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░ ABSTRACT- To achieve the goal of allocating the generation capacity of isolated renewable energy system microgrids in 

a stable, economical, and clean manner, an optimization model considering economic costs, environmental protection, and power 

supply reliability was established. Compared with the normalization of fixed weight coefficients, a dynamic adaptive parameter 

method was used in this study to balance the weights of economic, environmental, and stability factors in the objective function. 

The Levy Flight Strategy, Golden Sine Strategy, and Dynamic Inverse Learning Strategy were embedded to increase algorithm 

performance for optimization and simulation to address issues such as local optima, slow convergence speed, and lack of diversity 

commonly associated with traditional Grey Wolf Optimization algorithm. The case analysis shows that the Improved Grey Wolf 

Optimization algorithm effectively reduces the economic cost of microgrids, enhances environmental performance, and improves 

system reliability. 
 

Keywords: Adaptive weights, Capacity optimization, Isolated renewable energy system (IRES), Improved gray wolf algorithm, 

Operational management strategy. 

 

 

 

░ 1. INTRODUCTION   
Global Electricity Review 2023 reveals a 15-20% growth rate 

for wind and solar energy sources over a decade [1]. 

Nevertheless, the effectiveness of these sustainable sources is 

inherently limited by their unpredictable nature and 

environmental variables, leading to significant fluctuations in 

energy production levels. Introducing hybrid renewable energy 

systems (HRES) has emerged as a necessary solution to 

counteract the instability observed in single-energy 

configurations. These hybrid systems amalgamate wind, solar, 

diesel, and storage elements, facilitating a cost-effective and 

consistent supply of electricity supply.  
 

To construct a robust optimization model that addresses 

economic, environmental, and reliability considerations, it is 

essential to integrate key factors and constraints: The economic 

aspect often involves fixed and operational maintenance costs, 

which are determined by some factors such as initial capital 

outlay, ongoing maintenance expenses, and costs associated 

with component replacement [2; 3]. Environmental 

considerations are gauged by the reduction in emissions of 

harmful gases [4] and the increase in the adoption rate of 

renewable energy [4-7]. Meanwhile, reliability metrics focus on 

enhancing the system's self-balancing capabilities [8; 9] and 

minimizing the frequency of load-shedding events ([10-14]. 

Currently, capacity optimization techniques are broadly divided 

into two types. One employs Pareto front optimization, which 

harmonizes various objective functions such as economic 

factors, environmental impacts, and system reliability to derive 

optimal Pareto solutions. The alternative approach involves 

amalgamating numerous objective functions into a singular 

cohesive objective function through the allocation of distinct 

weights. Building on the previews of normalizing multiple 

targets with fixed weight coefficients, an adaptive weighting 

coefficient technique is introduced to correct the limitations 

associated with subjectively assigned fixed weights in the 

normalization process. 
 

To achieve more precise optimal outcomes, various 

metaheuristic algorithms have been employed to address the 

objective function effectively. Sawle, et al. (2017) applied 

genetic algorithms and particle swarm optimization techniques 

to minimize the energy cost, aiming to enhance reliability, 

maximize renewable energy utilization, and reduce emissions 

and penalty costs. Different studies have implemented the 

Whale Optimization Algorithm (WOA) across various Hybrid 

Renewable Energy Systems (HRES) to optimize system 

capacity, ensuring adequate power supply at minimal cost for 

load demands [10; 16-18]. It was demonstrated that WOA 
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outperformed PSO in aspects of reliability, convergence speed, 

and accuracy. Another study introduced a design for a 

photovoltaic/diesel/battery system, need to minimize the annual 

total cost by employing the Grey Wolf Optimization (GWO) 

algorithm [19]. During the latter phases of maturation, the 

algorithm may confront challenges such as local convergence 

or premature convergence arising from a limited diversity 

within the populace. With the escalation of complexity in hybrid 

systems, traditional methodologies are progressively 

susceptible to being trapped in local optima [20; 21]. Aim at the 

defects of GWO, which is prone to premature convergence, low 

performance, and low accuracy in solving multi-modal complex 

problems, Yan(2020) proposed the chaotic Gray Wolf 

optimization algorithm from the aspect of GWO search 

mechanism, which is very competitive in training neural 

networks. It is an excellent algorithm that can deal with single-

mode and multi-mode problems well, but its defects are also 

obvious. Through the simulation results on fixed-dimension 

multi-mode problems, we can see that the optimization 

performance of this algorithm is not ideal for fixed-dimension 

multi-mode problems. In the capacity optimization of 

independent micronets, Tent chaotic mapping, nonlinear 

convergence factor, and Cauchy mutation operator are adopted 

to improve the precocious performance of the Grey Wolf 

algorithm in the late stage of evolution. However, due to the 

relatively simple construction of the optimization target model, 

it only involves minimizing the cost of economic factors [23]. 

It does not fully reflect the complexity of practical applications. 

The article employs dynamic neighbourhood search technology 

to enhance the algorithm's ability to search for and distinguish 

multiple local optimal solutions. By considering multiple 

optimization factors such as cost, environmental impact, and 

system reliability, the practicality and versatility of the 

algorithm have been strengthened. 
 

The distribution of chapters is structured as follows: the 

introductory section provides an overview, the subsequent 

section elaborates on the mathematical formulation of 

optimization, the Improved Grey Wolf Optimization Algorithm 

(IGWO) is expounded upon in Sections 3, optimization results 

are scrutinized and deliberated in Section 4, Section 5 

encapsulates the conclusions and prospects for future research. 

 

░2. MATHEMATICAL FORMULATION OF 

OPTIMIZATION 
2.1 System Components Mathematical Modeling 
The independent hybrid new energy system (HRES) discussed 

in this study is a self-sufficient electrical system that functions 

autonomously without reliance on the conventional power grid. 

The research highlights a HRES design that integrates the 

operation of a wind turbine, diesel generator, solar photovoltaic 

system, and storage battery in a collaborative manner. 
 

2.1.1 Wind turbine (WT) mathematic modelling 

The analysis of WT encompasses various factors, such as wind 

velocity, direction, energy density, atmospheric density, and 

selected turbine diameter. Among these factors, wind speed 

emerges as the paramount element. [15; 24-26]. The output 

power can calculate according to equation (1): 
 

𝑃𝑤𝑡(𝑡) = {

0                                 v(𝑡) ≤ 𝑣𝑖 , 𝑣(𝑡) ≥ 𝑣𝑜

𝑃𝑤𝑡−𝑛 ⋅
𝑣(𝑡)−𝑣𝑖

𝑣𝑛−𝑣𝑖
                𝑣𝑖 ≤ 𝑣(𝑡) ≤ 𝑣𝑛

𝑃𝑤𝑡−𝑛                                𝑣𝑛 ≤ 𝑣(𝑡) ≤ 𝑣𝑜

       (1) 

 

where, Pwt(t) is the output power of WT; vi represents the cut-in 

speed; set at 2.5 m/s; vo is the cut-out speed, set at 18 m/s, vn is 

the rated speed, set at 12 m/s; v(t) is the wind speed; Pwt-n is the 

rated power. 
 

2.1.2 PV mathematic modeling 

The performance of a photovoltaic system is impacted by 

various factors, with temperature and light intensity being 

identified as the most crucial determinants of the system's 

output power. [27; 28]. The output power can be calculated by 

equation (2): 

 

      (2) 
 

where, Ppv(t) denotes output power (kW); Ppv-n is the rated 

power at standard test condition (TSTC = 25℃，ESTC= 1000 

W/m2); kpv is the temperature coefficient, set at -0.47%/℃; T(t) 

denotes ambient temperature (℃); Eac is the sunlight irradiance 

(W/m2). 
 

2.1.3 Diesel generator mathematic modeling 

The model used in this research to elucidate the relationship 

between diesel fuel consumption and the electrical power 

generated is expressed by equation (3) [4; 29-31]: 
 

𝐹dg(𝑡) = 𝜆𝑎 ⋅ 𝑃dg−𝑛 + 𝜆𝑏 ⋅ 𝑃dg(𝑡)                                    (3) 
 

where, the fuel consumption (Fdg(t)) is determined by the power 

output (Pdg(t)) and the rated power (Pdg-n). Additionally, the fuel 

intercept coefficient (λa) and curve slope coefficient (λb) are 

denoted as 0.2461 and 0.08415 respectively, measured in L/kW. 
 

2.1.4 Energy storage battery mathematic modeling 

The evaluation of the storage battery's condition plays a pivotal 

role in assessing its efficiency and and capacity. This 

assessment hinges on the state of charge (SOC), a metric that 

takes into account the entirety of charging and discharging 

operations [24; 32-34]. the mathematical representation of SOC 

can elucidate through equation (4): 
 

𝑆𝑂𝐶(𝑡) = {
(1 − 𝜀)𝑆𝑂𝐶(𝑡 − 1) +

𝑃𝑐(𝑡)𝜂𝑐

𝐸𝑆𝑇𝐶

(1 − 𝜀)𝑆𝑂𝐶(𝑡 − 1) −
𝑃𝑑𝑖𝑠(𝑡)/𝜂𝑑𝑖𝑠

𝐸𝑆𝑇𝐶

                   (4) 

 

where, SOC represents the status of the battery; the self-

discharge coefficient, denoted as ε, is established at a value of 

2%; Pdis(t) denotes the discharging power and and Pc(t) denotes 

charging power (kW); ηc and ηdis  are the energy efficiency 

during charging and discharging,  both 95%; ESTC is the rated 

battery capacity (kWh). 

( ) 1 ( ) 30ac ac
STCpv pv n pv

STC STC

E E
P t P k T t T

E E
−

  
=  + − +  
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2.2 Optimal Objective 
2.2.1 Mitigation of cost   

The overall cost consists of several parts as shown in equation 

(5) 

𝐶𝐸 = 𝑚𝑖𝑛( 𝐶𝑝𝑖 + 𝐶om + 𝐶𝑟 + 𝐶𝑓) = 𝑚𝑖𝑛 {∑ [
𝑟𝑖(1+𝑟𝑖)

𝑑𝑖

(1+𝑟𝑖)
𝑑𝑖−1

⋅𝑁
𝑖=1

𝑓(𝑖)⋅𝑃(𝑖)

365𝑑𝑖
] + ∑ ∑ [𝑐𝑜𝑚−𝑖 ⋅ 𝑃𝑖(𝑡)] + ∑ ∑ [𝑐𝑟−𝑖 ⋅

24
𝑡=1

𝑁
𝑖=1

24
𝑡=1

𝑁
𝑖=1

𝑃𝑖(𝑡)] + 𝑐𝑑𝑖𝑒 ⋅ ∑ [𝜆𝑎𝑃𝑑𝑔−𝑛 + 𝜆𝑏𝑃𝑑𝑔(𝑡)]
24
𝑡=1 }                        (5)                                                                                             

 

where, CE  is economic function; Cpi is the purchasing cost; Com 

is the operation and maintenance cost (O&M cost); Cr is the 

replacement cost; Cf is the fuel cost of diesel; ri is  the discount 

rate of the ith equipment, f(i) is the unit cost of ith equipment, the 

unit is yuan/kW; di is the lifecycle of the ith equipment (year);  

Pi(t) is the output power of the ith equipment at time t; P(i) is the 

maximum power of the ith equipment  (kW); cdie is the unit fuel 

cost, unit is yuan/L . 
 

2.2.2 Reduction of emission  

The objective function is chiefly expressed through emission 

levels of pollutants and control factors, as outlined in equation 

(6).  
 

Cenvir is pollution abatement costs, βk is the emission coefficient, 

set unit g/kW·h; αk is the control standard coefficient; k is the 

pollutant type. The parameters are shown in table 1 [35]. 

𝐶𝑒𝑛𝑣𝑖𝑟(𝑡) = ∑ [𝛼𝑘𝛽𝑘𝑃𝑑𝑔(𝑡)]
3
𝑘=1                                             (6) 

 

░ Table 1. Pollution factors  
 

Pollutant 

type 

αk: Pollution control 

standard factor 

βk: Pollutant discharge 

factor (g/kWh) 

CO2 0.21 649 

SO2 14.842 0.206 

NOx 
62.964 
 

9.89 

 

2.2.3 Reliability index  

The power deviation rate including load shedding power and 

energy waste power is utilized to assess the power supply 

reliability [36], as represented in equation (7): 
 

  𝐶𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) = 𝑐𝑤𝑃𝑐𝑢𝑡𝑝(𝑡) + 𝑐𝑣𝑃𝑐𝑢𝑡𝑙(𝑡)                          (7) 
 

where, Creliability represents the penalty cost; cw denotes the 

penalty unit price for overpower; cv signifies the price for power 

shortage; Pcutp(t) is the energy waste power at time t; Pcutl(t) 

indicates the load shedding power at time t.  
 

2.2.4 Normalized objective function  

The weighted objective function method assigns weights to 

economic, environmental, and reliability factors, multiplies 

them, and aggregates them into a scalar objective function[36-

39]. However, the subjective weight selection can greatly 

influence optimization outcomes. This study introduces 

adaptive weighting as a solution. The adaptive weight technique 

modifies the weights of the objective function iteratively 

according to the obtained optimization outcomes and specific 

problem attributes. The planning model is detailed in Equations 

(4-7) [40] 

𝐶 =∑𝛽1(𝑡) ⋅
𝐶𝑖𝑛𝑣𝑒𝑠𝑡
24

24

𝑡=1

+ 𝛽1(𝑡) ⋅ 𝐶𝑜𝑝𝑒𝑟𝑎 + 𝛽1(𝑡) ⋅ 𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒

+ 𝛽1(𝑡) ⋅ 𝐶𝑓𝑢𝑒𝑙  

+∑ [𝛽2(𝑡) ⋅ 𝐶𝑒𝑛𝑣𝑖𝑟(𝑡)]
24
𝑡=1 +∑ [𝛽3(𝑡) ⋅ 𝐶𝑟𝑒𝑙𝑖(𝑡)]

24
𝑡=1             (8) 

 

𝛽1(𝑡) + 𝛽2(𝑡) + 𝛽3(𝑡) = 1                                                (9) 
 

{
𝛽2(𝑡) =

𝐶𝑒𝑛𝑣𝑖𝑟(𝑡)

𝑚𝑎𝑥[𝐶𝑒𝑛𝑣𝑖𝑟(1),𝐶𝑒𝑛𝑣𝑖𝑟(2),⋯,𝐶𝑒𝑛𝑣𝑖𝑟(24)]
⋅ 0.7

𝛽3(𝑡) =
𝐶𝑟𝑒𝑙𝑖(𝑡)

𝑚𝑎𝑥[𝐶𝑟𝑒𝑙𝑖(1),𝐶𝑟𝑒𝑙𝑖(2),⋯,𝐶𝑟𝑒𝑙𝑖(24)]
⋅ 0.7

              (10) 

                

{
𝛽2(𝑡) ∈ [0.1, 0.35]

𝛽3(𝑡) ∈ [0.1, 0.35]
                                                          (11) 

 

where, β1(t), β2(t) and β3(t) indicates cost, emission, and 

reliability index weight at time t.  
 

2.2 Design constraints 
Equality and inequality constraints are shown in equation (12-

15)  [4; 12; 14; 41; 42]: 
 

𝑃𝑤𝑡(𝑡) + 𝑃𝑝𝑣(𝑡) + 𝑃𝑏𝑎𝑡(𝑡) + 𝑃𝑑𝑔(𝑡) + 𝑃𝑐𝑢𝑡𝑝(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) +

𝑃𝑐𝑢𝑡𝑙(𝑡)                                                                              (12)                                                             
 

               𝑃𝑏𝑎𝑡(𝑡) = 𝑃𝑑𝑖𝑠(𝑡) − 𝑃𝑐ℎ(𝑡)                                   (13) 

 

           

{
 
 

 
 

𝑃𝑐ℎ
min ≤ 𝑃𝑐ℎ(𝑡) ≤ 𝑃𝑐ℎ

max

𝑃𝑑𝑖𝑠
min ≤ 𝑃𝑑𝑖𝑠(𝑡) ≤ 𝑃𝑑𝑖𝑠

max

𝑃𝑐ℎ
max = 𝑃𝑑𝑖𝑠

max =
1

2
𝐸𝑏𝑎𝑡

     𝑆𝑂𝐶min ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶max

                (14)  

 

                   𝑃𝑑𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑑𝑔(𝑡) ≤ 𝑃𝑑𝑔

𝑚𝑎𝑥                                 (15)  

                           

where, 𝑃𝑐ℎ
𝑚𝑎𝑥  and 𝑃𝑐ℎ

𝑚𝑖𝑛  represent the upper and lower charge 

power; 𝑃dis
𝑚𝑖𝑛 and 𝑃dis

𝑚𝑎𝑥 represent the lower and upper discharge 

power; 𝑆𝑂𝐶𝑚𝑖𝑛  and 𝑆𝑂𝐶𝑚𝑎𝑥  represent the lower and upper 

SOC value; 𝑃𝑑𝑔
𝑚𝑎𝑥and 𝑃𝑑𝑔

𝑚𝑖𝑛  represent the diesel generator upper 

and lower output power. 

 

░3. IMPROVED GREY WOLF 

OPTIMIZATION 
Mirjalili,et al.(2014) proposed the Grey Wolf Optimization 

(GWO) algorithm. The gray Wolf population's prey behavior 

was simulated to optimize mutual cooperation within the group. 

Due to the rapid decline of population diversity, the basic GWO 

algorithm often encounters the problems of prematurity and 

local convergence, which limits its further application in the 

field of engineering optimization. This paper adopt Levy Flight 

Strategy and Golden Sine Strategy to improve the global 

optimal character. The following are enhanced steps of IGWO: 
 

Step-1: When seeking the prey, establish a dispersion model, 

generating a random variable A. when |A| ≤ 1, grey wolves 

https://www.ijeer.forexjournal.co.in/
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adopt a strategy of grouping together to enclose the prey. In 

contrast, when |A| > 1, individual grey wolves exhibit a 

behavior of distancing themselves from located prey to pursue 

more formidable targets. C is a stochastic variable within [0, 2], 

serving as a probabilistic factor influencing the weight assigned 

to the prey. Such stochasticity contributes to the modulation of 

the prey's influence on the spatial arrangement of the grey 

wolves during subsequent iterations. A and C expressions are 

as equation (16-17): 
 

𝐴 = 2𝑎 ⋅ 𝑟1 − 𝑎                                                    (16) 
 

𝐶 = 2𝑟2                                                                (17)  
 

where, r1 and r2 are random value within [0, 1]; 𝑎  is a 

convergence factor gradually decreasing from 2 to 0 during the 

iteration process.  
 

Step-2: During the process of capturing, the grey wolves 

surround the prey, the mathematical model is as follows 

equation (18-19): 
 

𝐷 = |𝐶 ⋅ 𝑋𝑝(𝑡) − 𝑋(𝑡)|                                                  (18) 
 

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 ⋅ 𝐷                                               (19)  
 

where, D is the distance between the prey and the individual 

grey wolf; Xp is the prey position; X(t) is the individual grey 

wolf positions in t-th iterations.  
 

Step-3: The wolf pack, led by the α, β, δ wolves, continuously 

approaches its prey, their positions are constantly changing until 

a successful hunt is achieved. This process can be represented 

by equation (20-22): 
 

          {

𝐷𝛼(𝑡) = |𝐶1 ⋅ 𝑋𝛼(𝑡) − 𝑋(𝑡)|

𝐷𝛽(𝑡) = |𝐶2 ⋅ 𝑋𝛽(𝑡) − 𝑋(𝑡)|

𝐷𝛿(𝑡) = |𝐶3 ⋅ 𝑋𝛿(𝑡) − 𝑋(𝑡)|

                                             (20) 

 

         {

𝑋𝛼
′ (𝑡) = 𝑋𝛼(𝑡) − 𝐴1 ⋅ 𝐷𝑎(𝑡)

𝑋𝛽
′ (𝑡) = 𝑋𝛽(𝑡) − 𝐴2 ⋅ 𝐷𝛽(𝑡)

𝑋𝛿
′ (𝑡) = 𝑋𝛿(𝑡) − 𝐴3 ⋅ 𝐷𝛿(𝑡)

                                               (21) 

 

            𝑋(𝑡 + 1) =
𝑋𝛼

′ (𝑡)+𝑋𝛽
′ (𝑡)+𝑋𝛿

′ (𝑡)

3
                                           (22)  

 

where, Dα(t), Dβ(t) and Dδ(t) are the spatial separations between 

α, β, δ wolves and individual wolf; Xα(t), Xβ(t) and Xδ(t) are the 

α, β, δ wolve positions at the t-th iteration; 𝑋𝛼
’ (𝑡), 𝑋𝛽

’ (𝑡) and 

𝑋𝛿
′ (𝑡) represent the individual positions affected by α, β, and δ 

wolves; The average of these three positions is considered to be 

the position of the individual wolf in subsequent iterations. 
 

Step-4a: The Golden Sine Strategy not only involves the current 

location and the target location, but also controls the search step 

size by introducing an adjusted sinusoidal waveform, enabling 

the search process to be dynamically adjusted between 

exploration and exploitation, helps to accurately approach the 

global optimal solution for a known good region. The basic Sine 

Strategy expression is equation (23-24), the improved 

expression are as follows equation (25-26): 
 

𝑋new(𝑡) = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡) + 𝐴(𝑡) × 𝑠𝑖𝑛(𝜔𝑡) × (𝑋𝑡 𝑎𝑟𝑔 𝑒𝑡(𝑡) −

𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡))        (23) 

                  

𝐴(𝑡) = 𝐴0 ⋅ 𝑒
−𝜆𝑡                                                                (24) 

 

where, Xnew(t), Xcurrent(t), Xtarget(t) denote the new position, 

current position, and target position of individual wolf; A is 

amplitude, ω is frequency, A0 is initial amplitude, λ is 

attenuation coefficient. 
 

𝑋𝑔𝑜𝑙𝑑(𝑡) = 𝑋(𝑡) × |𝑠𝑖𝑛( 𝑅1)| + 𝑅2 × 𝑠𝑖𝑛(𝑅1) ×

|𝑥1𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑥2𝑋(𝑡)|   (21) 

               

{
𝑥1 = −𝜋 + (1 − 𝜏) ⋅ 2𝜋
𝑥2 = −𝜋 + 𝜏 ⋅ 2𝜋

                                                         (25) 

𝜏 =
√5−1

2
                                                                         (26) 

 

where, Xgold(t), X(t), Xbest(t) denote the new position, current 

position, and target position of individual wolf; τ is golden 

ration; x1 and x2 are angular variables introducing the properties 

of the golden ratio into the Angle adjustment, thus may optimize 

the diversity and efficiency of the search path; R1 and R2 denote 

stochastic variables within the range [0, 2π]; R1 dictating 

magnitude of the individual forthcoming movement, R2 

determines the orientation of the next movement. 
 

Step-4b: The Levy Flight Strategy helps the algorithm to 

perform a large range of jumps, jumping out of local optimal 

solutions. Its mathematical expression is as follows Equation 

(27-30): 

𝑋𝐿𝑒𝑣𝑦(𝑡) = 𝐿𝑒𝑣𝑦(𝑑) ⋅ 𝑋𝑏𝑒𝑠𝑡(𝑡) + 𝜉|𝑋(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) ⋅

𝐿𝑒𝑣𝑦(𝑑)|           (27) 
 

                     𝐿𝑒𝑣𝑦(𝑑) = 0.01 ×
𝜎⋅𝑟1

|𝑟2|
1
𝜉

                                          (28) 

 

     𝜎 = {
𝛤(1+𝜉)⋅𝑠𝑖𝑛(

𝜋𝜉

2
)

𝛤[
(1+𝜉)

2
]𝜉⋅2

𝜉−1
2

}

1

𝜉

                                                   (29)  

 

              𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
                                              (30) 

 

Where, XLevy (t) evaluates the step array based on the dimensions 

provided (dim) which is scaling by 0.01 to control the step size 

in the solution space; d is the independent variable 

dimensionality, set 4; ξ is a constant, set 1.5; Γ is the gamma 

function. Scaling the random step size by calculating σ ensures 

that the step size has the correct statistical properties based on 

the selected beta value.
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Figure 1.  The IGWO algorithm flowchart

Step-5: The Dynamic Reverse Learning Strategy produces both 

the optimal individual and the reverse learning individual, 

subsequently choosing between the two based on their fitness 

values.  A greedy strategy is used to select the optimal 

individual, as described by equation (31):  
 

𝑋𝐷𝑂𝐵𝐿(𝑡) = 𝑟3{𝑟4[𝑋𝐿𝐵 + 𝑋𝑈𝐵 − 𝑋𝑏𝑒𝑠𝑡(𝑡)] − 𝑋𝑏𝑒𝑠𝑡(𝑡)} +
𝑋𝑏𝑒𝑠𝑡(𝑡)    (31)  

      

where, the position of each grey individual is adjusted through 

the dynamic reverse learning strategy at the tth iteration, denoted 

as XDOBL (t); r3 and r4 represent randomly generated numbers 

within the range of 0 to 1; Moreover, XUB and XLB symbolize the 

upper and lower limits of the independent variable; (XLB + XUB- 

XBest) denotes new positions and find potential better solutions 

by exploring symmetric points in the current solution space. 

The new location is generated by considering the boundary 

information, so that the algorithm can use the limit information 

of the whole search space to explore the opposite direction of 

the center of the solution space on the basis of the optimal 

solution. 

 

The flowchart of IGWO algorithm is illustrated in figure. 1.  

 

░4. RESULTS AND DISCUSSION 
The study selected the conventional daily load information 

originating from a community hospital situated in California, 

USA, to serve as the load data for the HRES microgrid. The 

scheduling timeframe encompasses T=24 hours, with a 

sampling interval of 1 hour. The expense and related cost 

factors of equipment are detailed in Table 2 [27].  
 

░ Table 2. The expenses and related cost factors of the 

decentralized power source 
 

Type Unit WT PV DG BAT 

Investment 

cost 

104yuan·kW-

1 

0.45 0.5 0.13 0.57 

O&M cost yuan·kW-1 0.0354 0.0887 0.0257 0.0057 

Replaced 

cost 

104yuan·kW-

1 

0 0 0.1 0.45 

Lifetime year 20 20 20 10 

 

start

Initialize parameters

Initialize the position of  α,β,δ, ω wolves

Reached maximum 

 iterations？

Update A and C, 

convergence factor a 

Update the fitness of  α,β,δ, 

ω wolves

Calculate the fitness of 

α,β,δ, ω wolves

Output the position of the optimal 

gray wolf individual

Output the fitness of the optimal 

grey wolf individual

end

Golden Sine 

Strategy

Levy Flight 

Strategy

Dynamic reverse 

learning strategy

Dynamic selection?

Are the two iterations 

consistent in effect

Search for prey, Surrounding prey, Attack prey

Yes

No

Yes No

Yes

No

https://www.ijeer.forexjournal.co.in/


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 2 | Pages 567-574 | e-ISSN: 2347-470X 

 

572 Website: www.ijeer.forexjournal.co.in           Capacity Optimization of an Isolated Renewable Energy 

Conducting 

(a)  solar radiation 

(b)  wind speed   

(c)  temperature  (d)  load power 
 

Figure 2.  Hourly profile of solar radiation, wind speed, temperature and load in a year 

 

From figure. 4, the diagram shows the power balance of each 

component. The the storage battery SOC and output power are 

shown in figure. 5. The adaptive weight coefficient results are 

illustrated in figure. 6. 

 

 

Figure 3.  Comparison diagram of convergence process 

 

Figure 4.  Power balance diagrams 

 

In figure. 3, it can be observed that during the iterative process, 

the IGWO algorithm demonstrates superior convergence speed, 

with convergence curves displaying a consistent trend towards 

the optimal solution. 
  
As illustrated in table 3, both PSO and IGWO algorithms reach 

the optimal solution at 297,212 in the 76th, and 50th iterations, 

IGWO significantly enhances convergence speed. Table 4 

shows the system components' unit capacity and optimized 

capacity. 
 

░ Table 3.  Convergent optimal solutions 
 

algorithm Optimal results（yuan） Convergent number 

PSO 297212 76 

WOA 309265 80 

GWO 297985 94 

IGWO 297212 50 

 

░ Table 4.  Optimized equipment capacity 

 

 

Type Unit capacity (kW) Capacity  (kW) 

WT 20 1206 

PV 20 491 

DG 10 695 

BAT 10 1600 
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Figure 5.  SOC status and output power of battery 

Figure 6.  Dynamic adaptive parameters 

 

These variations of adaptive weight coefficients indicate that 

the system automatically adjusts its emphasis on economy, 

environmental friendliness, and reliability during different 

periods to adapt to varying workloads and external conditions. 

 

░5. CONCLUSIONS AND PERSPECTIVES 
The study explores the balance of economic, environmental 

friendliness, and reliability aspects of renewable energy system 

microgrids through the weighted objective function method. By 

introducing adaptive weighting, the subjectivity of weight 

selection is reduced. Using the Golden Sinusoidal strategy and 

the Levy Flight strategy effectively avoids local optima 

problems and accelerates the convergence speed of the 

algorithm. In subsequent iterations, the dynamic reverse 

learning strategy avoids stagnation, effectively preventing 

falling into local optima. Future research will add sensitivity 

analysis of adaptive coefficients, assessing the influence of 

varying weight scenarios on optimization outcomes, and 

consider adopting other improved technologies and renewable 

energy sources to meet heating and cooling needs, further 

promoting the sustainability of renewable energy systems. 

Additionally, the possibility of implementing more optimal 

algorithms will be explored. 

 

░ REFERENCES 

[1] Małgorzata Wiatros-Motyka. (2023). Global Electricity Review 2023. 
https://ember-climate.org/insights/research/global-electricity-review-

2023/#supporting-material 

 
[2] Chen J, Zhang W, Li J, et al. (2017). Optimal Sizing for Grid-tied 

Microgrids with Consideration of Joint Optimization of Planning and 

Operation. IEEE Transactions on Sustainable Energy, 9, 237-248. 
 

[3] Guo L, Liu W, Jiao B, et al. (2014). Multi-objective stochastic optimal 

planning method for stand-alone microgrid system. IET Generation 
Transmission & Distribution, 8(7), 1263-1273. 

 

[4] Kamal MM, Ashraf I, Fernandez E. (2023). Optimal energy management 
and capacity planning of renewable integrated rural microgrid. Environmental 

Science and Pollution Research, 30(44), 99176-99197. 

 

[5] Bukar AL, Tan CW, Yiew LK, et al. (2020). A rule-based energy 

management scheme for long-term optimal capacity planning of grid-

independent microgrid optimized by multi-objective grasshopper optimization 
algorithm. Energy Conversion and Management, 221, 113161-113183. 

 

[6] Tang W, Liu Q, He P, et al. (2021). A Distributed Optimal Scheduling 
Method Based on Microgrid Cluster of Plug and Play. IOP Conference Series. 

Earth and Environmental Science, 701(1), 012058-012073. 

 
[7] Tawfik M, Shehata AS, Hassan AA, et al. (2023). Renewable solar and wind 

energies on buildings for green ports in Egypt. Environmental Science and 
Pollution Research 30(16), 47602-47629. 

 

[8] Akram U, Khalid M, Shafiq S. (2017). An Innovative Hybrid Wind-Solar 
and Battery-Supercapacitor Microgrid System—Development and 

Optimization. IEEE Access, 5, 25897-25912. 

 

[9] Abbes D, Martinez A, Champenois G. (2014). Life cycle cost, embodied 

energy and loss of power supply probability for the optimal design of hybrid 

power systems. Mathematics and Computers in Simulation, 98, 46-62. 
 

[10] Yahiaoui A, Tlemçani A. (2022). Superior performances strategies of 

different hybrid renewable energy systems configurations with energy storage 
units. Wind Engineering, 46(5), 1471-1486. 

 

[11] Lorestani A, Gharehpetian GB, Nazari MH. (2019). Optimal sizing and 
techno-economic analysis of energy- and cost-efficient standalone multi-carrier 

microgrid. Energy, 178, 751-764. 

 
[12] Javed MS, Ma T, Jurasz J, et al. (2020). Performance comparison of 

heuristic algorithms for optimization of hybrid off-grid renewable energy 

systems. Energy, 210, 118599-118618. 
 

[13] Aeidapu MAHESH KSS. (2020). A genetic algorithm based improved 

optimal sizing strategy for solar-wind-battery hybrid system using energy filter 
algorithm. Front. Energy, 14(1), 139-151. 

 

[14] Haddadian Nezhad E, Ebrahimi R, Ghanbari M. (2023). Fuzzy Multi-
objective allocation of photovoltaic energy resources in unbalanced network 

using improved manta ray foraging optimization algorithm. Expert Systems with 

Applications, 234, 121048-121065. 
 

[15] Sawle Y, Gupta SC, Bohre AK. (2017). Optimal sizing of standalone 

PV/Wind/Biomass hybrid energy system using GA and PSO optimization 
technique. Energy Procedia, 117, 690-698. 

 

[16] Diab AAZ, Sultan HM, Kuznetsov ON. (2020). Optimal sizing of hybrid 
solar/wind/hydroelectric pumped storage energy system in Egypt based on 

different meta-heuristic techniques. Environ Sci Pollut Res Int, 27(26), 32318-

32340. 
 

[17] Sun H, Ebadi AG, Toughani M, et al. (2022). Designing framework of 

hybrid photovoltaic-biowaste energy system with hydrogen storage considering 
economic and technical indices using whale optimization algorithm. Energy, 

238. 

 

https://www.ijeer.forexjournal.co.in/
https://ember-climate.org/insights/research/global-electricity-review-2023/#supporting-material
https://ember-climate.org/insights/research/global-electricity-review-2023/#supporting-material


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 2 | Pages 567-574 | e-ISSN: 2347-470X 

 

574 Website: www.ijeer.forexjournal.co.in           Capacity Optimization of an Isolated Renewable Energy 

Conducting 

[18] Alturki FA, Awwad EM. (2021). Sizing and Cost Minimization of 
Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy 

Systems. Energies, 14(2), 489-509. 

 
[19] Yahiaoui A, Fodhil F, Benmansour K, et al. (2017). Grey wolf optimizer 

for optimal design of hybrid renewable energy system PV-Diesel Generator-

Battery: Application to the case of Djanet city of Algeria. Solar Energy, 158, 
941-951. 

 

[20] Baños R, Manzano-Agugliaro F, Montoya FG, et al. (2011). Optimization 
methods applied to renewable and sustainable energy: A review. Renewable and 

Sustainable Energy Reviews, 15(4), 1753-1766. 

 
[21] Lian J, Zhang Y, Ma C, et al. (2019). A review on recent sizing 

methodologies of hybrid renewable energy systems. Energy Conversion and 

Management, 199, 112027-112050. 

 

[22] Yan F. (2020). Improvement Research on the Grey Wolf Optimizer. 

(Doctor of Management), Harbin Engineering University,  
 

[23] Zhao C, Wang B, Sun Z, et al. (2022). Optimal configuraiton optimization 

of island microgrid using Improved wolf optimizer algorithm. Acta Energiae 
Solaris Sinica, 43(01), 256-262. 

[24] Liu C, Wang X, Wu X, et al. (2017). Economic scheduling model of 

microgrid considering the lifetime of batteries. IET Generation, Transmission 
& Distribution, 11(3), 759-767. 

 
[25] Ma T, Yang H, Lu L, et al. (2014). Technical feasibility study on a 

standalone hybrid solar-wind system with pumped hydro storage for a remote 

island in Hong Kong. Renewable Energy, 69, 7-15. 
 

[26] Sfikas EE, Katsigiannis YA, Georgilakis PS. (2015). Simultaneous 

capacity optimization of distributed generation and storage in medium voltage 

microgrids. International Journal of Electrical Power & Energy Systems, 67, 

101-113. 

 
[27] Zhang Z, Zhang H, Sun W, et al. (2022). Optimal energy management of 

microgrid with hybrid energy storage. Science Technology and Engineering, 

22(25), 11049-11056. 
 

[28] Samy MM, Mosaad MI, Barakat S. (2021). Optimal economic study of 

hybrid PV-wind-fuel cell system integrated to unreliable electric utility using 
hybrid search optimization technique. International Journal of Hydrogen 

Energy, 46(20), 11217-11231. 

 
[29] Das BK, Hoque N, Mandal S, et al. (2017). A techno-economic feasibility 

of a stand-alone hybrid power generation for remote area application in 

Bangladesh. Energy, 134, 775-788. 
 

[30] Diab AAZ, Sultan HM, Mohamed IS, et al. (2019). Application of 

Different Optimization Algorithms for Optimal Sizing of 
PV/Wind/Diesel/Battery Storage Stand-Alone Hybrid Microgrid. IEEE Access, 

7, 119223-119245. 

 
[31] Skarstein Ø, Uhlen K. (1989). Design Considerations with Respect to 

Long-Term Diesel Saving in Wind/Diesel Plants. Wind Engineering, 13(2), 72-

87. 
 

[32] Zhao Y, Liu Y, Wu Z, et al. (2023). Improving Sparrow Search Algorithm 

for Optimal Operation Planning of Hydrogen–Electric Hybrid Microgrids 
Considering Demand Response. Symmetry, 15(4), 919-941. 

 

[33] Abdalla AN, Nazir MS, Tao H, et al. (2021). Integration of energy storage 
system and renewable energy sources based on artificial intelligence: An 

overview. Journal of Energy Storage, 40, 102811-102823. 

 
[34] Belboul Z, Toual B, Kouzou A, et al. (2022). Multiobjective Optimization 

of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: 

A Case Study in Djelfa, Algeria. Energies, 15(10), 1-30. 

[35] Ma J, Zhang X, Zhang Z, et al. (2022). Microgrid Capacity Optimizaiton 
Based on Improved Sparrow Search Algorithm. Electronic Measurement 

Technology, 45(08), 76-82. 

 
[36] Dong J, Dou Z, Si S, et al. (2021). Optimization of capacity configuration 

of wind–solar–diesel–storage using improved sparrow search algorithm. 

Journal of Electrical Engineering & Technology, 17(1), 1-14. 
 

[37] Lyu Z, Tan Y, Li J, et al. (2017). Multi-objective Optimal Sizing for 

Distributed Generation of Isolated Hybrid Microgrid Using Markov-based 
Electromagnetism-like Mechanism. Proceedings of the CSEE 37(7), 1927-

1936. 

 
[38] Liang C, Ding C, Zuo X, et al. (2023). Capacity configuration optimization 

of wind-solar combined power generation system based on improved 

grasshopper algorithm. Electric Power Systems Research, 225, 109770-109782. 

 

[39] Menshsari A, Ghiamy M, Mousavi MM, et al. (2013). Optimal design of 

hybrid water-wind-solar system based on hydrogen storage and evaluation of 
reliability index of system using ant colony algorithm. Int. Res. J. Appl. Basic 

Sci, 4(11), 3582-3600. 

 
[40] Zhang L, Zheng L, Leng X, et al. (2023). Research on Multi-Objective 

Optimization Strategy of Wind-Photovoltaic-Pumped Storage Combined 

System Based on Gray Wolf Algorithm. Journal of Shanghai Jiaotong 
University, 1-25. 

 
[41] Islam M, Akter H, Howlader H, et al. (2022). Optimal Sizing and Techno-

Economic Analysis of Grid-Independent Hybrid Energy System for Sustained 

Rural Electrification in Developing Countries: A Case Study in Bangladesh. 
Energies, 15(17), 6381-6402. 

 

[42] Guneser MT, Elbaz A, Seker C. (2022). Hybrid Optimization Methods 

Application on Sizing and Solving the Economic Dispatch Problems of Hybrid 

Renewable Power Systems. In M. A. Mellal (Ed.), Applications of Nature-

Inspired Computing in Renewable Energy Systems (pp. 136-165). Hershey, PA, 
USA: IGI Global. 

 

[43] Mirjalili S, Mirjalili SM, Lewis A. (2014). Grey Wolf Optimizer. Advances 
in Engineering Software, 69, 46-61. 

 
© 2024 by the Jia Lu, Fei Lu Siaw, Tzer Hwai 

Gilbert Thio and Junjie Wang Submitted for 

possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ijeer.forexjournal.co.in/

