] Kumar A., Mihovska A. D. and Prasad R., Dynamic pathloss model for 

place and time itinerant networks, Wireless Pers Communications 100, 

641–652, 2018. https://doi.org/10.1007/ s11277-018-5261-0. 

[10] Sulyman A., Nassar A., Samimi M., Maccartney G., Rappaport T. and 

Alsanie A., Radio propagation path loss models for 5g cellular networks 
in the 28 ghz and 38 ghz millimeter-wave bands, IEEE Communications 

Magazine 52(9), 78-86, 2014. https://doi.org/10.1109/ 

MCOM.2014.6894456. 

[11] Akinbolati A. and Ajewole M. O., Investigation of path loss and modeling 
for digital terrestrial television over nigeria, Heliyon 6(6), 2020. 

https://doi.org/10.1016/j.heliyon.2020.e04101.  

[12] Almalki F. A. and Angelides M. C., Empirical evolution of a propagation 

model for low altitude platforms, Chapter in book/Proceedings of 
Computing Conference, 1297-1304, 2018. 

https://doi.org/10.1109/SAI.2017.8252258. 

[13] Ostlin E., Zepernick H. J. and Suzuki H., Macrocell path-loss prediction 
using artificial neural networks, IEEE Transactions on Vehicular 

Technology 59(6), 2735-2747, 2010. doi:10.1109/TVT.2010.2050502. 

[14] Beire A. R., Pita H. and Cota N., Optimizing propagation models on 

railway communications using genetic algorithms, Procedia Technology 

17, 50 – 57, 2014. https://doi.org/10.1016/j.protcy.2014.10.215.  

[15] Chen Y. H. and Hsieh K. L., A dual least-square approach of tuning 

optimal propagation model for existing 3g radio network, 2006 IEEE 63rd 

Vehicular Technology Conference, Melbourne, VIC, Australia, 2006, 

2942-2946. doi:10.1109/vetecs.2006.1683407. 

[16] Shabbir N., Sadiq M. T., Kashif H. and Ullah R., Comparison of radio 

propagation models for long term evolution (lte) network, International 
Journal of Next-Generation Networks, 3, 27–41, 2011. 

doi:10.5121/ijngn.2011.3303. 

[17] Milanovi´c J., Rimac-Drlje S. and Majerski I., Radio wave propagation 

mechanisms and empirical models for fixed wireless access systems, 

Tehnicki Vjesnik, 17(1), 43-52, 2010.  

[18] Mardeni R. and Kwan K. F., Optimization of hata propagation prediction 

model in suburban area in malaysia, Progress In Electromagnetics 

Research C 13, 91–106, 2010. doi: 10.2528/PIERC10011804. 

[19] De Beelde B., Tanghe E., Plets D. and Joseph W., "Outdoor Channel 

Modeling at D-Band Frequencies for Future Fixed Wireless Access 

Applications," in IEEE Wireless Communications Letters, 11(11), 2355-

2359,2022. doi: 10.1109/LWC.2022.3202921.  

[20] Okumura Y., Ohmori E., Kawano T. and Fukuda K., Field strength and its 

variability in uhf and vhf land-mobile radio service, Review of the 

Electrical Communication Laboratory, 16, 825-873, 1968. 

[21] Hata M., Empirical formula for propagation loss in land mobile radio 

services, IEEE Transactions on Vehicular Technology, 29 (3), 317-325, 

1980. doi:10.1109/T-VT.1980.23859. 

[22] Begovic P., Behlilovic N. and Avdic E., Applicability evaluation of 
okumura, ericsson9999 and winner propagation models for coverage 

planning in 3.5 ghz wimax systems, 19th IWSSIP, 256-260, 2012. 

[23] Erceg V., Hari K.V.S., Smith M.S., Baum D.S. et al, Channel Models for 

Fixed Wireless Applications, Tech. rep. IEEE 802.16.3 Broadband 

Wireless Access Working Group, January 2001. 

[24] Mahmood A., Khan S., Hussain S. and Zeeshan M., Performance analysis 

of multiuser downlink pd-noma under Sui fading channel models, IEEE 

Access 9, 52851- 52859, 2021. doi: 10.1109/ACCESS.2021.3070147 

[25] EET-Ericsson Engineering Tool, User reference guide. Ericsson Radio 

SystemAB, 1997 

[26] Surajudeen-Bakinde N. T., Faruk N., Popoola S. I., Salman M. A., 

Oloyede A. A., Olawoyin L. A. and Calafate C. T., Path loss predictions 
for multi-transmitter radio propagation in vhf bands using adaptive neuro-

fuzzy inference system, Engineering Science and Technology, an 

International Journal, 21(4),679-692, 2018. 

https://doi.org/10.1016/j.jestch.2018.05.013. 

[27] H. Chiroma, P. Nickolas, N. Faruk et al., Large scale survey for radio 

propagation in developing machine learning model for path losses in 
communication systems, Scientific Africa, 19, e01550, 2023. 

https://doi.org/10.1016/j.sciaf.2023.e01550.  

[28] E. Ostlin, H.-.J. Zepernick, H. Suzuki, Macrocell, path-loss prediction 
using artificial neural networks, IEEE Trans. Veh. Technol., 59(6), 2735–

2747, 2010. doi: 10.1109/TVT.2010.2050502. 

[29] Moraitis N., Tsipi L., Vouyioukas D. et al. Performance evaluation of 

machine learning methods for path loss prediction in rural environment at 
3.7 GHz. Wireless Netw  27, 2021, pp. 4169–4188, 

https://doi.org/10.1007/s11276-021-02682-3 

[30] Nafea S. and Hamza, E. K. Path loss optimization in WIMAX network 

using genetic algorithm. IRAQI Journal of computers, communications, 
control and systems engineering, 20 (1), 24-30, 2020, doi: 

10.33103/uot.ijccce.20.1.3 

[31] Zhang Y.,Wen J., Yang G., He Z. and Wang J., Path loss prediction based 
on machine learning: Principle, method, and data expansion, Applied 

Sciences (Switzerland) 9 (9), 1908, 2019. doi:10.3390/app9091908. 

[32] Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: 

A Systematic Review. Arch Computat Methods Eng 29, 2531–2561, 

2022. doi:10.1007/s11831-021-09694-4 

[33] Kennedy J. and Eberhart R., "Particle swarm optimization," Proceedings 

of ICNN'95 - International Conference on Neural Networks, 4, 1942-

1948, 1995. doi:10.1109/ICNN.1995.488968. 

[34] Marini F. and Walczak B., Particle swarm optimization (pso). a tutorial, 

Chemometrics and Intelligent Laboratory Systems 149, 153 -165, 2015. 

doi:10.1016/j.chemolab.2015.08.020. 

[35] Wang D., Tan D. and Liu L., Particle swarm optimization algorithm: an 
overview, Soft Computing 22, 387–408, 2018. doi:10.1007/s00500-016-

2474-6. 

[36] Santhusitha D., Karunasingha K., Root mean square error or mean 
absolute error? Use their ratio as well, Information Sciences, 585, 609-

629, 2022. doi : 10.1016/j.ins.2021.11.036. 

[37] Igbinosa O.G., Okpeki U.K., Performance investigation of different 

pathloss models for a wireless communication system in Nigeria, Heliyon, 
vol. 5(5), 2019, https://doi.org/10.1016/j.heliyon.2019.e01656. 

 

© 2024 by the Amel Bouchemha, Hanane 

Djellab and Mohamed Cherif Nait-Hamoud 

Submitted for possible open access publication 

under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 

https://www.ijeer.forexjournal.co.in/

