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░ ABSTRACT- In this study, we introduce SleepXAI, a Convolutional Neural Network-Conditional Random Field (CNN-

CRF) technique for automatic multi-class sleep stage classification from polysomnography data. SleepXAI enhances classification 

accuracy while ensuring explainability by highlighting crucial signal segments. Leveraging Long Short-Term Memory (LSTM) 

networks, it effectively categorizes epileptic EEG signals. Continuous Wavelet Transform (CWT) optimizes signal quality by 

analyzing eigenvalue characteristics and removing noise. Eigenvalues, which are scalar values indicating the scaling effect on 

eigenvectors during linear transformations, are used to ensure clean and representative EEG signals. The Puffer Fish Optimization 

Algorithm fine-tunes LSTM parameters, achieving heightened accuracy by reducing trainable parameters. Evaluation on the Sleep-

EDF-20, Sleep-EDF-78, and SHHS datasets shows promising results, with regular accuracy ranging from 85% to 89%. The 

proposed LSTM-PFOA algorithm demonstrates efficacy for autonomous sleep categorization network development, promising 

improved sleep stage classification accuracy and facilitating comprehensive health monitoring practices. 
 

Keywords: Sleep Stage Classification; Convolutional neural network; Continuous Wavelet Transform; Puffer Fish Optimization 

Algorithm. 

 

 

 

░ 1. INTRODUCTION   
Sufficient sleep is vital for both physical and mental well-being. 

It supports the body's recovery and rejuvenation [1]. Inadequate 

sleep quality can lead to various health issues, including stress, 

obesity, diabetes, and even mortality [2-3]. Research shows that 

analyzing an individual's sleep habits, particularly EEG signals 

during sleep, can predict future health concerns. These concerns 

include dementia, cardiovascular issues, and psychiatric 

illnesses. For instance, a study involving 32 healthy individuals 

demonstrated the potential to forecast the onset of Alzheimer's 

disease based on sleep patterns [4-6]. 
 

With advancements in data processing tools and algorithms, 

more researchers are delving into sleep data analysis, 

particularly in sleep stage categorization [7]. This 

categorization is essential for understanding sleep organization, 

identifying sleep disorders, and monitoring sleep quality. 

Physiological signals from various devices like EMG machines 

and pulse oximetry are commonly used for classification [8-9]. 

Each thirty-second recording or epoch is assigned a distinct 

sleep stage according to established guidelines. 
 

Automatic sleep staging methods utilize rule-based algorithms, 

numerical classification approaches, or hybrid systems [10]. 

Rule-based approaches may struggle to integrate data patterns 

effectively, while numerical classification methods analyze 

spectra or time-frequency domains for PSG characteristics. 

Some studies employ feature selection with numerous 

characteristics. Hybrid systems combine the strengths of both 

approaches, but they may be challenging to implement, with 

rule-based methods often proving most effective [11-12]. 
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Many aspects of conventional approaches are tailored to sleep, 

with each wave type and its spectral range being detailed in 

tables 1 and 2, respectively, for each sleep stage [13]. 
 

░ Table 1: Frequency Bands of EEG Beats 
 

Frequency Band (HZ) Rhythm 

0-4 Delta (𝛿) 

30-40 Gamma 1 (𝛾1) 

40-49.5 Gamma 2 (𝛾1) 

4-8 Theta (𝜃) 

8-12 Alpha (𝛼) 

12-15 Sigma (𝜎) 

15-22 Beta 1 (𝛽1) 

22-30 Beta 2 (𝛽2) 

 

░ Table 2: Relationship Among Characteristic Waves of 

EEG And Diverse Phases of Sleep 
 

Sleep Stage Included Characteristics Waves 

W 𝑎, 𝛽 

N1 𝑎, 𝜃 

N2 K multifaceted, spindle wave 𝛿, 𝜃 

N3 𝛿 spindle wave 

REM 𝑎, 𝛽, 𝜃 

 

Feature selection algorithms are crucial in classic machine 

learning to minimize redundancy and select discriminative 

features. With the rise of deep learning, models can 

autonomously learn features, offering advantages like end-to-

end categorization and handling massive datasets without 

extensive prior knowledge [14]. Convolutional Neural 

Networks (CNNs) are widely used in computer vision tasks and 

biomedical engineering, including sleep EEG categorization 

[15-16]. 
 

In this study, three datasets undergo pre-processing with 

Continuous Wavelet Transform (CWT), followed by 

explainable AI for feature extraction. The extracted signals are 

then classified using an optimizer-based Long Short-Term 

Memory (LSTM) network. The parameters are tuned by the 

Puffer Fish Optimization Algorithm (PFOA). This approach 

integrates advanced techniques to optimize sleep EEG 

classification, demonstrating the evolution of algorithms in this 

field. The structure of the paper is organized as follows: Section 

2 discusses related works; Section 3 elaborates on the proposed 

approach in detail; Section 4 presents the results of the study, 

and finally, Section 5 provides the conclusion. 

 

░ 2. RELATED WORK 

Zhou et al. [17] proposed a novel method for sleep stage 

classification by combining multivariate phase space 

reconstruction (MPSR) with a covariance feature matrix 

architecture. Their approach aimed to capture the geometric and 

hidden dynamic features of various physiological signals. By 

treating covariance matrices constructed using MPSR as 

Symmetric Positive Definite (SPD) matrices, they established a 

Riemannian manifold space. These matrices were then 

transformed into tangent space matrices, converting them into 

feature vectors in Euclidean space. An ensemble learning 

classifier was employed to achieve the objectives associated 

with each sleep stage. Ten-fold cross-validation resulted in 

accuracies of 88.93% and 88.42% for five-stage classification 

tasks. Leave-one-subject-out cross-validation yielded 

accuracies of 82.50% for both the Five-class and Six-class sleep 

stages tasks on the Sleep EDF dataset. 
 

Pei et al. [18] introduced a new model for sleep stage 

classification that integrates a deep Convolutional Neural 

Network (CNN) with long-term memory. They utilized Mel-

frequency Cepstral Coefficient (MFCC) extracted from EEG 

and EMG signals as crucial frequency domain characteristics. 

The model learned features from the frequency domains of 

various bio-signal channels, extracting MFCC features from 

multi-channel signals. These features were then fed into an 

LSTM layer and several convolutional layers. The learned 

representations were passed to a fully connected classifier for 

sleep stage classification. The model demonstrated effective 

sleep stage classification based on the 2D MFCC feature, 

achieving an accuracy of 82.35% and a Cohen's kappa of 0.75 

on the SHHS dataset, and an accuracy of 74.07% and a kappa 

of 0.63 on the UCDDB dataset. 
 

Liu et al. [19] proposed a method for sleep stage classification 

based on Dynamic Mode Decomposition (DMD). DMD 

decomposes polysomnograms into EEG and EOG signals 

recorded on separate channels, and features are derived from the 

dynamic mode powers of these signals' epochs. Random forest 

classification is then employed for categorization. Numerical 

simulations demonstrated the superiority of this method, 

achieving a Cohen's Kappa of 0.9980 and a classification 

accuracy of 99.8748% for the six stages of sleep. 
 

Pan et al. [20] introduced a sleep evaluation technique to assess 

the sleep organization of Disorders of Consciousness (DOC) 

patients. Their algorithm consists of an automated model for 

sleep staging based on CNNs for signal feature extraction from 

EEGs and EOGs, followed by a bidirectional LSTM (Bi-

LSTM) with an attention mechanism to learn sequential 

information. A classifier evaluates consciousness based on the 

automated sleep staging results. The CNN-BiLSTM model 

coupled with an attention sleep network (CBASleepNet) 

achieved a total accuracy of 81.8% in assessing consciousness 

levels. 
 

Zhou et al. [21] proposed a sleep stage classification method 

using Layer-wise Relevance Propagation (LRP) for human-

understandable explanations. Raw EEG signals are transformed 

into time-frequency images using Short-Time Fourier 

Transform (STFT). The MSSENet model, based on CNNs, 

processes these images and utilizes the residual squeeze-and-

excitation (R-SE) block for classification. LRP evaluates the 

contribution of each frequency pixel to the model's decision, 

with experimental results showing superior performance 

compared to other methods. 
 

Yeh et al. [22] introduced a method for EEG-based sleep stage 

classification using the Wigner-Ville Distribution (WVD) for 

https://www.ijeer.forexjournal.co.in/
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time-frequency analysis. Particle Swarm Optimization (PSO) is 

employed to determine thresholds for wakefulness-stage N3. 

The proposed method demonstrated high accuracy, sensitivity, 

and a high kappa coefficient in identifying sleep stages in 

accordance with AASM guidelines. 
 

Heng et al. [23] presented an automatic end-to-end sleep stage 

classification approach based on EEG signal processing. This 

approach employs feature learning on critical regions of sleep 

EEG signals using a CNN and incorporates a bidirectional 

recurrent unit (Bi-GRU) to capture sleep stage transition rules. 

An attention mechanism enhances the Bi-GRU's long-term 

memory capacity and emphasizes crucial features' impact. The 

proposed method exhibits high accuracy and stability, 

outperforming competitors with a simpler structure and better 

representation when tested on the same dataset and model 

architecture. 

 

░ 3. PROPOSED METHODOLOGY  
Three publicly available datasets were utilized in the 

experiments: Sleep-EDF-20, Sleep-EDF-78, and SHHS [24-

26]. 
 

Sleep-EDF-20 consists of 39 PSG records, with one night's data 

for Subject 13 and two nights for others. The dataset includes 

Sleep Cassette (SC) and Sleep Telemetry (ST) studies on 

healthy individuals. Each PSG record comprises event markers, 

EOG, EMG for chin, and two EEG channels (Fpz-Cz and Pz-

Oz) with a sampling rate of 100 Hz. Sleep stages (W, N1, N2, 

N3, N4, REM, Movement (M), and UNKNOWN) were 

manually scored in 30-second intervals according to the 

Rechtschaffen & Kales manual. 
 

Sleep-EDF-78 expands on Sleep-EDF-20, containing 153 PSG 

records from 78 subjects, mostly with two complete nights of 

data. The structure is similar to Sleep-EDF-20. 
 

SHHS investigates sleep-disordered breathing's effects on 

cardiovascular health across multiple centers. 329 individuals, 

meeting regular sleeper criteria (e.g., AHI score < 5), were 

selected from 6,441 participants. The dataset includes the C4-

A1 channel sampled at 125 Hz. 
 

Table 3 illustrates the dataset format. 
 

░ Table 3: Data Format 
 

Dataset Array Array Shape Array Content 

Sleep-EDF Data n × 1
× 3000 

number × channel
× data 

Lables n × 1 number × channel 
SHHS Data n × 1

× 3750 

number × channel
× data 

Lables n × 1 number × channel 
 

The data sample point for SleepEDF is 3000, with a time of 100 

Hz. The expert-selected channel is 1 for the Fpz-Cz channel, 

and the total is n. When it comes to SHHS, the number of sleep 

EEG markers for each participant as determined by the expert 

is denoted by n, the selected channel is C4-A1, and the data 

sampling point is 3750. The data is sampled at 125 Hz and for 

30 seconds. 

 

3.1. Pre-processing 
The Wigner-Ville distribution (WVD), a type of time-frequency 

used for pre-processing the datasets mentioned before. The 

WVD displays the signal's energy density in the time-frequency 

domain using a time-frequency analysis. Since the Fourier 

transform (FT) theory relies on the idea of a stationary signal—

which the EEG is not—and because the EEG's frequency 

content changes with time, the TFA was created to address the 

shortcomings of the FT. To find the WVD of a time signal x(t), 

one uses the formula below: 
 

𝑊𝑉𝐷𝑥(𝑡, 𝑓) = ∫ 𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏

∞

−∞
             (1) 

 

where * characterizes the. The 𝑊𝑉𝐷𝑥(𝑡, 𝑓) is a the creation of 

x(t + τ2 )x∗(t − τ2 ) owns Hermitian symmetry in τ. 
 

The wavelet transforms further examples of Fourier-based 

TFA. Essentially, these techniques apply the Fourier transform 

to signals within a dynamic window. In most cases, the 

uncertainty principle restricts the usability of Fourier-based 

TFA.  
 

There are no limitations imposed by the uncertainty principle 

on WVD as there are on the Fourier-based TFA. Therefore, it is 

possible to concurrently attain the best time and frequency 

resolutions. When the signal length is infinite, WVD's marginal 

spectrum is equal to the power spectrum of the signal, 

preserving the frequency marginal condition. 
 

∫ 𝑊𝑉𝐷𝑥(𝑡, 𝑓)𝑑𝑡
∞

−∞
= |𝑋(𝑓)|2                                         (2) 

 

The Wigner-Ville Distribution (WVD) offers precise control 

over brainwave frequency distribution, making it ideal for 

Time-Frequency Analysis (TFA). However, its major drawback 

is cross-terms, hindering practical use. Existing approaches 

primarily filter cross-terms with low-pass window functions, 

sacrificing time-frequency resolution. Alternatively, integrating 

the original signal yields a cross-term-free marginal spectrum. 

 

3.2. Continuous Wavelet Transform (CWT) 
The Wigner-Ville Distribution (WVD) offers precise brainwave 

frequency determination but suffers from cross-terms, 

hindering practical use. Existing methods primarily filter cross-

terms with low-pass window functions, sacrificing time-

frequency resolution. Alternatively, integrating the original 

signal yields a cross-term-free marginal spectrum. Therefore, 

the original signal can be directly integrated to obtain a marginal 

spectrum that is uncontaminated by the cross-terms.: 
 

𝐶𝑎(𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜑 (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
                                     (3) 

 

In this case, φ(t) is the mother parameter, and φ(t) is the scale 

parameter. One way to transform the scale into frequency is by: 
 

𝐹 =
𝐹𝑐×𝐹𝑠

𝑎
                                                                         (4) 

https://www.ijeer.forexjournal.co.in/
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Where 𝐹𝑐  where a scale parameter, wavelet. The time-

frequency analysis is greatly impacted by the choice of mother 

wavelet, which is among all the accessible wavelets. Due to its 

smaller frequency variance compared to the mother wavelet, the 

bump wavelet has found application in EEG signal analysis. 
 

3.3. Feature Extraction using Proposed SleepXAI 

architecture 
The model consists of two main components: the sleep encoder, 

which extracts features from pre-processed EEG input using a 

time-distributed layer, and the sleep labeler, which employs 

CNNs and CRFs to correlate features with contextual 

information and generate probability scores for sleep labels. 
 

3.3.1. Sleep encoder 

The layers that make up the sleep encoder are global maxpool, 

spatial dropout, maxpool, and convolution. To get certain 

features out of the EEG signal input, the convolution layer is 

applied in pairs. The network is able to from the second layer 

after the first layer has extracted low-level ones. In order to get 

one-dimensional features, 1D-CNN uses EEG signals; different 

kernels then extract distinct EEG characteristics. This is the way 

1D-CNN expresses forward propagation: 
 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1)
𝑁𝑙−1
𝑖=1                           (5) 

 

𝑏𝑘
𝑙  is kernel bias, 𝑠𝑖

𝑙−1 is output at layer l − 1, 𝑤𝑖𝑘
𝑙−1 is the kernel 

ith layer l – 1 and the kth layer l. 
 

𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙 )                                                                      (6) 
 

where 𝑦𝑘
𝑙  as the intermediate output, and as the activation 

function, we have f (·). 
 

To reduce dimensionality and maintain prior feature maps, Max 

pooling downsamples filter-produced feature maps by selecting 

maximum values. Spatial Dropout enhances feature map 

independence by replacing strongly correlated maps with single 

sections. Global maxpooling downsamples input temporally. 

Dropout addresses overfitting by randomly deactivating 

neurons. A dense layer modifies encoded sequence dimensions 

by receiving output from the previous layer's neurons. The sleep 

encoder's main function is to encode signals, enabling the sleep 

labeler to better learn long-range dependencies. 
 

3.3.2 Sleep labeler 

There are distinct changes from one stage of sleep to another 

during the night, and the sleep labelers try to learn these changes 

in order to capture them. The sleep encoder feeds the encoded 

sequence into the sleep labeler, which uses a unified 

implementation of CNN and CRF to identify temporal and 

outputs the likelihood scoring of each sleep label. In this 

section, the CNN-CRF model and how it is integrated with the 

problem scenario that has been proposed are explained in depth. 

In addition, we offer an algorithm that details the entire 

procedure of the proposed SleepXAI method. 

 

A) CNN-CRF model integration with SleepXAI 

The prediction model takes into account the independence of 

neighboring feature vectors st−1 and st+1, and then, for each 

label yt, it uses the related input St to assign a probability. The 

conditional probability delivery for this is given by 
 

𝑝(𝑦|𝑠) = ∏ 𝑝(𝑦𝑡|𝑠𝑡) = ∏ 𝑒𝑥𝑝𝑡 (Φ(𝑠𝑡)𝑦𝑡)/𝑍(𝑆𝑡)𝑡               (7) 
 

Modeling and identifying interdependencies across sleep stages 

is possible, nevertheless, by making use of CRF qualities and 

learning the interdependencies of the chains that make up the 

input sequence.  
 

One way to describe it mathematically is like this: 
 

(𝑦|𝑆) =
1

𝑍(𝑆)
𝑒𝑥𝑝{∑ Φ(𝑆𝑡−1, 𝑠𝑡 , 𝑠𝑡+1)𝑦𝑡

+ ∑ 𝑉𝑦𝑡
𝑦𝑡+1

𝑇−1
𝑡=1

𝑇
𝑡=1 } (8) 

 

The CRF model can be implemented with the help of neural 

networks by learning or estimating a set of weights λ and then 

assigning them to feature vectors. In order to simplify the 

calculation of the partial derivative, which is provided by, the 

parameters (lambda) are estimated using maximum likelihood 

estimation applied to distribution. 
 

𝐿(𝑦, 𝑆, ) = −𝑙𝑜𝑔{∏ 𝑃(𝑦𝑘|𝑠𝑘 , 𝜆)𝑚
𝑘=1 }                                        (9) 

 

= − ∑ 𝑙𝑜𝑔𝑚
𝑘=1 [

1

𝑍(𝑠𝑚)
𝑒𝑥𝑝{∑ ∑ 𝜆𝑗Φ𝑗𝑗 (𝑆𝑚, 𝑡, 𝑦𝑡−1

𝑘 , 𝑦𝑡
𝑘)𝑇

𝑡=1 }] (10) 

 

Since we take the argmin to apply extreme likelihood to 

function. Taking the partial derivative with regard to lambda 

allows us to determine the minimum, and we obtain: 
 
𝜕𝐿(𝑦,𝑠,𝜆)

𝜕𝜆
=

−1

𝑚
∑ 𝜙𝑗(𝑦

𝑘 , 𝑠𝑘) + ∑ 𝑝(𝑦|𝑠𝑘 , 𝜆)𝜙𝑗(𝑦, 𝑠𝑘)𝑚
𝑘=1

𝑚
𝑘=1  (11) 

  

λ, an inform is given by 
 

𝜆 = 𝜆 + 𝛼[∑ 𝜙𝑗(𝑦
𝑘 , 𝑠𝑘) + ∑ 𝑝(𝑦|𝑠𝑘 , 𝜆)𝜙𝑗(𝑦, 𝑠𝑘)𝑚

𝑘=1
𝑚
𝑘=1 ] (12) 

 

The limit λ takes a little step each iteration until the values 

converges, since it is updated repeatedly using gradient descent. 

Therefore, the SleepXAI architecture concludes with a CRF 

layer. Predicting sequences using contextual information from 

a nearby sample is made possible by CRFs, which function as a 

probabilistic graph model. Thus, in the context of classifying 

sleep phases, specific stages of sleep are regarded as following 

or occurring after specific stages of sleep. Classification 

accuracy for minor examples, like N1 and N3, is significantly 

improved by CRFs' excellent learning of these transitions. 
 

3.4. Feature normalization 
To mitigate individual variability, feature normalization was 

applied independently to each feature. The process involves 

averaging the 10% lowest and highest values to determine the 

minimum and maximum. Subsequently, values are scaled 

between 0 and 1, with values exceeding 1 set to 1 and values 

below 0 set to 0. Certain features, like "0-30 E" and "22-30 E," 

are uniquely associated with specific sleep stages, enabling 

differentiation between REM and N3 and between Wake and 

N3, respectively. 

 

3.5. Classification using Long Short-Term 

Memory (LSTM) 

https://www.ijeer.forexjournal.co.in/
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Deep learning, a subset of machine learning, involves training 

neural networks with multiple hidden layers to perform 

complex nonlinear operations. Recurrent Neural Networks 

(RNNs) are particularly adept at processing sequential data, 

leveraging temporal correlations between data points to make 

predictions. Each node in an RNN represents a network layer at 

a given time, connected through weighted connections among 

input, hidden, and output layers. The weighted connections are 

denoted by matrices UUU, WWW, and VVV for hidden-

hidden, hidden-output, and input-hidden layers respectively. 

The softmax algorithm transforms the last weight matrix into a 

binary variable, Ŷ, representing predicted classes, compared to 

actual classes (Y) using a loss function. 
 

However, RNNs face the challenge of vanishing gradients, 

where gradients either decrease or grow exponentially over 

time, affecting the network's ability to learn long-term 

dependencies. Gated Recurrent Units (GRUs) and Long Short-

Term Memory (LSTM) networks are popular solutions to this 

problem. LSTM, the focus of the present study, utilizes memory 

blocks composed of interconnected subnetworks capable of 

retaining information for extended periods. Each block contains 

at least one unit with input/output gates and forget gates, 

allowing it to store and retrieve information. 
 

The study employs Python (version 3.6) with TensorFlow v1.0 

at its core and the Keras API for modeling and validation. The 

LSTM model's hyperparameters are detailed in table 4. With its 

ability to analyze the temporal connections in EEG signals, 

LSTM proves to be a suitable tool for EEG data analysis. 
 

░ Table 4. Enterprise of Hyper-parameters of LSTM 

classical 
 

Propose

d Model 

Opti

mize

r 

Bat

ch 

Size 

Loss 

Function 

Drop

out 

rate 

Lear

ning 

rate 

Activat

ion 

Functi

on 

LSTM 
PFO

A 
256 

Binary 

Cross 

entropy 

0.2 
0.000

1 

ReLu, 

Sigmoi

d 

 

Table 4 shows the LSTM design hyperparameters; using the 

PFOA optimizer, the ReLu and Sigmoid activation functions 

get a learning rate of 0.0001 and work quite well. 
 

A generative architectures distribution p (s, y) from feature 

extraction, where 𝑦 =  [𝑦1, 𝑦2, . . . , 𝑦𝑇 ]  is the output label 

vector and 𝑠 =  [𝑠1, 𝑠2, . . . , 𝑠𝑇 ] are input feature vectors. In 

sleep stages, namely, 𝑦𝑡 ∈  {𝑊,𝑁1, 𝑁2, 𝑁3, 𝑅𝐸𝑀}. 
 

3.5.1. Hyper-parameter tuning using PFOA 

The Puffer Fish Optimization Algorithm (PFOA) enhances the 

LSTM model by optimizing its hyperparameters through a 

population-based, iteration-based search procedure. Each 

member of the PFOA population represents a potential solution, 

with decision variables mapped to a vector. The population 

explores the search space to identify optimal values for 

hyperparameters, including learning rate, batch size, dropout 

rate, and activation functions. This process is mathematically 

modeled, with initial positions of PFOA members set using 

equation (13) and updated iteratively using equation (14). 
 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑑 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑥𝑖,1

⋮
𝑥𝑁,1

⋯
⋰
⋯

𝑥𝑖,𝑑 ⋯ 𝑥𝑖,𝑚

⋮ ⋱ ⋮
𝑥𝑁,𝑑 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

           (13) 

 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟. (𝑢𝑏𝑑 − 𝑙𝑏𝑑)                                                (14) 
 

Here, X is the PFOA populace matrix, 𝑋i  is the ith PFOA 

member, 𝑥i,d  is its dth dimension in the N is the sum of 

population members, m is the sum of r is a random sum in the 

intermission [0, 1], besides 𝑙𝑏d and 𝑢𝑏d singly. 
 

The objective function of the problem can be measured with 

each PFOA member as a potential solution. A vector can be 

used to represent the set of assessed morals for the problem's 

objective function in accordance with equation (15). 
 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

𝐹(
⋮

𝑋𝑖)
⋮

𝐹(𝑋𝑁)]
 
 
 
 

𝑁×1

                                             (15) 

 

In this case, the assessed objective function based on the ith 

PFOA member is denoted as Fi, and the evaluated objective 

function vector is F. 
 

In order to evaluate the merit of each PFOA member's offered 

solutions, we can use the evaluated standards of the function. 

The optimal member, or best candidate key, is represented by 

the objective function's best evaluated value, while the worst 

member, or worst candidate solution, is represented by the 

worst evaluated value. With each iteration, the PFOA members' 

positions in the space are updated. It is only fair that the best 

member, determined by comparing newly evaluated function, 

be updated as well. 
 

A) Mathematical Modelling of PFOA 

The suggested PFOA method updates the population's problem-

solving space location according to simulated natural 

interactions between pufferfish and their predators. The 

pufferfish is the initial target of the predator in this cycle. As a 

last line of defense, the pufferfish coils up into a ball of sharp 

spines, causing the predator to flinch and flee.  
 

Phase 1: Marauder Attack towards Pufferfish (Exploration 

Stage) 

The initial step of PFOA involves updating the population's 

position according to the simulated predator attack technique on 

pufferfish. A pufferfish's lack of speed makes it an easy target 

for predators. The PFOA members' sites in the space are 

updated by simulating the predator's position shift during the 

attack on the pufferfish. approach to the pufferfish causes the 

PFOA members to move about a lot, which boosts the 

algorithm's ability to search the entire ocean. 
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Each member of the population acts as a predator in PFOA 

design; the pufferfish that is most likely to attack is determined 

by where other members of the population have a higher value 

function. Equation (16) is used to identify the set of members 

of the population. 
 

𝐶𝑃𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖    𝑎𝑛𝑑 𝑘 ≠ 𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … ,𝑁 𝑎𝑛𝑑 𝑘 ∈
{1,2,… , 𝑁}                                                                                      (16) 
 

Here, 𝐶𝑃𝑖 is the set of predators, 𝑋k is the populace objective 

function ith marauder, besides 𝐹k is function worth. 
 

The PFOA project is based on the premise that the predator 

randomly chooses one pufferfish from the candidate set in the 

CP set; this pufferfish is called the selected pufferfish (SP). By 

simulating the predator's approach to the pufferfish, we can use 

equation (17) to choose a new location in space for every 

member of the PFOA. Following this, the relevant member's old 

location is replaced by the new one if the enhanced in the novel 

position, as per equation (18). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑆𝑃𝑖,𝑗 − 𝐼𝑖,𝑗 . 𝑥𝑖,𝑗)                                 (17) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1,   𝐹𝑖
𝑃1 ≤ 𝐹𝑖

𝑋𝑖 ,              𝑒𝑙𝑠𝑒
                                                         (18) 

 

Here, 𝑆𝑃𝑖  is the designated chosen arbitrarily from the 𝐶𝑃i set 

(i.e., 𝑆𝑃𝑖  is an component of the 𝐶𝑃i  set), 𝑆𝑃𝑖,𝑗  is its jth 

measurement, 𝑋𝑖
𝑃1 is the novel position calculated for projected 

PFOA, 𝑋𝑖
𝑃1  is its jth dimension, 𝐹𝑖

𝑃1  is its charge, 𝑟𝑖,𝑗  are 

accidental statistics from the intermission [0, 1], and 𝐼i,j  are 

statistics which are arbitrarily designated as 1 or 2. 
 

Phase 2: Defence Instrument of Pufferfish against 

Marauders  

In phase two of PFOA, inspired by a pufferfish's defence 

mechanism, the algorithm updates member positions to mimic 

a predator's retreat. This simulation boosts local search 

exploitation. Each member's new location is determined by 

equation (19), based on the predator's position shift. Then, 

equation (20) evaluates this new site's suitability, enhancing the 

objective function value. Equation (20) determines if the new 

position is embraced or rejected based on its impact on the 

objective function. This optimization ensures that each 

member's position aligns with improving the objective function, 

enhancing the algorithm's efficiency. 
 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗).

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
                                           (19) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2,    𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖 ,                𝑒𝑙𝑠𝑒
                                                             (20) 

 

Here, 𝑋𝑖
𝑃2 is the newfangled position intended for the ith phase 

of the proposed PFOA, 𝑥𝑖,𝑗
𝑃2 jth dimension, 𝐹𝑖

𝑃2 is its impartial 

purpose value, 𝑟𝑖,𝑗 are accidental statistics from the intermission 

[0, 1], besides t is the repetition counter. 
 

 

 

B) Computational Complexity of PFOA 

The computational complexity of the PFOA method is 

O(NmT), where N is the population size and m are the number 

of decision variables. Each iteration involves two steps, leading 

to a complexity of O(2NmT). Considering the overall 

complexity, accounting for fixed numbers, it simplifies to 

O(NmT). 

 

░ 4. RESULTS AND DISCUSSION 
Here you can find a detailed description of the experimental 

setup. In the end, the paper shows the outcomes of the 

experiments and compares our method's performance to others 

using the Sleep-EDF-20, Sleep-EDF-78, and SHHS databases. 

The accuracy besides loss of the suggested perfect on testing 

and training data are exposed in figures 1 and 2, separately. 
 

 
 

Figure 1: Loss of the projected model for training besides testing data 

 

 
Figure 2: Accuracy of the projected classical for training besides 

testing data 
 

4.1. Validation analysis of Proposed Model  
Figures 3 to 5 provides the untried investigation of projected 

model with present procedures in terms of different -EDF-20 

dataset, Sleep-EDF-78 besides SHHS databases. The existing 

techniques from related works are tested on different datasets, 

hence this research work considered three dataset and average 

results are mentioned in the tables. 
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Figure 3: Graphical Analysis of Projected perfect in terms of 

Accuracy   

 

In figure 3, the performance analysis of different metrics on the 

Sleep-EDF-20 dataset is presented. For the DMD technique 

[19], the training accuracy is 0.9951, while the precision and 

F1-score are 0.69 and 0.67, respectively. In the case of the 

CNN-LSTM technique [18], the training accuracy is 0.9504, 

with precision and recall both at 0.67, resulting in an F1-score 

of 0.65. The CBASleepNet technique [20] achieves a training 

accuracy of 0.8228, and the precision and F1-score are 0.66 and 

0.64, respectively. For the MSSENet technique [21], the 

training accuracy is 0.7045, with precision and recall at 0.59 and 

0.64, respectively, resulting in an F1-score of 0.58. In the case 

of the BiGRU technique [22], the training accuracy is 0.6992, 

with precision and recall both at 0.63, resulting in an F1-score 

of 0.60. Finally, the LSTM-PFOA technique achieves a training 

accuracy of 0.7186, with precision at 0.64, recall at 0.65, and an 

F1-score of 0.59. These metrics provide insight into the 

performance of each technique on the Sleep-EDF-20 dataset. 

 

 
 

Figure 4: Visual Representation of Projected Perfect for Sleep-EDF-

78 
 

Figure 4 illustrates the Validation Analysis of various 

techniques on the Sleep-EDF-78 dataset. The DMD technique 

shows a training accuracy of 0.8594 and testing accuracy of 

0.81, with precision, recall, and F1-score at 0.83, 0.82, and 0.81 

respectively. CNN-LSTM achieves a training accuracy of 

0.9825 and testing accuracy of 0.83, with precision, recall, and 

F1-score at 0.83, 0.81, and 0.81 respectively. CBASleepNet 

records a training accuracy of 0.9396, with precision, recall, and 

F1-score at 0.82, 0.83, and 0.83 respectively. MSSENet and 

BiGRU both demonstrate training accuracies of 0.8515 and 

0.9043 respectively, with testing accuracies at 0.81. LSTM-

PFOA attains a training accuracy of 0.8949 and testing accuracy 

of 0.82, with precision, recall, and F1-score at 0.83, 0.82, and 

0.82 respectively, offering a comprehensive comparison of 

techniques. 

 

 
 

Figure 5: Visual Representation of projected model with existing 

practices for SHHS dataset 
 

Figure 5 displays the Validation Investigation of various 

techniques on the SHHS dataset. DMD shows a training 

accuracy of 0.9476 and testing accuracy of 0.83, with precision, 

recall, and F1-score at 0.83, 0.82, and 0.81 respectively. CNN-

LSTM achieves training accuracy of 0.9670 and testing 

accuracy of 0.89, with precision, recall, and F1-score at 0.87, 

0.86, and 0.86 respectively. CBASleepNet records a training 

accuracy of 1.0000 and testing accuracy of 0.86, with precision, 

recall, and F1-score at 0.89, 0.89, and 0.89 respectively. 

MSSENet and BiGRU both demonstrate training accuracies of 

0.9696 and 0.9997 respectively, with testing accuracies at 0.87 

and 0.85. LSTM-PFOA attains a training accuracy of 0.8325 

and testing accuracy of 0.80, with precision, recall, and F1-

score at 0.90, 0.92, and 0.91 respectively, offering insights into 

each technique's performance on the SHHS dataset. 
 

We can see the optimised batch formation option in table 5. As 

the batch size is decreased, the test recall performance is seen 

to decline. Because it achieves the highest possible test recall, 

the suggested work's batch size of 128 is ideal. 
 

░ Table 5: Optimization in assortment of batch creation 
 

Batch Size Test Recall 

512 96.17 

256 98.83 

128 99.08 

64 93.37 

32 91.99 

 

Table 5 depicts the optimization in the assortment of batch 

creation. For a batch size of 512, the recall is 96.17%. 

Decreasing the batch size to 256 increases the recall to 98.83%. 

Further reducing the batch size to 128 results in a recall of 

99.08%. However, when the batch size is decreased to 64, the 
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recall decreases to 93.37%. Lastly, with a batch size of 32, the 

recall is 91.99%. These findings highlight the impact of batch 

size on the model's performance, indicating higher recall values 

with smaller batch sizes up to a certain threshold, beyond which 

there is a decline in performance. 

 

░ 5. CONCLUSION 
In this study, we introduced SleepXAI, a Convolutional Neural 

Network-Conditional Random Field (CNN-CRF) technique, for 

automatic multi-class sleep stage classification. By leveraging 

Long Short-Term Memory (LSTM) networks and optimizing 

signal quality through Continuous Wavelet Transform (CWT), 

we enhanced classification accuracy and ensured explainability. 

The Puffer Fish Optimization Algorithm (PFOA) significantly 

contributed to hyperparameter tuning, balancing exploration 

and exploitation to achieve optimal model performance. 

Evaluation on the Sleep-EDF-20, Sleep-EDF-78, and SHHS 

datasets demonstrated promising results, with accuracies 

ranging from 85% to 89%. Our approach successfully 

categorized sleep stages, providing a reliable method for 

autonomous sleep monitoring and facilitating comprehensive 

health assessments. Future research will focus on addressing 

classification accuracy for the N1 sleep stage and exploring 

methods to enhance model efficiency and conciseness. Overall, 

SleepXAI represents a significant advancement in sleep stage 

classification, combining state-of-the-art techniques to deliver 

high accuracy and explainability in sleep health monitoring. 
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