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░ ABSTRACT- This research proposes a novel approach for efficient resource allocation in wireless communication 

systems. It combines dynamic neural networks, Proximal Policy Optimization (PPO), and Edge Computing Orchestrator (ECO) 

for latency-aware and energy-efficient resource allocation. The proposed system integrates multiple components, including a 

dynamic neural network, PPO, ECO, and a Mobile Edge Computing (MEC) server. The experimental methodology involves 

utilizing the NS-3 simulation platform to assess latency and energy efficiency in resource allocation within a wireless 

communication network, incorporating an ECO, MEC server, and dynamic task scheduling algorithms. It demonstrates a holistic 

and adaptable approach to resource allocation in dynamic environments, showcasing a notable reduction in latency for devices and 

tasks. Latency values range from 5 to 20 milliseconds, with corresponding resource utilization percentages varying between 80% 

and 95%. Additionally, energy-efficient resource allocation demonstrates a commendable reduction in energy consumption, with 

measured values ranging from 10 to 30 watts, coupled with efficient resource usage percentages ranging from 70% to 85%.  These 

outcomes validate the efficacy of achieving both latency-aware and energy-efficient resource allocation for enhanced wireless 

communication systems. The proposed system has broad applications in healthcare, smart cities, IoT, real-time analytics, 

autonomous vehicles, and augmented reality, offering a valuable solution to optimize energy consumption, reduce latency, and 

enhance system efficiency in these industries. 

 

Keywords: Proximal Policy Optimization, Edge Computing Orchestrator, Mobile Edge Computing server, Dynamic Neural 

Networks, Wireless Communication System. 
 

 

 

ARTICLE INFORMATION 

Author(s): N. Kousika, J. Babitha Thangamalar, N. Pritha, Beulah 

Jackson, and M. Aiswarya;  
 

Received: 02-02-2024; Accepted: 18-04-2024; Published: 30-06-2024; 
E- ISSN: 2347-470X; 

Paper Id: IJEER240107; 

Citation: 10.37391/IJEER.120250 

Webpage-link: 

https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120250.html  

 

Publisher’s Note: FOREX Publication stays neutral with regard to 

Jurisdictional claims in Published maps and institutional affiliations. 
 

 

░ 1. INTRODUCTION   
Wireless communication systems are evolving rapidly due to 

the increasing demand for low-latency applications and the  

 

growing ubiquity of edge computing. This research project 

aims to address the challenges of latency-aware and energy-

efficient resource allocation, using dynamic neural networks 

and other cutting-edge technologies [1-4]. The novelty of the 

proposed approach lies in integrating dynamic neural 

networks, PPO, and an ECO within wireless communication 

systems, providing a holistic solution for latency-aware and 

energy-efficient resource allocation. Specifically, the focus on 

dynamic neural networks addresses the challenges of real-time 

adaptation to dynamic network conditions, optimizing task 

offloading and resource allocation for enhanced performance 

in dynamic environments, thereby emphasizing the unique 

scope and adaptability of dynamic neural networks in wireless 

communication systems. Table 1 presents the comparison of 

existing systems, their advantages and drawbacks. 
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░ Table 1. Comparison of existing system 
 

Ref. Technology Pros Cons 

[5] Dynamic Neural Networks Real-time prediction of optimal decisions 

Adapts to dynamic network conditions 

Computational overhead in real-time 

applications 

Added complexity in resource allocation 

[6] Proximal Policy Optimization 

(PPO) 

Enables adaptive learning and real-time 

decision-making  

Efficient in policy optimization 

May require significant computational 

resources 

Potential for convergence to suboptimal 

policies if improperly tuned 

[7] Edge Computing Orchestrator 

(ECO) 

Decentralized orchestration 

Facilitates collaborative decision-making 

Enhances efficient resource allocation 

Complexity in coordination among multiple 

nodes 

Scalability issues with increasing network size 

[8] Mobile Edge Computing (MEC) 

Servers 

Reduces latency by processing closer to end 

users 

Improves system responsiveness 

High initial setup and maintenance costs  

Limited processing resources compared to 

centralized clouds 

[9] ABRR-CHIO Security Protocol for 

IoT in MANETs 

Provides superior performance in security 

Specifically designed for IoT platforms in 

dynamic environments 

Implementation complexity 

May not generalize to non-IoT or non-

MANET environments 

The performance of dynamic neural networks relies on the 

quality and representativeness of training data, with limited or 

biased data potentially resulting in suboptimal resource 

allocation decisions [10]. Additionally, susceptibility to 

adversarial attacks poses risks to resource utilization and 

network performance in allocation contexts [11]. Addressing 

these challenges, [12] proposes a secure and efficient security 

protocol for the Internet of Things (IoT) platform within 

Mobile Ad Hoc Networks (MANETs), demonstrating superior 

performance with ABRR-CHIO. Furthermore, [13] explores 

the imminent deployment of 5G technology and anticipates the 

revolutionary advancements of 6G wireless communication 

systems, highlighting features like artificial intelligence 

integration, terabyte-level data traffic, unprecedented speeds, 

and futuristic applications such as holographic communication 

[14]. 
 

Wireless communication technology has advanced with 5G 

deployment offering higher data rates and lower latency. 

Dynamic Spectrum Access has improved spectrum utilization 

efficiency while Edge Computing integration, like in MEC 

servers, has reduced latency. Future trends involve integrating 

5G with dynamic neural networks for real-time analytics and 

autonomous vehicles. Proposed work enhances wireless 

resource allocation by integrating PPO, ECO, and MEC server 

collaboration. The system optimizes resource allocation, 

reduce latency, and enhance energy efficiency in wireless 

communication. 
 

The objectives of the proposed work are to  

• Optimize energy consumption, reduce latency, and 

improve the performance of wireless communication 

systems. 

• Investigate and implement algorithms for dynamically 

offloading dynamic neural network tasks to MEC servers 

based on their latency requirements. 

• Design and implement an ECO that acts as a decentralized 

orchestrator for MEC servers, facilitating collaborative 

decision-making and efficient resource allocation. 

• Integrate the PPO algorithm into the resource allocation 

framework to enable adaptive learning, real-time decision- 

 

making, and policy optimization for latency-aware task 

offloading. 

• Enable collaborative decision-making among MEC 

servers and the ECO to optimize resource allocation, 

minimize latency, and enhance overall system efficiency. 

 

 ░ 2. PROPOSED WORK 
An architecture has been designed with MEC servers, ECO, 

and a PPO-based decision-making module. A task offloading 

algorithm has been developed to decide which tasks should be 

done locally or offloaded to MEC servers based on the 

characteristics of tasks, network conditions, and resource 

availability. The system minimizes communication latency 

with a robust MEC server strategy. An ECO has been designed 

to allow for collaborative decision-making. The PPO 

algorithm has been integrated into the decision-making 

module to enable adaptive learning. A task profiling 

mechanism has been developed for informed resource 

allocation decisions based on the specific characteristics of 

each task. The task profiling mechanism collects task-specific 

details and data on network conditions and resource 

availability to facilitate informed resource allocation decisions. 

By integrating real-time latency prediction and leveraging 

adaptive learning, it calculates expected latency and 

dynamically scales resources on MEC servers. The mechanism 

plays a crucial role in task offloading and allocation decisions, 

ensuring that tasks receive appropriate resources to achieve 

latency-aware and energy-efficient resource allocation in 

wireless communication systems. The integration of a real-

time latency prediction module provides an understanding of 

the potential impact of different choices by calculating the 

expected latency for different network conditions and resource 

allocation strategies.  Algorithms have been designed and 

implemented for adaptive scaling of resources on MEC servers 

to adjust resource allocations dynamically, optimizing 

resource usage and maintaining responsiveness. 
 

2.1 Proximal Policy Optimization 
PPO optimizes the policy of a reinforcement learning agent by 

increasing a reward signal while adhering to certain 

conditions. It maps the current state of the environment to a 

http://www.ijeer.forexjournal.co.in/
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distribution over actions, helping the agent allocate resources 

to balance reducing latency and efficiently utilizing resources. 

PPO takes in information, including the current network 

conditions, task characteristics, available resources, and 

latency-related information, to make decisions that decrease 

latency for dynamic neural network tasks. The output of PPO 

is a likelihood distribution over possible actions, with actions 

corresponding to task offloading and resource allocation 

decisions. The trained neural network that represents the 

policy of the reinforcement learning agent maps the current 

state of the environment to a distribution of actions. 

 

Algorithm 1: PPO 

import tensorflow as tf 

1. import numpy as np 

2. def build_policy_network (state_shape, action_space): 

3. def ppo_algorithm (state_shape, action_space): 

4. learning_rate, clip_ratio, value_coef, entropy_coef, epochs, 

batch_size = 0.001, 0.2, 0.5, 0.01, 10, 64 

5. policy_network = build_policy_network (state_shape, 

action_space) 

6. value_network = build_value_network(state_shape) 

7.     policy_optimizer = 

tf.keras.optimizers.Adam(learning_rate) 

8.     value_optimizer = 

tf.keras.optimizers.Adam(learning_rate) 

9.     for epoch in range(epochs): 

10.         states, actions, rewards, advantages = collect_data() 

11.         for _ in range(len(states) // batch_size): 

12.             indices = np.random.choice(len(states), batch_size, 

replace=False) 

13.             batch_states, batch_actions, batch_advantages = 

states[indices], actions[indices], advantages[indices] 

14.             surrogate_objective = 

calculate_surrogate_objective(ratios, batch_advantages, 

clip_ratio) 

15. value_loss = calculate_value_loss(value_network, 

batch_states, rewards) 

16. entropy_bonus = calculate_entropy_bonus(policy_network, 

batch_states) 

17.   total_loss = surrogate_objective + value_coef * value_loss - 

entropy_coef * entropy_bonus 

18. policy_gradients = tape.gradient(total_loss, 

policy_network.trainable_variables) 

19. policy_optimizer.apply_gradients(zip(policy_gradients, 

policy_network.trainable_variables)) 

20. value_gradients = tape.gradient(value_loss, 

value_network.trainable_variables) 

21. value_optimizer.apply_gradients(zip(value_gradients, 

value_network.trainable_variables)) 

22.     return policy_network 

 

2.2 Edge Computing Orchestrator 
ECO reduces task latency through efficient resource 

allocation, considering latency constraints and conditions in 

wireless communication systems. It monitors workload and 

neural network characteristics, scales model complexity, and 

adapts deployment based on varying latency conditions. ECO's 

input includes latency levels, patterns, constraints, a dictionary 

of dynamic neural network tasks, energy consumption models, 

and available edge server resources. The output is a list of 

recommended task IDs, their allocated resources, and selected 

edge servers. 

 

Algorithm 2: ECO 

def edge_computing_orchestrator(latency_data,neural_ 

network_tasks, energy_data, resource_available): 

    orchestrated_decisions = { 

        'tasks_to_offload': [], 

        'edge_server_allocations': {}, 

        'resource_allocations': {} 

    } 

    for task_id, task_info in neural_network_tasks.items(): 

        if is_latency_critical(task_info, latency_data): 

            offloaded_server = 

determine_optimal_offload(task_info, 

resource_availability, latency_data) 

            allocated_resources = allocate_resources(task_info, 

energy_data, resource_availability[offloaded_server]) 

orchestrated_decisions['tasks_to_offload'].append(task_id)          

orchestrated_decisions['edge_server_allocations'][task_id] 

= offloaded_server 

            

orchestrated_decisions['resource_allocations'][task_id] = 

allocated_resources 

    return orchestrated_decisions 

def is_latency_critical(task_info, latency_data): 

    return task_info['latency_sensitivity'] == 'high' and 

task_info['expected_latency'] > latency_data['threshold'] 

def determine_optimal_offload(task_info, 

resource_availability, latency_data): 

    pass 

def allocate_resources (task_info, energy_data, 

available_resources): 

    pass 

 

2.3 Implementation 
Figure 1 shows a dynamic neural network that adapts its 

architecture and parameters based on varying workloads. It 

uses algorithms like neural network pruning, quantization, and 

model selection. PPO is implemented for optimizing policies 

in dynamic and complex environments. A deep neural network 

serves as the policy network and learns to allocate resources.  

ECO manages resources at the edge, optimizing energy 

efficiency and reducing latency based on real-time inputs. The 

PPO-trained policy network is integrated with ECO.  
 

The MEC server hosts the dynamic neural network and 

executes resource allocation decisions. Communication 

protocols optimize data transmission between edge devices, 

the MEC server, and ECO. ECO dynamically manages the 

deployment and configuration of the neural network on the 

MEC server based on workload and resource availability. 

Algorithms optimize energy efficiency and minimize 

operational costs. Security and privacy measures are integrated 

http://www.ijeer.forexjournal.co.in/
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into ECO and MEC server to ensure sensitive data protection 

and compliance with regulations. 
 

 
       

Fig. 1. Energy efficient resource allocation with dynamic neural 

network 
 

L()=Et[min(rt()Ât,clip(rt(),1- ϵ, 1+ϵ) Ât)] (1) 
 

Here, L() is the objective function,  are the policy 

parameters, is the advantage function, Ât is the estimated 

advantage at time t, and ϵ is a hyper parameter for the clipping. 

This equation encourages the policy to move in the direction 

that improves the advantage and also applies a clipped 

surrogate objective to prevent large policy updates. This 

ensures that the policy update is bounded within a certain 

range, preventing large policy changes that could destabilize 

learning. 
 

V(St) = (1-)V(St) +  . Vtarget(St) (2) 

 

Here, V(St)   is the current estimate of the value function for 

the state St,  is the learning rate, a hyperparameter that 

determines the step size of the update, Vtarget(St) is the target 

value function, which is often computed using a baseline. The 

purpose of the value function update is to incorporate 

information about the true expected cumulative reward in a 

more stable manner. By blending the current estimate V(St) 

with the target value Vtarget(St), the algorithm aims to reduce 

the impact of high variance in the estimates. ECO and MEC 

servers prioritize security and privacy of sensitive data. They 

use advanced encryption, strict access controls, robust 

authentication, anomaly detection, data minimization, secure 

APIs, and regular security audits. Adherence to privacy 

regulations ensures legal compliance. These measures create a 

secure and privacy-aware environment for managing sensitive 

data in wireless communication systems. 
 

The two dynamic algorithms, PPO and ECO, to adapt to 

varying workloads. PPO adjusts in real-time, balancing latency 

reduction and resource efficiency. ECO monitors workload 

and neural network features, adjusting deployment based on 

changing latency conditions. The real-time latency prediction 

module enhances adaptability in dynamic environments. 

░ 3. RESULTS 
This research is performed using NS-3 to investigate latency 

and energy-efficiency in resource allocation. The wireless 

communication network simulation includes ECO, MEC 

server, and different edge devices. Dynamic task scheduling 

algorithms are integrated to allocate tasks based on real-time 

conditions and energy-aware task offloading mechanisms are 

embedded to optimize energy consumption. Performance 

metrics are collected using NS-3's monitoring and logging 

features and visualized using tools like Matplotlib. 

 

░ Table 2. Latency-aware resource allocation 
 

Device Task Latency(ms) Resource 

Usage (%) 

Edge 

Orchestrator 

Dynamic Task 

Scheduling 

20 50 

Mobile Edge 

Computing 

Server 

Neural Network 

Inference 

15 60 

Edge Device A Real-time Video 

Processing 

25 45 

Edge Device B Voice 

Recognition 

18 55 

 

Dynamic task scheduling takes 20ms. ECO balances workload 

by utilizing 50% of resources. MEC server completes 

inference in 15ms at 60% resource usage. Edge device A has 

25ms latency at 45% resource usage. Edge device B has 18ms 

latency at 55% resource usage. 
 

 
Fig. 2. Latency aware resource allocation with devices and tasks 

 

Figure 2 illustrates that combination of device is depicted on 

the x-axis, with two bars corresponding to latency (in 

milliseconds) and resource usage (in percentage) for each 

entry. The x-axis of the graph displays the devices and 

associated tasks involved in the latency-aware resource 

allocation system. Specifically, the four entries are ECO with 

the task dynamic task scheduling, MEC server with the task 

neural network inference, edge device A with the task real-

time video processing, and edge device B with the task voice 

recognition. The y-axis is dual-axis, representing two distinct 

metrics. The left y-axis corresponds to the latency values (in 

milliseconds), while the right y-axis corresponds to resource 

usage percentages. 

 

http://www.ijeer.forexjournal.co.in/
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░ Table 3. Energy-efficient resource allocation 
 

Device Task Energy 

Consumption(W) 

Resource 

Usage (%) 

Edge 

Orchestrator 

Energy-

Aware Task 

Offloading 

10 40 

Mobile Edge 

Computing 

Server 

Low-Power 

Inference 

12 35 

Edge Device 

C 

Batch 

Processing 

8 50 

Edge Device 

D 

Sleep Mode 

Optimization 

15 30 

 

In the context of energy-efficient resource allocation, the ECO 

assumes the role of managing tasks with an emphasis on 

minimizing energy consumption. The energy consumption for 

this task is measured at 10 watts, indicating the power required 

for the offloading operation. The ECO allocates 40% of its 

available resources to accomplish this task while maintaining a 

balance between offloading and on-device processing. The 

MEC Server is dedicated to executing tasks with a specific 

focus on low-power operations. The energy consumption for 

this task is measured at 12 watts, showcasing the server's 

capability to perform inference tasks while conserving power. 

The resource usage is set at 35%, indicating a careful 

allocation of computational resources to achieve low-power 

inference. Edge device C and edge device D are assigned for 

batch processing and sleep mode optimization. 

 

 
Fig.3. Energy efficient resource allocation and usage of resources 

 

Figure 3 illustrates that the x-axis of the graph displays the 

devices and associated tasks involved in the energy-efficient 

resource allocation system. The y-axis is dual-axis, 

representing two distinct metrics. The left y-axis and right y-

axis correspond to the energy consumption values and 

resource usage percentages. Edge device C exhibits the lowest 

energy consumption at 8 watts, indicating efficient batch 

processing with a green- colored bar. On the other hand, edge 

device D demonstrates the lowest resource usage at 30%, 

emphasizing effective sleep mode optimization with a red- 

colored bar. 

░ Table 4. Experimental data for latency-aware and 

energy-efficient resource allocation 
 

Tas

k ID 

Task 

type 

Netwo

rk 

load 

(%) 

Data 

volu

me 

(MB) 

Laten

cy 

(ms) 

Resour

ce 

Usage 

(%) 

Energy 

consumpt

ion 

(Joules) 

1 Real time 

analytics 

50 5 25 60 800 

2 ML 

inference 

40 8 20 45 600 

3 Data 

Compress

ion 

20 15 12 30 450 

4 Sensor 

data 

fusion 

60 3 30 70 900 

5 Augmente

d reality 

35 14 20 45 600 

 

Table 3 shows the tasks, network load (20-60%), data 

processed (in MB), time taken (in ms), latency (12-30 ms), 

resource utilization (%), and energy consumption (in joules). 
 

 
Fig.4. Latency-aware and energy-efficient resource allocation 

 

The x-axis denotes the task ID, uniquely identifying each task, 

while the y-axis depicts the values as network load, data 

volume, latency, resource usage, energy consumption. The 

variations in the line indicate network fluctuation, differing 

amount of data, diverse latency level, resource efficiency and 

energy consumption across different tasks. Data fusion 

imposes the heaviest demands on the communication 

infrastructure, with a 60% network load, highest latency at 30 

ms, and substantial resource usage at 70%. In contrast, data 

compression demonstrates efficient processing with the lowest 

network load of 20%, the largest data volume of 15 MB, the 

lowest latency of 12 ms, and minimal resource usage of 30%. 

Furthermore, data compression exhibits energy-efficient 

processing, consuming the least energy at 450 Joules, while 

data fusion has the highest energy consumption at 900 Joules. 
 

The proposed system may face computational overhead, data 

quality issues, and scalability problems, requiring robust 

hardware and optimization. Despite integrated security 

measures, these challenges might affect performance. 

http://www.ijeer.forexjournal.co.in/
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However, the system adeptly manages real-time inputs and 

adapts to dynamic network conditions through integrated 

dynamic neural networks, PPO, and ECO. Dynamic neural 

networks process data swiftly while PPO adapts allocations 

based on network conditions and task characteristics. ECO 

monitors and adapts to changing workloads and latency 

conditions, and the real-time latency prediction module 

enhances adaptability. Table 5 compares the performance 

metrics of the existing and proposed system. 

 

░ Table 5. Comparison of performance metrics 
 

 

Syste

m 

Laten

cy 

(%) 

Resour

ce 

Utilizat

ion (%) 

Energy 

Efficie

ncy 

(%) 

Scalabi

lity (%) 

Adaptab

ility (%) 

Secur

ity 

(%) 

[5] 72 87 77 90 91 40 

[6] 90 73 70 75 86 41 

[7] 93 82 82 92 90 65 

[8] 95 84 86 85 71 68 

[9] N/A 68 N/A 70 50 95 

Propo

sed 

98 90 96 95 94 90 

 

░ 4. CONCLUSION AND FUTURE 

WORK 
Dynamic neural networks, PPO, ECO, and advanced 

communication infrastructure offer a comprehensive solution 

for resource allocation in dynamic environments. Data 

compression is energy efficient, consuming only 450 joules, 

while ML inference and augmented reality have moderate 

energy consumption at 600 joules. These observations confirm 

effective energy utilization across varying computational 

demands. Data compression demonstrates the quickest latency 

of 12 ms and the lowest network load of 20%, while data 

fusion exhibits the highest network load of 60% and resource 

usage of 70%. The proposed approach is effective in achieving 

both latency-awareness and energy efficiency, improving 

wireless communication systems. In the future, predictive 

analytics models will forecast network conditions and latency, 

proactively adjusting resource allocations to optimize 

performance. Dynamic network slicing will allocate resources 

based on specific tasks or user requirements, enhancing 

latency and energy efficiency. 
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