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░ ABSTRACT- The conventional weighted least square (WLS) method is the most effective technique used in the state 

estimation of high voltage transmission system. Unfortunately, the application of WLS in radial distribution network encounter 

difficulties due to the inherent characteristics of these systems, such as the low measurement redundancy and high r/x ratio of the 

distribution systems. Given the structure of bulky systems that require a bulky number of measurements, the use of artificial neural 

networks is considered an effective alternative to estimate these values using a lesser number of measurements than conventional 

techniques. Due to state estimation based on ANN technique, the time-consuming gain matrix manipulation and pseudo 

measurements required in the conventional WLS method are no longer necessary. The efficiency of deep learning neural networks 

such as multi-layer perceptron (MLP) and Legendre neural network (LeNN) depends on the position of the measurements and the 

number of neural networks applied. Determining the applicable number of neural networks to ensure high estimation accuracy plays 

an important role in the estimation process. This aspect is addressed in this study, where multiple neural networks are used to 

improve performance compared to a single neural network. The results obtained indicate that determining the applicable number of 

neural networks depends on several factors such as the position of the measurements and the diversity of the data. The application 

of LeNN on state estimation of a 69-bus radial distribution network is used as an illustrative example to explain the distinctive 

feature of the proposed technique. 
 

Keywords: State estimation, radial distribution system, multi-layer perceptron (MLP), Legendre neural network (LeNN), 

multiple neural networks. 

 

 

 

░ 1. INTRODUCTION   
Prediction of the distribution system states is vital for the real-

time operation and control of modern distribution automation. 

State estimation is the basic tool for performing this task. Given 

a set of redundant and real but imperfect measurement, the 

power system state estimator gives the best estimate of the state 

variables (bus voltage magnitudes and angles) based on a 

selected statistical criterion. There are effective conventional 

methods like weighted least square WLS and weighted least 

absolute value estimator WLAV [1], [2]. These methods work 

well for estimating the states of transmission networks. There 

are limitations when applying these techniques in the state 

estimation of radial distribution systems [3]. The radial 

distribution networks have numerous nodes and laterals. It is 

impractical to collect data from all the nodes of the network, 

instead several meters are collecting the data at the substation 

(main source). Some meters are placed on critical point in the 

network. Most measurements are pseudo measurements and 

also virtual measurements. The main challenge these systems 

face is the difficulty in monitoring every part of the network due 

to its enormous size and many feeders. This renders parts of the 

distribution system unobservable. Several attempts have been 

carried out to improve the performance of the conventional 

WLS to efficiently solve the radial distribution system state 

estimation. An improvement to the state estimation of 

distribution system was suggested in Ref. [4] by using a current-

based formulation. The burden of computation is reduced in a 

current-based state estimation because of the constancy of gain 

matrix which is derived from the bus admittance matrix. Lin and 

Teng [5] presented a decoupled version of the current-based 

state estimation. Some researchers solved the state estimation 

problem in radial distribution system by using a branch-based 

WLS state estimation [6-8]. The estimation is performed on a 

single branch of the network at a time. The estimation of states 

of the complete network is obtained by using a 

forward/backward sweep scheme. Haughton and Heydt [9] 

introduced a linear state estimator for smart distribution systems 

based on the linearization of the measurement function. In Ref 

[10] a state estimation algorithm was proposed to best estimate 

the states of a power distribution feeder based on the power 

summation load flow. The feeder was reduced to a series of a 

small equivalent two node sections and the estimation process 

stat sequentially from the source section to the load. Jose et al. 

[11] proposed an improvement to the distribution system state 

estimation by using synthetic measurements. An algorithm for 

a state estimation in active distribution network based on using 
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symmetrical component domain was introduced in Ref. [12]. 

Naka et al. [13] addressed this problem as an optimization 

problem by using artificial intelligence techniques (hybrid 

particle swarm). The objective function to be minimized is the 

square of the errors between the measured and true quantities. 
 

In all the forementioned literature, the accuracy of the 

estimation process is mainly dependent on the weights assigned 

to the pseudo measurements. These pseudo measurement values 

are generated from historical data or from normalized daily load 

profile. The inaccuracy of the generated pseudo measurement 

samples deteriorates the performance of the estimation process. 

Additionally, the forementioned approaches do not completely 

solve other issues arise when using conventional WLS method 

like the ill-conditioning of the Gain Matrix [14]. In this context, 

state estimation based on ANN can alleviate these limitations. 

Artificial neural networks have been used in well-known 

literature [15] to model spurious measurements. In Ref. [16], 

ANN was employed to clean up bad data to increase the 

accuracy of system state estimation. A different study [17] 

estimated the state of the system by utilizing machine learning 

to estimate unobserved components. Furthermore, some studies 

have estimated states using original components, as reported in 

[18]. In a comparable manner, a recent study [19] determined 

the measurements accessible to the system by using fully 

connected feed-forward artificial neural networks. As expressed 

in [20], neural networks have been used in studies to forecast 

the system state as opposed to estimating it. Some studies have 

demonstrated that neural networks can be thought of as fully 

connected linear equations [21-23]. In Ref [21], the neural 

network optimization technique was employed by removing the 

weights that were least responsive to back propagation based on 

using the neural network pruning concept. Pao and Philips [24] 

introduced a different type of neural network called functional 

link artificial neural network (FLANN) to overcome real-life 

challenges in determining the number of hidden layers and the 

number of nodes for each layer. FLANN offers several 

advantages, including a simpler structure and lower 

computational complexity due to having fewer parameters 

compared to traditional neural network models. Mall and 

Chakraverty [25] explored the application of a new structure of 

ANN called Legendre neural network (LeNN) which is based 

on FLANN. LeNN does not have a hidden layer. It is worthy to 

note that all the previous literature estimates the magnitude of 

the bus voltage, the voltage angle is not considered. 
 

The contribution of this paper is the building of a machine 

learning architecture that effectively tackles the problem of 

state estimation in radial distribution systems. The proposed 

technique is based on using multiple Legendre neural networks. 

To the best of our knowledge, this technique has not yet been 

documented in the literature. The estimation process is achieved 

accurately with a low number of measurements and without 

using pseudo or virtual measurements. 
 

In this paper, the following aspects of using artificial neural 

networks are explored: 
 

1. Evaluation of the performance of the Legendre Neural 

Network (LeNN) in comparison with multi-layer perceptron 

(MLPs) and traditional techniques such as WLS in estimating a 

radial distribution system's state (bus voltage magnitude and 

angle). 

2. Assessment of the effect of using multiple neural networks in 

place of a single neural network.  

3. discussing the impact on the accuracy of the results of 

splitting the various neural networks needed for voltage and 

angle calculation.  
 

The remaining paper is structured as follows. Section 2 presents 

a quick review of the basic principle. Implementation of the 

ANN model is described in section 3. Section 4 explores the 

results obtained by applying the ANN model to the 69-bus 

radial distribution system. Conclusion remarks are given in 

section 5. 

 

░ 2. REVIEW OF THE BASIC PRINCIPLE 

In this paper, a set of three meters are placed in selected 

locations of the distribution networks to collect the real 

measurements of active and reactive power and the current. To 

training the ANN, the network is divided into several parts, each 

ANN is trained separately. The rules of placing the meters and 

the selection of the ANN are adopted as per Ref. [26]. A review 

of the basic principle is revisited in this paper. Figure 1 shows 

a simple radial distribution network where Za and Zb represent 

the impedance of the main supply part, and Ia and Ib are the 

current in each busbar. In this simple system, measurements are 

used at point (C) of both real and imaginary power flow and the 

current passing through the feeder has a triple measurement. 

 

Figure 1. A simple radial distribution network 
 

To illustrate the use of a triple measurement (P, Q, I), let us 

assume Iload = Ia, Ib = 0, the real (P) and imaginary (Q) power 

at the load point (a) by adding the complex power losses at Za, 

then I = Iload .On the other hand, if Ib = Iload and Ia = 0, also the 

real (P) and imaginary (Q) power  at the load point (b) by adding 

the complex power losses at Za and Zb, then I = Iload. But if Iload 

= Ia+Ib, the real (P) and imaginary (Q) power at the load point 

(a, b) by adding the complex power losses in Za and Zb, then the 

current I = Iload. 

 

Based on the effective use of triple measurements (P, Q, I) as a 

tool to understand and improve the performance of radial 

distribution networks, we can choose a suitable structure and 

location of measurement. The following principles [26] are 

adopted in determining the structure and locations of meters. 
 

• It is preferable to take triple measurements at the beginning 

of the main feeder, where that these points contain the total 

network load, which shows the feeder’s performance 

accurately and comprehensively. 

https://www.ijeer.forexjournal.co.in/
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• the locations for triple measurements can also be identified 

at the beginning of each major lateral, as these 

measurements contribute to monitoring the load at the level 

of the laterals and identifying any potential problem in 

these areas. 

• if there are short, close laterals, it is better to take triple 

measurements from the feeder equipped for those laterals 

instead of each small lateral, to reduce the number of 

measurements used. 
 

Using these rules, it is possible to determine the optimal 

location for the triple measurement (P, Q, I) in radial 

distribution networks, providing comprehensive and realistic 

data that helps in analysing and evaluating network 

performance and reducing the number of measurements and 

maintenance costs. 

 

░ 3. IMPLEMENTATION OF THE NEURAL 

NETWORKS MODEL 
3.1 multi-layer perceptron (MLP) 
Multi-layer perceptions (MLPs) have been used in previous 

studies to improve their performance in predicting the states of 

radial distributed systems. A MLP containing one hidden layer 

with a fixed number of neurons was used, which is 

characterized by full connectivity between all input, hidden, and 

output layers as shown in figure 2, referred to in Reference [2], 

[15-23]. 
 

 

Figure 2. Multi-layer perceptions (MLPs) 
 

An optimization algorithm represented by the “Adaptive 

Moment Algorithm” (Adam) [27] was used in the process of 

training the multi-layer perceptions (MLPs), using TensorFlow, 

NumPy and PyTorch etc. frameworks to build the multi-layer 

perceptron (MLP). The Python programming language was 

used to implement this process. The effective functions of the 

hidden layer and output layer are given respectively in the 

indicated equations (1) and (2).  
 

 y = sigmoid(x)                                                                    (1) 
 

 y = x                                                                                     (2) 
 

In the above equations, (𝒙)  and (𝒚)  represent the input and 

output respectively, where a sigmoid function was used for the 

hidden layer and a linear function for the output layer. 

3.2 Legendre neural network (LeNN) 
Legendre neural networks (LeNNs) consist of only an input 

layer and an output layer, without a hidden layer in between, 

which reduces the need to specify the number of neurons. In 

LeNN the hidden layer is replaced by a functional expansion 

block for enhancement of the input patterns using Legendre 

poly-nominals [25] that each input datum is expanded to several 

terms using Legendre polynomial. Where a Legendre 

polynomial based functional link Artificial neural network 

(FLANN). The zero and first order Legendre polynomial are 

represented in Equations (3) and (4) respectively. 
 

 𝐿0(𝑥) = 1                                                                             (3) 
 

𝐿1(𝑥) = 𝑥                                                                              (4) 
 

The recursive formula to generate higher order Legendre 

polynomials is represented in equation (5) 
 

 𝐿𝑛+1(𝑥) =  
1

𝑛+1
[(2𝑛 + 1)𝑥𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1 ]                        (5) 

 

Figure 3. Legendre neural networks (LeNNs) 
 

Where n is the order of Legendre polynomials. An optimization 

algorithm represented by the “Adaptive Moment Algorithm” 

(Adam) [27] was used in the process of training the Legendre 

neural network (LeNN), also using TensorFlow, NumPy and 

PyTorch etc. frameworks to build the Legendre neural network 

(LeNN). Also, The Python programming language was used to 

implement this process. The effective function of the output 

layer is given in the equation (6). 
 

 𝑦𝑖 = 𝑡𝑎𝑛ℎ(𝑥𝑖)                                                                      (6) 
 

To measure the discrepancy between the actual and predicted 

values from the neural networks (NNs), mean square error 

(MSE), which represents a measure of error and reflects the 

general error in predictions, is represented in equation (7). 
 

𝑀𝑆𝐸 =  
1

𝑅𝐸
∑ ∑ (𝑦𝑒

𝑟𝐸
𝑒=1

𝑅
𝑟=1 − 𝑦̂𝑒

𝑟)2                                         (7) 

On the other hand, used the accuracy as a percentage for 

measure the performance the ANNs model, that tolerance level 

is 0.3%, which is represented by equation (8). 
 

 𝐴𝐶𝐶 =
1

𝑅𝐸
∑ ∑ 1(|𝑦𝑒

𝑟 − 𝑦̂𝑒
𝑟|𝐸

𝑒=1
𝑅
𝑟=1 ≤ 𝜖)  × 100                  (8) 

https://www.ijeer.forexjournal.co.in/
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Where R represents the number of training or testing samples, 

𝐸 the number of features for each sample, 𝑦𝑒
𝑟  and 𝑦̂𝑒

𝑟 the truth 

and predictor values respectively, e represents the target feature,  

𝑟 the number of features for each the target sample, 𝜖  is the 

tolerance level, 1(|𝑦𝑒
𝑟 − 𝑦̂𝑒

𝑟| ≤ 𝜖) is an indicator function that 

equals 1 if the absolute difference between the predicted and 

true value is within the tolerance level ϵ, and 0 otherwise. 

 

░4. SIMULATION RESULTS AND 

DISCUSSION 
In this part of the study, we examine the efficiency and 

effectiveness of applying the proposed technique to a Legendre 

neural network (LeNN) and compared with multi-layer 

perceptron (MLP) and WLS technique. This technique was 

applied to 69-busbar radial distribution system, where a single 

neural network was used in the first case and a group of small 

neural networks in the second case. After that, the results were 

compared between them after training and testing. 

 

4.1. Test 69-bus radial distribution system 
To confirm the efficiency and effectiveness of the proposed 

methodology, we used a large system consisting of a 69-busbar 

radial distribution network, and the data for this system were 

obtained from references [28].  

 

The schematic diagram of the system appears in Figure 4, which 

includes a main feeder and seven laterals. Details of the system 

are as follows: 1) the main feeder emanating from the 

substation, which extends from node 1 to 27; 2) lateral no. 1, 

which emanates from node 3 and extends to node 35; 3) lateral 

no. 2, which emanates from node 3 and extends to node 46; and 

4) lateral no. 3, which emanates from node 4 and extends to 

node 50; 5) lateral no. 4, which emanates from node 8 and 

extends to node 52; 6) lateral no. 5, which emanates from node 

9 and extends to node 65; 7) lateral no. 6, which emanates from 

node 11 and extends to node 67; 8) lateral no. 7, which emanates 

from node 12 and extends to node 69. In this system, and based 

on the rules mentioned in the second section, triple 

measurements (P, Q, I) were taken at the beginning of each 

main or lateral feeder to describe in detail: a) triple 

measurements at bus 1 between node 1 and 2, b) triple 

measurements at bus 10 between node 10 and 11, and In order 

to improve the efficiency of the data collection process and 

reduce the number of triple measurements required, triple 

measurements for small lateral that are close together (laterals 

no. 6 and 7) are collected by placing triple measurements for the 

nearby bus (at bus 10).This procedure is done to reduce the total 

number of triplicate measurements. , c) triple measurements at 

bus 3 between node 3 and 28, d) triple measurements at bus 3 

between node 3 and 36, e) triple measurements at bus 9 between 

node 9 and 53, since the number of triple measurements (P, Q, 

I) is 5 ,the sum is (3 x 5 = 15), it is assumed that there are 15 

measurements available in the system, While using the WLS 

method, table 1 selects the location of actual, virtual, and 

pseudo measurements by take profile of the loads for previous 

years. 
 

 

░ Table 1. Location and error of each measurement 
 

Type measurement position (bus) total error variance  

Actual measurement 

(P,Q,I) 
a,b,c,d,e 3 × 5 = 15 10 % 1e-8 

virtual measurement 

(P,Q) 

2,5,15,19,23,25,30,31,32, 

38,42,44,47,56,57,58,60,63 
2 × 18 = 36 no error 1e-12 

pseudo measurements 

(P,Q) 

6,7,8,9,10,11,12,13,16,17,18,20,21, 

22,24,26,27,28,29,33,34,35,36,37, 

39,40,41,43,45,46,48,49,50,51,52,53, 

54,55,59,61,62,64,65,66,67,68,69 

2 × 47 = 94 20 % 1e-2 

To demonstrate the efficiency of the proposed methodology, 

generate 50,000 samples by changing the load by a percentage 

ranging between 20-200% of the base load, with purpose 

generating random numbers between 0.2-2 and multiplying 

them by the base load and generating these samples using the 

load flow technique. There are two pair in the dataset: 10,000 

samples for training and 40,000 samples for testing. Each 

sample has 69 outputs, which in this system are estimates of the 

voltage magnitude or angle, and 15 inputs, which are 

represented by the three measurements (P, Q, I). The long 

feeders in the system (the main feeder and its laterals) are 

divided into several artificial neural networks to increase the 

efficiency of training and testing, in addition to reducing the 

time spent training and testing these neural networks. 

https://www.ijeer.forexjournal.co.in/
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Figure 4. 69-bus radial distribution system 
 

Twelve neural networks were used in this system: five neural 

networks for the main feeder and seven neural networks for the 

laterals, as follows: ANN1 covers from node 1 to 5 and uses 

triple measurements of type (a); ANN2 covers from node 6 to 

10 and uses triple measurements of type (a); ANN3 covers from 

node 11 to 16 and uses triple measurements of type (b); ANN4 

covers from node 17 to 22 and uses triple measurements of type 

(b); ANN5 covers from node 23 to 27 and uses triple 

measurements of type (b); ANN6 covers from node 28 to 35 and 

uses triple measurements of type (c); ANN7 covers from node 

36 to 41 and uses triple measurements of type (d); ANN8 covers 

from node 42 to 46 and uses triple measurements of type (d); 

ANN9 covers from node 47 to 52 and uses triple measurements 

of type (a); ANN10 covers from node 53 to 59 and uses triple 

measurements of type (e); ANN11 covers from node 60 to 65 

and uses triple measurements of type (e); ANN12 covers from 

node 66 to 69 and uses triple measurements of type (b). Each 

neural network was trained for 500 epochs, with the aim of 

increasing the efficiency and accuracy of estimation and 

improving the overall system performance. The multi-layer 

perceptron (MLP) shown in figure 2 has a single hidden layer 

with five neurons that are applied to all other neural networks 

in the system. The output layer's effective function employs a  

 

 

 

 

 

linear function, whereas the hidden layer's effective function 

makes use of a sigmoid function. As for the Legendre neural  

network (LeNN) shown in figure 3, it only includes an input 

layer and an output layer, without a hidden layer. The effective 

function of the output layer uses a hyperbolic tangent function, 

and Legendre polynomials [25] with several five were used to 

expand the input, so that the number of inputs becomes five 

instead of each input. To create a Legendre neural network 

(LeNN). The remaining information is contained in table 2. 

 

░ Table 2. List of MLP and LeNN hyperparameters 
 

Hyperparameters 
MLP LeNN 

Values 

Optimizer Adam 

Batch size 32 

Number of epochs 500 

learning rate 5 ×  10−4 

type loss MSE 

Activation function of output layer Linear Tanh 

Activation function of hidden layer Sigmoid  

Number of hidden layers 1  

hidden size 5  

Number of Legendre polynomials  5 

 

 

 

 

https://www.ijeer.forexjournal.co.in/
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░ Table 3. Comparative of ANNs performance in handling free error and noise for voltage magnitude 
 

No. of ANN 
Inputs 

(Meas.)  

Outputs 

(Busbar) 

Training / Testing  

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

ANN1  (a) 1 to 5 2.88e-10 / 2.91e-10 100 / 100 3.45e-8 / 3.47e-8 100 / 100 

ANN2  (a) 6 to 10 7.02e-7 / 6.93e-7 99.962 / 99.962 9.60e-7 / 9.55e-7 99.764 / 99.772 

ANN3  (b) 11 to 16 7.30e-7 / 7.54e-7 99.70 / 99.677 1.38e-6 / 1.38e-6 99.197 / 99.194 

ANN4  (b) 17 to 22 1.51e-6 / 1.54e-6 98.727 / 98.655 2.65e-6 / 2.69e-6 94.519 / 94.382 

ANN5  (b) 23 to 27 1.73e-6 / 1.75e-6 97.954 / 98.007 2.48e-6 / 2.52e-6 95.024 / 94.864 

ANN6  (c)  28 to 35 4.51e-9 / 4.47e-9 100 / 100 1.62e-8 / 1.61e-8 100 / 100 

ANN7  (d) 36 to 41 1.17e-9 / 1.22e-9 100 / 100 2.58e-8 / 2.61e-8 100 / 100 

ANN8  (d) 42 to 46 1.16e-8 / 1.18e-8 100 / 100 4.62e-7 / 4.63e-7 100 / 100 

ANN9  (a) 47 to 52 4.49e-7 / 4.46e-7 100 / 100 7.56e-7 / 7.67e-7 99.947 / 99.931 

ANN10  (e)  53 to 59 2.20e-7 / 2.20e-7 100 / 100 5.31e-7 / 537e-7 99.999 / 100 

ANN11  (e)  60 to 65 3.99e-7 / 3.97e-7 99.997 / 99.995 8.85e-7 / 8.95e-7 99.940 / 99.938 

ANN12  (b) 66 to 69 4.27e-7 / 4.45e-7 99.86 / 99.859 6.53e-7 / 6.42e-7 99.910 / 99.921 

Average   5.15e-7 / 5.22e-7 99.683 / 99.681 9.03e-7 / 9.11e-7 99.025 / 99.00 

Single ANN (a,b,c,d,e) 1 to 69 1.01e-6 / 1.12e-6 97.995 / 97.721 1.10e-6 / 1.18e-6 97.502 / 97.575 

WLS   1 to 69 MSE: 1.90e-05 ACC (%): 80.608 

 

░ Table 4. Comparative of ANNs performance in handling free error and noise for phase angle 
 

No. of ANN 
Inputs 

(Meas.)  

Outputs 

(Busbar) 

Training / Testing  

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

ANN1 (a) 1 to 5 2.87e-9 / 2.92e-9 100 / 100 5.42e-9 / 5.47e-9 100 / 100 

ANN2 (a) 6 to 10 4.78e-7 / 4.87e-7 99.994 / 99.998 5.30e-7 / 5.42e-7 99.982 / 99.994 

ANN3 (b) 11 to 16 8.29e-7 / 8.53e-7 99.897 / 99.89 3.94e-6 / 3.94e-6 86.589 / 86.323 

ANN4 (b) 17 to 22 1.22e-6 / 1.25e-6 99.442 / 99.411 4.34e-6 / 4.34e-6 84.365 / 84.298 

ANN5 (b) 23 to 27 1.31e-6 / 1.34e-6 99.212 / 99.186 4.45e-6 / 4.45e-6 83.822 / 83.799 

ANN6 (c)  28 to 35 7.23e-9 / 7.20e-9 100 / 100 9.08e-9 / 9.16e-9 100 / 100 

ANN7 (d) 36 to 41 6.00e-9 / 6.21e-9 100 / 100 6.68e-9 / 9.67e-9 100 / 100 

ANN8 (d) 42 to 46 2.51e-8 / 2.51e-8 100 / 100 350e-8 / 3.47e-8 100 / 100 

ANN9 (a) 47 to 52 4.91e-7 / 4.88e-7 99.995 / 99.997 5.16e-7 / 5.09e-7 99.99 / 99.989 

ANN10 (e)  53 to 59 2.04e-7 / 2.07e-7 100 / 100 2.89e-7 / 2.91e-7 100 / 100 

ANN11 (e)  60 to 65 3.45e-7 / 3.47e-7 99.998 / 100 3.90e-7 / 3.94e-7 99.998 / 99.995 

ANN12 (b) 66 to 69 6.75e-7 / 6.98e-7 100 / 99.998 3.61e-6 / 3.63e-6 88.294 / 88.035 

Average   4.66e-7 / 4.76e-7 99.878 / 99.873 1.51e-6 / 1.51e-6 95.253 / 95.203 

Single ANN (a,b,c,d,e) 1 to 69 1.01e-6 / 1.07e-6 97.997 / 96.886 1.11e-6 / 1.11e-6 97.712 / 97.721 

WLS   1 to 69 MSE: 4.151e-06 ACC (%): 85.406 

The results in tables 3 and table 4 show that relying on multiple 

neural networks leads to more accuracy in performance 

compared to relying on a single neural network in the system 

when using MLP and LeNN methods, also results of LeNN 

apparent more efficient and accuracy compared with MLP and 

WLS methods to estimate voltage magnitude and phase angle. 

It is noted that traditional methods often require a larger number 

of measurements, for example in this system 137 measurements 

are required, while 15 measurements are sufficient in the current 

approach. 
 

4.2. Effect of Measurement Error on Neural 

Network 
 In previous cases, artificial neural networks were used for 

training and testing under ideal conditions, but real-world 

applications involve measurement noise and uncertainty. Each 

measurement has an intrinsic error margin and is dependent on 

the manufacturer's specifications as well as communication 

channels that transfer data from the measurement locations to 

the central computing station. The noise that results from data 

transfer through communication channels affects the precision 

of recorded values, underscoring the importance of 

comprehending how error and noise affect neural network 
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efficacy. Within this context, artificial neural networks (ANNs) 

are subjected to evaluation across two distinct scenarios: firstly, 

wherein input data derived from measurements via 

communication channels for all test models is tainted by error 

and noise, and secondly, wherein input data for both training 

and test models encompasses error and noise. Presently, the 

prevailing maximum error threshold stands at less than ±2%. 

Nonetheless, this study endeavors to replicate the influence of 

error and noise within the data obtained from measurements by 

adopting a worst-case scenario approach, imposing a maximum 

measurement error of ±10% across all measurements. The 

multi-layer perceptron (MLP) and the Legendre neural network 

(LeNN) [25] underwent testing within the 69-buses radial 

distribution system only. Initially, these neural networks 

underwent training utilizing free-error and free-noise data, 

encompassing both single neural networks and multiple neural 

networks. Then, these networks' performance was tested with 

datasets that included measurement errors and noises.  
 

The results of these analyses are given in tables 5 and table 6. 

It is apparent that both single and multiple neural networks and 

the WLS method exhibited marked declines in performance and 

accuracy for voltage magnitude and phase angle when exposed 

to data containing errors and noise. Furthermore, all concerning 

details of the location of the measurements for WLS and neural 

networks, including the number of hidden layers, neurons per 

layer, training and testing sample sizes, polynomial order for 

LeNN, number of epochs, and activation functions per layer, 

remain the same as those delineated in the preceding section. 
 

In the second case, neural network training was performed using 

error-tainted and noisy input data. The testing process was 

carried out in the presence of this error and noise, and the results 

are represented in table 7 and table 8 for voltage magnitude and 

phase angle. From the results, it is noted that training neural 

networks using input data contaminated with error and noise 

leads to a significant improvement in the efficiency and 

accuracy of all types of neural networks, whether single neural 

networks or multiple neural networks, compared to training 

them without the presence of this error and noise in the data. 

The results obtained indicate that neural networks (ANNs) 

should be trained in the presence of noise and error in the input 

data to minimize errors in the prediction of voltage magnitude. 

This is regarded as a practically acceptable performance for 

real-world applications compared with the WLS method, which 

gives practically unacceptable results in addition to many of the 

challenges mentioned previously when applied in the real 

world. Based on these results, it can be concluded that training 

neural networks (ANNs) in the presence of error and noise in 

the input data is necessary to reduce errors in predicting voltage 

magnitude and is considered a practically acceptable 

performance for practical applications. 
 

The question that arises is the possibility of improving the 

performance of neural networks in terms of changing the 

number of hidden layers, the number of neurons for each layer, 

the number of models in training and testing, the polynomial 

number of the LeNN, the number of epochs, and the effective 

function for each layer. To answer this question, test the ANN11 

by changing the number of hidden layer neurons for the MLP 

and the polynomial number for the LeNN, as in the table 9. 
 

From table 9, it is seen that the performance of the multi-layer 

perceptron (MLP) improves slightly as the number of neurons 

in the hidden layer decreased to 2 compared to 5. Likewise, a 

slight improvement in the performance of the Legendre neural 

network (LeNN) is observed when the number of polynomials 

is decreased to 2 per input compared to 5, that mean the 

optimize the training and testing phases with reduced time 

requirements and computational complexity. Hence, optimizing 

both neural network methods by setting the number of neurons 

and expanders to two for enhances their performance in this 

application. 
 

 

░ Table 5. Comparative of ANNs performance in handling error and noise tested for voltage magnitude. 
 

No. of ANN 
Inputs 

(Meas.)  

Outputs 

(Busbar) 

Training / Testing  

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

ANN1 (a) 1 to 5 2.88e-10 / 1.88e-9 100 / 100 3.45e-8 / 1.51e-6 100 / 97.267 

ANN2 (a) 6 to 10 7.02e-7 / 2.17e-6 99.962 / 95.124 9.6e-7 / 2.39e-5 99.764 / 60.092 

ANN3 (b) 11 to 16 7.30e-7 / 3.17e-2 99.7 / 3.492 1.38e-6 / 3.68e-3 99.197 / 3.611 

ANN4 (b) 17 to 22 1.51e-6 / 3.17e-2 98.727 / 3.352 2.65e-6 / 4.07e-3 94.519 / 3.399 

ANN5 (b) 23 to 27 1.73e-6 / 2.23e-2 97.954 / 3.346 2.48e-6 / 4.60e-3 95.024 / 3.205 

ANN6 (c)  28 to 35 4.51e-9 / 7.00e-9 100 / 100 1.61e-8 / 7.10e-8 100 / 100 

ANN7 (d) 36 to 41 1.17e-9 / 3.54e-9 100 / 100 2.58e-8 / 4.21e-6 100 / 87.184 

ANN8 (d) 42 to 46 1.16e-8 / 1.79e-8 100 / 100 4.62e-7 / 5.00e-7 100 / 100 

ANN9 (a) 47 to 52 4.49e-7 / 1.09e-6 100 / 98.837 7.56e-7 / 1.44e-5 99.947 / 75.94 

ANN10 (e)  53 to 59 2.20e-7 / 3.41e-4 100 / 18.591 5.31e-7 / 4.67e-6 99.999 / 83.932 

ANN11 (e)  60 to 65 4.00e-7 / 5.86e-4 99.997 / 12.344 8.85e-7 / 1.75e-5 99.94 / 47.691 

ANN12 (b) 66 to 69 4.27e-7 / 4.15e-2 99.86 / 3.541 6.53e-7 / 3.82e-3 99.91 / 3.589 

Average   5.175e-7 / 1.00e-2 99.683 / 53.219 9.03e-7 / 1.35e-3 99.025 / 55.493 

Single ANN (a,b,c,d,e) 1 to 69 1.51e-6 / 3.45e-5 97.435 / 64.459 1.68e-6 / 5.45e-5 96.502 / 50.667 

WLS   1 to 69 MSE: 5.05e-05 ACC (%): 65.812 
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░ Table 6. Comparative of ANNs performance in handling error and noise tested for phase angle 
 

No. of ANN 
Inputs 

(Meas.)  

Outputs 

(Busbar) 

Training / Testing  

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

ANN1 (a) 1 to 5 2.87e-9 / 5.01e-5 100 / 63.483 5.42e-9 / 1.91e-6 100 / 96.590 

ANN2 (a) 6 to 10 4.78e-7 / 4.11e-4 99.994 / 27.377 5.30e-7 / 2.18e-6 99.982 / 95.734 

ANN3 (b) 11 to 16 8.29e-7 / 1.43e-4 99.899 / 21.974 3.94e-6 / 9.42e-6 86.588 / 67.170 

ANN4 (b) 17 to 22 1.22e-6 / 1.56e-4 99.441 / 20.909 4.34e-6 / 1.48e-5 84.365 / 62.566 

ANN5 (b) 23 to 27 1.31e-6 / 1.26e-4 99.212 / 26.408 4.45e-6 / 1.19e-5 83.822 / 62.189 

ANN6 (c)  28 to 35 7.23e-9 / 6.00e-5 100 / 51.188 9.08e-9 / 2.99e-8 100 / 100 

ANN7 (d) 36 to 41 6.00e-9 / 1.96e-4 100 / 31.020 6.68e-9 / 4.22e-7 100 / 99.999 

ANN8 (d) 42 to 46 2.51e-8 / 1.27e-4 100 / 22.698 3.5e-8 / 4.52e-6 100 / 85.673 

ANN9 (a) 47 to 52 4.91e-7 / 9.31e-5 99.995 / 34.034 5.16e-7 / 8.45e-6 99.990 / 84.201 

ANN10 (e)  53 to 59 2.04e-7 / 4.55e-5 100 / 38.003 2.89e-7 / 6.86e-6 100 / 76.405 

ANN11 (e)  60 to 65 3.45e-7 / 5.23e-5 99.998 / 42.034 3.90e-7 / 1.20e-5 99.998 / 58.331 

ANN12 (b) 66 to 69 6.75e-7 / 1.59e-4 100 / 21.753 3.61e-6 / 1.63e-5 88.293 / 58.661 

Average   4.66e-7 / 1.35e-4 99.878 / 33.407 1.51e-6 / 9.89e-6 95.253 / 78.959 

Single ANN (a,b,c,d,e) 1 to 69 1.26e-6 / 1.66e-4 97.993 / 21.696 1.60e-6 / 1.9e-5 96.24 / 56.442 

WLS   1 to 69 MSE: 8.33e-06 ACC (%): 73.402 

░ Table 7.  Comparative of ANNs performance in handling error and noise trained and tested for voltage magnitude 
 

No. of ANN 
Inputs 

(Meas.)  

Outputs 

(Busbar) 

Training / Testing 

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

ANN1 (a) 1 to 5 5.67e-10 / 5.76e-10 100 / 100 9.47e-9 / 9.2e-9 100 / 100 

ANN2 (a) 6 to 10 1.38e-6 / 1.38e-6 98.512 / 98.537 2.5e-6 / 2.52e-6 93.649 / 93.461 

ANN3 (b) 11 to 16 8.23e-6 / 8.21e-6 66.462 / 66.60 9.16e-6 / 9.03e-6 64.066 / 64.405 

ANN4 (b) 17 to 22 9.39e-6 / 9.35e-6 63.861 / 63.942 1.13e-5 / 1.15e-5 60.464 / 60.597 

ANN5 (b) 23 to 27 9.63e-6 / 9.58e-6 63.238 / 63.476 1.18e-5 / 1.20e-5 59.762 / 59.691 

ANN6 (c)  28 to 35 4.73e-9 / 4.67e-9 100 / 100 4.92e-8 / 4.88e-8 100 / 100 

ANN7 (d) 36 to 41 1.48e-9 / 1.54e-9 100 / 100 3.52e-7 / 3.53e-7 100 / 100 

ANN8 (d) 42 to 46 1.45e-8 / 1.5e-8 100 / 100 1.1e-7 / 1.1e-7 100 / 100 

ANN9 (a) 47 to 52 7.17e-7 / 7.17e-7 99.542 / 99.53 1.75e-6 / 1.77e-6 97.683 / 97.61 

ANN10 (e)  53 to 59 3.11e-6 / 3.13e-6 90.456 / 90.242 4.23e-6 / 4.23e-6 86.85 / 87.061 

ANN11 (e)  60 to 65 9.9e-6 / 1.0e-5 64.948 / 64.307 1.29e-5 / 1.32e-5 58.868 / 58.481 

ANN12 (b) 66 to 69 7.64e-6 / 7.63e-6 68.089 / 68.199 7.84e-6 / 5.21e-6 67.404 / 67.894 

Average   4.17e-6 / 4.17e-6 84.592 / 84.569 5.18e-6 / 5.21e-6 82.396 / 82.433 

Single ANN (a,b,c,d,e) 1 to 69 1.02e-5 / 1.04e-5 71.96 / 71.981 3.33e-5 / 3.35e-5 53.832 / 53.852 

WLS   1 to 69 MSE: 5.05e-05 ACC (%): 65.812 

░ Table 8.  Comparative of ANNs performance in handling error and noise trained and tested for phase angle. 
 

No. of ANN 
Inputs 

(Meas.)  

Outputs 

(Busbar) 

Training / Testing 

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

ANN1 (a) 1 to 5 6.99e-9 / 7.00e-9 100 /100 2.39e-8 / 2.38e-8 100 / 100 

ANN2 (a) 6 to 10 1.09e-6 / 1.11e-6 99.310 / 99.354 1.30e-6 / 1.32e-6 98.840 / 98.826 

ANN3 (b) 11 to 16 4.25e-6 / 4.27e-6 84.710 / 84.551 5.21e-6 / 5.16e-6 80.233 / 80.425 
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ANN4 (b) 17 to 22 4.88e-6 / 4.89e-6 81.563 / 81.647 5.44e-6 / 5.51e-6 79.238 / 79.087 

ANN5 (b) 23 to 27 5.03e-6 / 5.02e-6 80.890 / 81.006 5.38e-6 / 5.35e-6 79.552 / 79.695 

ANN6 (c)  28 to 35 7.00e-9 / 6.97e-9 100 /100 3.02e-8 / 3.05e-8 100 / 100 

ANN7 (d) 36 to 41 5.24e-9 / 5.30e-9 100 / 100 3.18e-8 / 3.18e-8 100 / 100 

ANN8 (d) 42 to 46 4.69e-8 / 4.73e-8 100 / 100 7.39e-8 / 7.42e-8 100 / 100 

ANN9 (a) 47 to 52 7.45e-7 / 7.47e-7 99.778 / 99.798 9.88e-7 / 9.95e-7 99.493 / 99.502 

ANN10 (e)  53 to 59 2.87e-6 / 2.86e-6 91.092 / 91.070 3.15e-6 / 3.15e-6 89.929 / 89.990 

ANN11 (e)  60 to 65 9.55e-6 / 9.53e-6 64.705 / 64.383 9.9e-6 / 9.85e-6 63.885 / 63.881 

ANN12 (b) 66 to 69 3.96e-6 / 3.98e-6 86.106 / 86.027 4.48e-6 / 4.45e-6 83.613 / 83.713 

Average   2.28e-6 / 2.71e-6 90.680 / 90.570 3.25e-6 / 3.00e-6 89.595 / 89.593 

Single ANN (a,b,c,d,e) 1 to 69 4.45e-6 / 4.42e-6 89.777 / 89.792 5.92e-6 / 5.95e-6 84.129 / 84.118 

WLS   1 to 69 MSE: 8.33e-06 ACC (%): 73.402 

░ Table 9. performance of ANN11 for MLP and LeNN for different hidden nodes and Legendre polynomials. 
 

No. of Legendre 

polynomials or hidden 

nodes 

Training / Testing  

Legendre neural network (LeNN)  Multi-layer perceptron (MLP) 

MSE ACC (%) MSE ACC (%) 

2 9.80e-6 / 9.88e-6 65.35 / 64.727 1.05e-5 / 1.07e-5 63.675 / 65.445 

4 9.89e-6 / 9.96e-6 64.953 / 64.491 1.33e-5 / 1.35e-5 58.738 / 58.351 

5 9.90e-6 / 1.00e-5 64.948 / 64.307 1.29e-5 / 1.32e-5 58.868 / 58.481 

6 9.94e-6 / 1.00e-5 64.888 / 64.214 1.11e-5 / 1.10e-5 61.239 / 61.488 

8 9.94e-6 / 1.00e-5 64.995 / 64.250 1.123e-5 / 1.14e-5 61.945 / 61.499 

10 8.73e-5 / 9.1e-5 51.398 / 51.008 1.21e-5 / 1.21e-5 58.661 / 59.041 

4.3 Practical considerations 

 
 

Figure 5. Practical structure of the proposed state estimation 

technique 
 

Figure 5 demonstrates the practical implementation of the 

proposed state estimator in a radial distribution network. After 

collecting the system configuration data (node and branch 

connections, status of disconnector switches, meter’s location, 

etc.), the ANN model is trained and tested (this task is carried 

out offline). The real-time measurements (only the telemetered 

measurements) at the main distribution substation and some 

critical locations in the network are acquired through dedicated 

communication channels. These data are fed to the ANN model 

to predict the state variables of the system. The output 

information from the estimator will form the basis for advanced 

network analysis and online control functions. Although the 

proposed state estimation scheme gives accurate results, it 

requires a pronounced amount of data to train the ANN model. 

This data can be generated by adopting a reliable load flow 

algorithm. 

 

░ 5. CONCLUSIONS 
In this study, the efficiency of using the proposed technique to 

estimate voltage magnitude and angle in radial distribution 

systems is demonstrated. The results in the article indicate: 
 

• The research suggests that using multiple artificial 

neural networks can enhance the system's efficiency 

and accuracy, compared to relying solely on a single 

neural network. 

• The propose a LeNN model apparent performance and 

accuracy higher compared with MLP and WLS. 

• The study shows that the results achieved are 

reasonable and acceptable even in the event of an error 

in the measurement data, which gives an advantage to 

the stability and reliability of the proposed method 

compared to traditional methods such as WLS in radial 

distribution system. 
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