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░ ABSTRACT- Microgrids (MG) are small-scale energy systems that use distributed energy storage and sources. Hybrid 

microgrids are transforming energy management by incorporating various energy resources like wind, solar, and battery storage. 

Effective scheduling of this resource is vital to minimize the costs and maximize energy autonomy. Advanced scheduling algorithm 

optimizes the operation of hybrid microgrids, which dynamically adjusts the energy consumption and generation to satisfy the 

demand while ensuring power balancing. This scheduling strategy has been instrumental in improving the sustainability and 

resilience of MGS, which paves the way for an environmentally friendly and more reliable energy future. They can operate on 

islanded or grid-connected modes. The optimization of hybrid MG scheduling is paramount in the field of post-island management 

to ensure effective energy sustainability and distribution. Using metaheuristic approaches like simulated annealing or genetic 

algorithms allows the finetuning of scheduling parameters to increase energy utilization while reducing environmental impact and 

costs. Therefore, the study presents a Real-Time Scheduling for Post Islanding Energy Management using African Vulture 

Optimization Algorithm (RTSPIEM-AVOA) in Hybrid microgrid environment.  The RTSPIEM-AVOA approach is utilized to 

improve its functioning by determining the most efficient scheduling of the installed generation unit. The AVOA can handle complex 

optimization issues while avoiding local optima solutions because of the balance among the exploitation and exploration stages. A 

microturbine (MT) system, battery storage, a fuel cell (FC), photovoltaic (PV), and wind turbine (WT) make up the suggested MG 

system. This work looks at three scenarios: PV and WT operating at normal generation, PV and WT operating at their maximum 

power, and WT operating at its rated power. Consider the two objective functions of minimizing pollutant emissions and reducing 

operational costs. According to the experimental results, the RTSPIEM-AVOA technique outperforms other models in microgrid 

scheduling by efficiently optimizing it to satisfy the community's changing needs while transitioning to a greener and more 

sustainable energy future. 
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░ 1. INTRODUCTION   
Recently, power systems have witnessed a transformative leap, 

from hierarchical evolution to structural modification [1]. 

Renewable energy sources (RES) and non-renewable energy 

sources are interconnected to establish a distributing system that 

operates more effectively, economically, and reliably, helping 

to resist global warming. In addition, the advancement of RES 

plays a major role in finding a solution to the problem of energy 

sources in remote and rural regions. A microgrid (MG) system 

comprises energy storage devices, distributed generators (DGs), 

power conversion units, one or multiple loads, etc., which 

ensures heat demand and/or local electricity is met [2]. MGs can 

be operated in grid-connected mode or can provide off-grid 

areas with electricity. Even though off-grid MGs show great 

promise, particularly in inaccessible locations, they encounter 

significant energy scheduling and control problems [3]. 

Likewise, the realization of safe and economical operation of an 

MG is a real challenge for researcher workers since the RES is 

subjected to specific limits, and the capacity of this system is 

limited. An MG contains Energy storage units, critical/non-

critical loads and multiple generation units [4]. The point of 

common coupling (PCC) is used for connecting MG to the 

utility grid (UG). The distributed generation unit has PEI 

connection to obtain control protection, and metering objectives 

along with plug-in features, whether in islanded mode or grid-

connected. The MG can supply the surplus power to the utility 

if the MG is connected to UG [5]. In case of failure or 

disturbance in the UG, The MG can change its operation mode 

from grid-connected to islanded mode. Under any 

circumstance, the critical load is first supplied by the MG. Then, 

MG central controller (MGCC) controls the operation together 

with local controllers (LC) [6]. The sustainable development 

and system performance have been dramatically increased by 
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the energy management system (EMS) in MG and effective 

coordination of Distributed Energy Resources (DERs). 
 

One of the key features of MG system is that it works on 

different islanded and grid-tied modes [7]. The increase of 

renewable source-based DG continues with the increasingly 

widespread use of MGs. The deployment ability of MG can 

offer various benefits, such as efficiency improvement, risk and 

emission reductions, cost reduction, and increase in the 

incorporation of DG into the grid [8]. However, the MG still 

faces certain difficulties. For instance, they require control 

strategies and innovative management since traditional 

strategies cannot often respond to the dynamic behaviors of 

MG. Thus, there is a need for appropriate control strategy to 

ensure smooth power switching in MGs, especially in islanding 

conditions [9]. Also, the control system should improve the PQ 

of MGs and control the frequency variation, voltage variation, 

and phase angles to retain them within the desirable limit. 

Islanding detection is vital to avoid PQ problems and hazards 

[10]. The controller can maintain a stable frequency and voltage 

to transmit renewable energy to the consumer once the MG is 

disconnected from the UG. The key supervisory controller in 

the MG system is EMS.  
 

In a hybrid microgrid (MG) scenario, this work uses the African 

Vulture Optimization Algorithm (AVOA) for real-time 

scheduling in post-islanding energy management. Through the 

identification of the installed generation unit's ideal schedule, 

the RTSPIEM-AVOA approach is utilized to enhance its 

performance. By balancing the exploration and exploitation 

phases, the AVOA effectively avoids local optima and 

addresses challenging optimization problems. A fuel cell (FC), 

solar (PV) panels, wind turbines (WT), battery storage, and a 

microturbine (MT) system are all integrated into the suggested 

MG system. Consider the two objective functions which are 

minimizing the pollutant emission and mitigating the operating 

cost. Based on the results of the examination, the RTSPIEM-

AVOA technique outperforms other models in terms of 

performance and successfully optimizes MG scheduling to meet 

community requirements as they change and move the energy 

sector closer to being more sustainable and greener. 

 

░ 2. LITERATURE REVIEW 
Huy et al. [11] introduce a SL approach for real-world power 

scheduling of isolated MG. The presented method consists of 

three stages: Firstly, the mixed-integer linear programming 

(MILP) algorithm is introduced for the optimum power 

scheduling problems of isolated MG to reduce the cost of 

operations. Next, an SL strategy is established for learning and 

mimicking optimum ESS charging or discharging decisions by 

the dense ResNet (ResNetD) training on the expert database. 

Zia et al. [12] introduce a two-step supervisory EMS for 

optimum operation of PV/Wind/Tidal MG with one-time 

transmission. The initial phase schedules the optimum energy 

supply from all the energy sources thus improving the 

effectiveness. The second phase updates the decision strategy 

by analyzing the demand profile and scheduled generation to 

ensure efficient utilization. In [13], suggested a novel approach 

for ESS scheduling. The probabilistic model is introduced for 

the network parameters and expressed as MILP problem to 

consider the uncertainty related to the multi objective 

scheduling problems. The non-dominated sorting TLBO 

(NSTLBO) technique is utilized for resolving the problems of 

MO. 
 

Abdelghany et al. [14] developed a model predictive 

control (MPC) technique for managing the wind–solar MG in 

the grid-connected and islanded modes. The system participates 

in the real-time and daily markets, represented by the time scale. 

Hence, a low-layer control (LLC) and a high-layer control 

(HLC) are introduced. The sporadic features of RES and the 

variation in load demands are deliberated by suggesting the 

controller based on the stochastic MPC method. In [15], 

proposed an EMS technique. An algorithm for two-step 

hierarchical optimization is used in the suggested method. 

MMG (multi-Microgrid) optimization comes after MG 

(Microgrid) optimization in the first step. MG resources are 

utilized to address any residual deficit. The presented technique 

is expressed as a non-linear complicated optimization problem 

that is more efficiently managed by the metaheuristic 

approaches. An effective hybrid approach is suggested by Roy 

et al. [16] for the Energy Management System (EMS) of a 

microgrid (MG) running in grid-tied mode. This method 

combines Artificial Neural Networks (ANN) and the Hybrid 

Whale Optimization (HWO) algorithm. The proposed model 

designs the best balance of MG based on the load demand 

prediction. Furthermore, the two techniques for MG energy 

management were utilized. The first technique focuses on the 

different RES programming. The second technique is to balance 

the PF and reduce the prediction error effects based on the rules 

drawn from the scheduled power reference. 
 

To manage the distribution of energy in response to demand 

unpredictability and renewable energy sources (RES), a 

hierarchical online Energy Management System (HEMS) was 

presented in [17]. In order to provide seasonal energy shifting 

and on-site battery stack management, the HEMS deployed a 

hydrogen energy storage unit based on electrolyze-fuel cells. It 

is possible to decouple the fuzzy logic (FL)-based controller and 

enable the HEMS to make decisions in real time by employing 

operating frequency. For evaluation purposes, a Local Energy 

Estimation Model (LEEM) was also created expressly. A 

method for energy balancing was provided by Hartani et al. 

[18], which used a Mamdani 50 rule-based FL-EMS to control 

and monitor State-of-Charge (SoC) recovery. 

 

░ 3. SYSTEM MODELING OF MGS 
This section introduces a typical isolated MG system [19]. 

Subsequent sections will explore detailed discussions on the 

output power of distributed generation. A classic MG model 

containing RES generation, HESS, and sequence of loads. 

Distributed power generation mostly consists of two 

components: fossil energy generation using diesel engines and 

renewable energy sources using solar and wind power. As 

HESS, a battery and supercapacitor are used. Approaching the 

HESS within MG can resolve this issue that 2 energy storages 

can be limited by the response speed and energy density utilized 

individually. It is effectual measure to enhance the stability and 

https://www.ijeer.forexjournal.co.in/
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economy of MG. At last, controllable and uncontrollable loads 

are the 2 kinds of loads within distributed power systems. 
 

Distributed Energy Modeling 

(1) RES System 

Photovoltaic Power Generation 

The resultant power of PV system is defined as: 

𝑃𝑃𝑉 = 𝑃𝑃𝑉,𝑆𝑇𝐶 ×
𝑅

𝑅𝑆𝑇𝐶
× (1− 𝛽 × (𝑇𝑎 − 𝑇𝑟))                         (1) 

 

𝑇𝑎 = 𝑇𝑎𝑚𝑏 +
𝑅

𝑅𝑆𝑇𝐶
× (𝑇𝑁𝑂𝐶 − 20)                                        (2) 

 

Wind Power Generation Modelling 

In place of a WT system, the power transformation equation of 

transforming to WT outcome in the wind power is written as: 
 

𝑃𝑊 =
1

2
𝜌𝜋𝑅𝑤

2𝑉𝑤
3𝐶𝑃                                                                        (3) 

 

𝐶𝑃 = 𝑓(𝜃, 𝜆)                                                                                    (4) 
 

The blade-tip speed ratio is demonstrated by the following 

expression: 
 

𝜆 =
𝑤𝑤𝑅

𝑉𝑤
                                                                                       (5) 

 

The carbon emission is extremely low (approximately 20 

𝑔/𝑘𝑊ℎ) designed for the PV system. Additionally, the carbon 

emission is associated with wind power systems are 

significantly lower. So, the carbon emissions from distributed 

energy generation can be ignored depending on the previous 

analysis. 
 

(2) Energy Storage System 

In power systems, energy storage units exist in two procedures. 

The former is energy‐type storage; e.g., lithium batteries, lead‐

acid batteries, and sodium‐sulfur batteries. The latter is power 

type; the superconducting magnetic energy storage, super‐

capacitors, and flywheel energy storage are generally utilized 

power‐type units. The structure of HESS meets various levels 

of demand to reduce peak demand from the distributed energy 

system and enhance the value of renewable energy penetration. 
 

Battery Modelling 

The energy obtainable for discharge and charging that battery 

offers as: 
 

𝐸𝑏 = 𝐶𝑏𝑈𝑏𝛾𝜇𝑏 × 10
−3                                                                 (6) 

 

Generally, the battery voltage is constant, and its functioning 

current is usually measured at around 0. 1𝐶  (𝐶  defines the 

capacity) 𝐴, thus the resultant power of battery is written as: 
 

𝑃𝑏 = 𝐶𝑏𝑈𝑏 ×10
−4                                                                        (7) 

 

Super‐capacitor Modelling 

The electric power that is generated by the ultra‐capacitor from 

all the charges and discharges is defined as: 
 

𝐸𝑐 = 0.5 × 𝐶𝑐𝜂𝑎(𝑈𝑐,max
2 − 𝑈𝑐,min

2 )/(3.6 × 106)                     (8) 
 

𝑃𝑐 = 𝑈𝑐,max 𝐼𝑐,max                                                                           (9) 
 

Then, the HESS (batteries and super-capacitors) could not use 

fossil fuels, and their emissions 𝐶𝑂2 are disregarded. 
 

(3) Load System 

Upon analyzing the distribution of loads within the MG, the 

presented loads are considered into 4 portions. The 1st type of 

controllable load is given below: 
 

𝑃𝑗 ,𝑡 = 𝑋𝑗,𝑡𝑃𝑗∀𝑗 ∈ 𝐽                                                                       (10) 
 

∑𝑋𝑗 ,𝑡

 

𝑡∈𝑇

= 𝐻𝑗∀𝑗 ∈ 𝐽                                                                      (11) 

 

{
𝑋𝑗,𝑡 ∈ (0,1)| 𝑡 ∈ 𝛺𝑗
𝑋𝑗,𝑡 = 0| 𝑡 ∈ 𝛺𝑗

}∀𝑗 ∈ 𝐽                                                (12) 

 

The 2nd type of controllable load is expressed as:  
 

𝑃𝑘,𝑡 = 𝑋𝑘,𝑡𝑃𝑘∀𝑘 ∈ 𝐾                                                                  (13) 
 

𝑋𝑘,𝑡 + 𝑋𝑘,𝑡+1 +⋯+𝑋𝑘,𝑡+𝑞𝑘2 ≥ 𝑎𝑘                                           (14) 

 

∀𝑘 ∈ 𝐾, ∀𝑡 = 1,2,⋯ , 𝑡max − 𝑏𝑘   
 

{
𝑋𝑘,𝑡 ∈ (0,1)|𝑡 ∈ 𝛺𝑘
𝑋𝑘,𝑡 = 0|𝑡 ∈ 𝛺𝑘

}∀𝑘 ∈ 𝐾                                                   (15) 

 

The 3rd type of controllable load is demonstrated as: 
 

𝑃𝑙,𝑡 = 𝑋𝑙,𝑡𝑃𝑙∀𝑙 ∈ 𝐿                                                                      (16) 
 

𝑋𝑙,𝑡𝑃𝑙,𝑡,min ≤ 𝑋𝑙,𝑡𝑃𝑙 ≤ 𝑋𝑙,𝑡𝑃𝑙,𝑡,max                                             (17) 
 

𝐸𝑙,min ≤∑(

 

𝑡∈𝑇

𝑃𝑙,𝑡𝛥𝑡) ≤ 𝐸𝑙,max                                                  (18) 

 

{
𝑋𝑙,𝑡
𝐼𝐼𝐼 ∈ (0,1)|𝑡 ∈ 𝛺𝑙

𝑋𝑙,𝑡
𝐼𝐼𝐼 = 0|𝑡 ∈ 𝛺𝑙

}∀𝑙 ∈ 𝐿                                                    (19) 

 

░ 4. THE PROPOSED MODEL 
In this study, we have presented an RTSPIEM-AVOA on 

hybrid MGs environment.  To improve operational efficiency, 

the best schedule for the installed generation units is determined 

using the RTSPIEM-AVOA approach. Figure 1 represents the 

working flow of RTSPIEM-AVOA approach. 
 

4.1. Design of AVOA 
The AVOA becomes a flexible and easy‐to‐use metaheuristic 

technique influenced by eating and positioning behaviors of 

African vultures. [20] AVOA is extensively utilized through 

numerous optimization fields, providing versatility for 

modifications and applications that cause optimum outcomes. 

Vultures in the wild show different behaviors dependent upon 

their physical abilities, dividing into two groups. They are 

proficient at avoiding tricks because of their greedy starvation 

https://www.ijeer.forexjournal.co.in/
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and insistence on hunting for food. The two stronger and more 

effective vultures have been regarded as the more strong and 

optimum outcomes. The next subsections will discuss the 

AVOA method's general steps. Figure 2 represents the steps 

involved in AVOA. 

 

 
 

Figure 1. Working flow of RTSPIEM-AVOA system 

 

The fitness of every solution is calculated after the development 

of the initial population, and the highest execution outcome is 

chosen as the fittest vulture from 1st group, represented as 𝐵𝑉1, 
whereas the 2nd best outcome will be recognized as the fittest 

vulture from 2nd group, represented as 𝐵𝑉2. The resultant rule 

can be given below, 
 

𝑅(𝑘) = {
𝐵𝑉1   𝑖𝑓   𝑝𝑖 = 𝐵1
𝐵𝑉2   𝑖𝑓   𝑝𝑖 = 𝐵2 

                                                     (20) 

 

Now, 𝐵1 and 𝐵2 describes measured values that previous to the 

search process. Such factors are values ranging from 0 to 1, and 

𝐵1 + 𝐵2 = 1. Also, the choice of major best solutions will be 

accomplished by applying a roulette wheel mechanism as 

represented below: 
 

𝑝𝑖 = 𝐹𝑖/(∑𝐹𝑖

𝑛

𝑖=1

)                                                                          (21) 

 

The regular food-searching of vultures and improved durability 

later eating permit them to travel more in their search for food. 

They lose energy while they are starving, making it difficult for 

them for higher distances in food search. In these conditions, 

they often search for food near robust vultures and turn out to 

be aggressive in hunger. This mathematical model for this 

behavior will be demonstrated as given below: 
 

𝑡 = ℎ × (sin𝑤 (
𝜋

2
×

𝑘

𝑘max 
) + cos (

𝜋

2
×

𝑘

𝑘max 
) − 1)          (22) 

 

𝐹 = (2 × 𝑟𝑣1 + 1) × 𝑆 × (1−
𝑘

𝑘max 
)+ 𝑡.                            (23) 

From Eq. (22) and (23), 𝐹 characterizes the satisfaction level of 

vultures, 𝑆 ∈ [1, 1], ℎ ∈ [2, 2] and 𝑟𝑣1 ∈ [0,1] describes random 

values. Once the value of 𝑆 is under zero, it specifies that the 

vulture at the condition of hunger, if improves from S - zero 

specifies satisfaction. In the AVOA method, the value 𝐹 

performs a key role in determining if the method arrives at 

exploration or exploitation stages. Particularly, when |𝐹| > 1, 

the method starts the exploration stage and when |𝐹| ≤ 1, it 

initiates the exploitation stage. 
 

At the exploration stage, the vultures utilize the dual approaches 

to examine random fields and choice of the approach should be 

directed by a predetermined factor named 𝑃1 ∈ [0,1] that could 

be defined previous to the initiation of the search process. To 

decide which approach to employ in the “randP1” exploration 

stage, a random number can be produced with the range of 0 to 

1, represented as 𝑟𝑝1. When 𝑃1 ≥ 𝑟𝑝1 parameter, and after the 

subsequent rule will be utilized. 

 

{
𝑉𝑃(𝑘 + 1) = 𝑅(𝑘) − 𝐷(𝑘) × 𝐹
𝐷(𝑘) = |𝑋 ×𝑅(𝑘) − 𝑉𝑃(𝑘)|

                                             (24) 

 

Here 𝐹  refers to the satiation rate of the vulture, 𝑉𝑃(𝑘)  and 

𝑉𝑃(𝑘 + 1)  characterize the vulture’s vector positions at the 

existing and following iterations correspondingly, 𝑅(𝑖) 
signifies top vultures, and 𝑋 point out the arbitrary motion in 

protecting the food from alternative vultures. The random 

movement is varied with every iteration and can be estimated 

by applying the mathematical equation 𝑋 = 2 × rand, the value 

rand ∈ [0,1] refers to the random number to be performed as the 

strengthening coefficient of 𝑋.  If 𝑃1 < 𝑟𝑝1 , after the next 

mathematical formula will be utilized in equation (25) 
 

𝑉𝑃(𝑘 + 1) = 𝑅(𝑘) − 𝐹 + 𝑟𝑣2× ((𝑢𝑏 − 𝑙𝑏) × 𝑟𝑣3+ 𝑙𝑏)   (25) 
 

Now, 𝑟𝑣2, 𝑟𝑣3 ∈ [0,1] describes randomized numbers, and “𝑙𝑏” 
and  “𝑢𝑏” denote the lower and upper boundaries, respectively. 

In the exploitation phase, there are two major stages such as 

stage 1 and stage 2. The AVOA transformation to stage 1 if 

|𝐹| ∈ [0.5,1). It comprises 2 approaches named rotating flight 

and siege‐flight schemes that will be explained in detailed 

manner: 
 

The serious competition for achievement of foods among 

weaker and stronger vultures will be imitated via the next rule: 
 

{
𝑉𝑃(𝑘 + 1) = 𝐷(𝑘) × (𝐹 + 𝑟𝑣4) − 𝑑(𝑡)

𝑑(𝑡) = 𝑅(𝑘) − 𝑉𝑃(𝑘)
                             (26) 

 

Whereas 𝑟4 ∈ [0,1] defines a random value. The mathematical 

formula offers the distance among the fittest vultures. 
 

The rotational competition will be demonstrated arithmetically 

in a spiral movement. By applying the method, a mathematical 

model encompassing each vulture and the two best vultures will 

be generated. The movement will be represented as follows: 

https://www.ijeer.forexjournal.co.in/
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{
 
 

 
 𝑆1 = 𝑅(𝑘) × (

𝑟𝑣5 × 𝑉𝑃(𝑘)

2𝜋
) × 𝑐𝑜𝑠(𝑃(𝑘))

𝑆2 = 𝑅(𝑘) × (
𝑟𝑣6 × 𝑉𝑃(𝑘)

2𝜋
)× 𝑐𝑜𝑠(𝑃(𝑘))

𝑉𝑃(𝑘 + 1) = 𝑅(𝑖) − (𝑆1+ 𝑆2)

                                    (27) 

 

where 𝑟𝑣5, 𝑟𝑣6 ∈ [0,1] describes random values. 

To choose the approach, a 𝑃2 ∈ [0,1] was presented earlier in 

the search operation initialization. The 𝑟𝑝2 has been created at 

the beginning of this stage. According to 𝑟𝑝2 and 𝑃2, the choice 

of scheme must be modeled as given below. 
 

𝑉𝑃(𝑘 + 1) = {
(26)   𝑖𝑓   𝑃2 ≥ 𝑟𝑝2
(27)   𝑖𝑓   𝑃2 < 𝑟𝑝2 

                                        (28) 

 

The AVOA evolutions to stage 2 if |𝐹|  <  0.5. This stage 

comprises two methods such as “Congregation of diverse 

varieties of vultures near the food sources” and “Destructive 

competition for food”. These approaches will be more discussed 

as follows: 

During this phase of AVOA, the movement of vultures for 

collecting nearby food sources should be detected. While 

vultures have been starved, there will rarely be aggressive 

competition for food that could be caused by various categories 

of vultures for collecting about a single food source that will be 

mathematical representation is given below, 
 

{
  
 

  
 𝐴1 = 𝐵𝑉1(𝑘) −

𝐵𝑉1(𝑘) × 𝑉𝑃(𝑘)

𝐵𝑉1(𝑘) − 𝑉𝑃(𝑘)2
×𝐹

𝐴2 = 𝐵𝑉2(𝑘) −
𝐵𝑉2(𝑘) × 𝑉𝑃(𝑘)

𝐵𝑉2(𝑘) − 𝑉𝑃(𝑘)2
× 𝐹

𝑉𝑃(𝑘 + 1) =
𝐴1 +𝐴2

2

                          (29) 

 

Now, 𝐵𝑉1 and 𝐵𝑉2 defines the fittest vulture in the 1st and 2nd 

groups correspondingly. 
 

During this phase of AVOA, the prominent vultures become 

weak and starving, therefore incapable of challenging 

alternative vultures for food. Whereas alternative vultures are 

starved become destructive and begin to change into the top 

vultures. Their movements will be represented as given below, 
 

𝑉𝑃(𝑘 + 1) = 𝑅(𝑘) − |𝑑(𝑡)| × 𝐹 × 𝐿𝑒𝑣𝑦(𝑑)                      (30) 
 

Here 𝑑(𝑡) characterizes the distance between the vulture and 

fittest vultures. The application of the Levy fight improves the 

effectiveness. 
 

To choose the approach, a 𝑃3 ∈ [0,1]  must be presented 

previously the search arises. A random number, 𝑟𝑝3, could be 

produced at the arrival of this stage. As stated by 𝑟𝑝3 and 𝑃3, the 

approach selection can be mathematically formed as given 

below  
 

𝑉𝑃(𝑘 + 1) = {
(26)    𝑖𝑓   𝑃3 ≥ 𝑟𝑝3
(27)   𝑖𝑓   𝑃3 < 𝑟𝑝3. 

                            (31) 

 
 

Figure 2. Steps involved in AVOA 
 

4.2. Modeling of Real-Time Scheduling using RTSPIEM-

AVOA technique 

In the RTSPIEM-AVOA technique, consider two objective 

functions which are minimizing the pollutant emission and 

mitigating the operating cost.  The MG designing strategies 

belong to mechanism of the economical dispatch procedure 

where the load is disseminated in optimum method among the 

creating units connected within MG so that the complete 

operating cost can be diminished [21]. Conversely, to enhance 

the efficiency of 𝑀𝐺,  it is vital to alleviate the pollutant 

emission in the DGs. Thus, author maintains either operational 

cost or pollutant emission as a target. The operational cost of 

MG signifies the startup cost, shutdown cost, and fuel cost, it is 

expressed as: 
 

𝐹1(𝑥) =∑(

24

ℎ=1

𝐶𝑟(ℎ) + 𝐶𝑏(ℎ) + 𝐶𝑔(ℎ))                                               (32) 

 

Whereas, 𝐶𝑟(ℎ), 𝐶𝑏(ℎ) , and 𝐶𝑔(ℎ) denotes the operational cost 

of creating units, batteries, and grid at hour ℎ, correspondingly. 

The rate of 𝐶𝑟(ℎ) has been computed utilizing equation (33). 
 

𝐶𝑟(ℎ) = 𝐶𝑃𝑉(ℎ) + 𝐶𝑊𝑇(ℎ) + 𝐶𝑀𝑇(ℎ) + 𝐶𝐹𝐶(ℎ)                  (33) 
 

In which, 𝐶𝑃𝑉(ℎ),  𝐶𝑊𝑇(ℎ),  𝐶𝑀𝑇(ℎ) , and 𝐶𝐹𝐶(ℎ)  implies the 

costs of 𝑃𝑉, 𝑊𝑇, 𝑀𝑇, and FC correspondingly, it is computed 

as: 
 

𝐶𝑃𝑉(ℎ) = 𝑢𝑃𝑉 (ℎ)𝑃𝑃𝑉(ℎ)𝐵𝑃𝑉(ℎ) + 𝑆𝑃𝑉(ℎ)|𝑢𝑃𝑉(ℎ) − 𝑢𝑃𝑉(ℎ −
1)|                                                                                                                 (34) 

https://www.ijeer.forexjournal.co.in/
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𝐶𝑊𝑇(ℎ) = 𝑢𝑊𝑇(ℎ)𝑃𝑊𝑇(ℎ)𝐵𝑊𝑇(ℎ) + 𝑆𝑊𝑇(ℎ) × |𝑢𝑊𝑇(ℎ) −
𝑢𝑊𝑇(ℎ − 1)|                                                                                 (35) 
 

𝐶𝑀𝑇(ℎ) = 𝑢𝑀𝑇(ℎ)𝑃𝑀𝑇(ℎ)𝐵𝑀𝑇(ℎ)
+ 𝑆𝑀𝑇(ℎ)|𝑢𝑀𝑇(ℎ) − 𝑢𝑀𝑇(ℎ − 1)|               (36) 

 

𝐶𝐹𝐶(ℎ) = 𝑢𝐹𝐶(ℎ)𝑃𝐹𝐶(ℎ)𝐵𝐹𝐶(ℎ)
+ 𝑆𝐹𝐶(ℎ)|𝑢𝐹𝐶(ℎ)− 𝑢𝐹𝐶(ℎ− 1)|                (37) 

 

Whereas, 𝑢𝑃𝑉(ℎ),  𝑢𝑊𝑇(ℎ),  𝑢𝑀𝑇(ℎ) , and 𝑢𝐹𝐶(ℎ)  denotes the 

conditions of 𝑃𝑉, 𝑊𝑇, 𝑀𝑇, and FC at hour ℎ correspondingly, 

𝑃𝑃𝑉(ℎ), 𝑃𝑊𝑇(ℎ), 𝑃𝑀𝑇(ℎ) , and 𝑃𝐹𝐶(ℎ) stands for the generated 

power in the earlier state modules, 𝐵𝑃𝑉(ℎ), 𝐵𝑊𝑇(ℎ), 𝐵𝑀𝑇(ℎ), 
and 𝐵𝐹𝐶(ℎ) implies the bids of MG modules, 𝑆(ℎ) and 𝑆(ℎ −
1) demonstrate the startup and shutdown costs at ℎ and ℎ − 1 

hours correspondingly. 
 

The battery and grid costs are measured as: 

𝐶𝑏(ℎ) = 𝑢𝑏(ℎ)𝑃𝑏(ℎ)𝐵𝑏(ℎ)
+ 𝑆𝑏(ℎ)|𝑢𝑏(ℎ) − 𝑢𝑏(ℎ − 1)|                   (38) 

 

𝐶𝑔(ℎ) = 𝑃𝑔(ℎ)𝐵𝑔(ℎ)                                                                  (39) 
 

In which, 𝑢𝑏(ℎ) denotes the battery position, 𝑃𝑏(ℎ) and 𝑃𝑔(ℎ) 

represents the battery and grid powers at hour ℎ,  𝐵𝑏(ℎ)  and 

𝐵𝑔(ℎ) defines the battery and grid bids. The power outputs of 

the generating units and their operational states, stated as 

follows, are the variables taken into account in this problem: 
 

𝑥 = [𝑃𝑃𝑉 , 𝑃𝑊𝑇 , 𝑃𝑀𝑇 , 𝑃𝐹𝐶 , 𝑃𝑏 , 𝑃𝑔 , 𝑢𝑃𝑉 , 𝑢𝑊𝑇 , 𝑢𝑀𝑇 , 𝑢𝐹𝐶 , 𝑢𝑏]      (40) 
 

Grid is the primary source of pollutant emission from the 

created MG and any DGs such as 𝐹𝐶𝑠, and batteries. This leads 

to higher levels of pollutant emissions that contain nitrogen 

dioxide (𝑁𝑂𝑥) , carbon dioxide (𝐶𝑂2) , and sulfur dioxide 

(𝑆𝑂2). The pollutant emission is defined as: 
 

𝐹2(𝑥) = ∑[

24

ℎ=1

∑(

𝑁𝑔

𝑖=1

𝑢𝑖(ℎ)𝑃𝐺𝑖 (ℎ)𝐸𝐺𝑖(ℎ)) +∑(

𝑁𝑠

𝑗=1

𝑢𝑗(ℎ)𝑃𝑆𝑖 (ℎ)𝐸𝑆𝑖 (ℎ))

+ 𝑃𝑔 (ℎ)𝐸𝑔(ℎ)]                                                     (41) 
 

Whereas, 𝐸𝐺𝑖(ℎ),  𝐸𝑆𝑖(ℎ)  , and 𝐸𝑔(ℎ)  signifies the entire 

emitted pollutants in the generation units, storage devices, and 
grid, correspondingly, 𝑁𝑔 implies the count of generating units, 

and 𝑁𝑠 defines the count of storage devices. 
 

Constraints on the optimization issue include power generation 

boundaries, load balancing, ramp limits of renewable energy 

sources (RESs), and battery charging and discharging 

circumstances. At any moment, the power generated must be 

adequate to fulfill the load demand, which is indicated by the 

load balance constraint, expressed as follows: 
 

∑𝑃𝐺𝑖

𝑁𝑔

𝑖=1

(ℎ) +∑𝑃𝑏𝑗

𝑁𝑠

𝑗=1

(ℎ) + 𝑃𝑔(ℎ) = ∑𝑃𝐿

𝑁,𝛴

𝑒=1

(ℎ)                   (42) 

 

In which,  𝑁𝑘  defines the count of load points and  𝑃𝐿(ℎ) 
indicates the load power at ℎ hour. 

The second limitation defines the ramp values of RESs, it can 

be enhancing or reducing within generation, it is written as: 
 

𝑅𝑑𝑖𝛥𝑇 ≤ (𝑃𝑖(ℎ) − 𝑃𝑖(ℎ − 1)) < 𝑅𝑢𝑖𝛥𝑇                                (43) 
 

In which, 𝑅𝑑𝑖  and 𝑅𝑢𝑖  refers to the ramp-up and down of 𝑖𝑡ℎ 

DG, correspondingly, and 𝛥𝑇  stands for the time step. The 

generated power in all the devices installed in MG must 

accomplish the following equation (44). 
 

𝑃𝐺𝑖,𝑚𝑖𝑛(ℎ) ≤ 𝑃𝐺𝑖(ℎ) < 𝑃𝐺𝑖,𝑚𝑎𝑥(ℎ)𝑃𝑏𝑖,𝑚𝑖𝑛(ℎ) ≤ 𝑃𝑏𝑖(ℎ)
< 𝑃𝑏𝑖,𝑚𝑎𝑥(ℎ)                                                                                 (44) 
 

𝑃𝑔,𝑚𝑖𝑛(ℎ) ≤ 𝑃𝑔(ℎ) < 𝑃𝑔,𝑚𝑎𝑥(ℎ)   
 

Whereas, max  stands for the maximal boundary but min 

signifies the minimal boundary. The constrictions allocated to 

the battery function are vital to avoid damage, 
 

𝐸𝑏,min ≤ 𝐸𝑏(ℎ) < 𝐸𝑏,𝑚𝑎𝑥                                                        (45) 
 

𝑃𝑐ℎ(ℎ) ≤ 𝑃𝑐ℎ𝑟𝑎𝑡𝑒𝑑 , 𝑃𝑑𝑖𝑠𝑐ℎ(ℎ) ≤ 𝑃𝑑𝑖𝑠𝑐ℎ𝑟𝑎𝑡𝑒𝑑                            (46) 
 

In which, 𝐸𝑏,min and 𝐸𝑏,𝑚𝑎𝑥 implies the battery's minimal and 

maximal stored energies correspondingly, 𝑃𝑐ℎ𝑟𝑜𝑡𝑒𝑑  and 

𝑃𝑑𝑖𝑠𝑐ℎ𝑟𝑜𝑡𝑒𝑑  stands for the battery's maximal charging and 

discharging powers, correspondingly. The energy stored from 

the battery at ℎ hour is measured as: 
 

𝐸𝑏(ℎ) = 𝐸𝑏(ℎ− 1) + 𝜉𝑐ℎ𝑃𝑐ℎ(ℎ)𝛥𝑇−
1

𝜉𝑑𝑖𝑠𝑐ℎ
𝑃𝑑𝑖𝑠𝑐ℎ(ℎ)𝛥𝑇           (47) 

 

Whereas, 𝜉𝑐ℎ  and 𝜉𝑑𝑖𝑠𝑐ℎ  refers to the battery charging and 

discharging efficacies, correspondingly. 

 

░ 5. EXPERIMENTAL VALIDATION 
In this section, the simulation analysis of the RTSPIEM-AVOA 

method is tested using different scenarios, as listed below. 
 

• Scenario1: Normal operation of PV and WT 

• Scenario2: Operation of WT at rated power 

• Scenario3: Operation of PV and WT at rated powers 
 

5.1 Dataset 
• The MAR regional climate model is used by the University 

of Liège's Laboratory of Climatology to provide weather 

forecasts, which include air temperature and solar 

radiation, every 15 minutes. 

• In the MiRIS microgrid, PV generation and consumption 

were tracked with a 5-second resolution. 

• Our forecaster generated weather-based projections for PV 

generation and consumption with a 15-minute resolution, 

which were used in the study. 
 

With a resolution of 15 minutes, the weather forecasts are multi-

output predictions covering a 24-hour period [21]. They are 

produced utilizing a one-week learning set, rolling periodically. 

Every six hours, the model is updated, and the learning set is 

modified correspondingly. 

https://www.ijeer.forexjournal.co.in/
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This means that a PV and consumption prediction of 96 values 

is generated every quarter (one for each quarter of the next 24 

hours). More information about the MiRIS microgrid, located 

at the John Cockerill Group's international headquarters in 

Seraing, Belgium, can be found at 

https://johncockerill.com/fr/energy/stockage-denergie/. 
 

5.2 Implementation Tool 
MATLAB and General Algebraic Modeling Software (GAMS) 

were used to do the simulation. The African Vulture 

Optimization Algorithm (AVOA) in MATLAB was used to 

calculate the energy purchase and sale prices inside the cluster 

layer of microgrids as well as the energy sales pricing for each 

microgrid to consumers. These costs were inputs used to solve 

the GAMS optimization issue. 
 

Table 1 reports the overall total operation cost (TOC) outcomes 

of the RTSPIEM-AVOA method with existing models in 

Scenario1 [22]. Fig. 3 inspects the best fitness (BF) results of 

the RTSPIEM-AVOA method with existing technique. The 

outcomes highlighted that the TDO, ARO, and CHIO models 

have shown worse performance with least BF of 111.2540€ct, 

111.3790€ct, and 115.3970€ct, correspondingly. At the same 

time, the MRFO and DAOA techniques have shown slightly 

decreased BF of 113.2300€ct and 112.4660€ct correspondingly. 

Meanwhile, the HBA has managed to obtain certainly reduced 

BF of 103.4130€ct. However, the RTSPIEM-AVOA technique 

reaches optimal performance with minimal BF of 90.4130€ct. 

 

Figure 4 examines the elapsed time (ET) outcomes of the 

RTSPIEM-AVOA method with existing models. The results 

emphasized that the TDO, ARO, and CHIO techniques have 

shown worse performance with minimum ET of 1144.6930s, 

840.6840s, and 1250.6400s, correspondingly. Simultaneously, 

the MRFO and DAOA methods have shown slightly reduced 

ET of 1575.9800s and 784.5030s correspondingly. Meanwhile, 

the HBA has managed to attain certainly reduced ET of 

614.0530s. However, the RTSPIEM-AVOA method obtains 

optimum performance with least ET of 581.0530s. 
 

 

░ Table 1. TOC analysis of RTSPIEM-AVOA technique with existing models on Scenario1   

Minimizing the TOC in scenario1 

Parameter TDO ARO CHIO MRFO DAOA HBA 
RTSPIEM-

AVOA 

Best fitness (€ct) 111.2540 111.3790 115.3970 113.2300 112.4660 103.4130 90.4130 

Worst (€ct) 993.6950 732.0380 831.4630 551.3440 872.8470 224.0200 211.0200 

Mean (€ct) 118.7370 125.6960 160.6660 131.1310 218.3060 108.8550 89.8550 

Median (€ct) 111.7890 113.5760 126.6990 119.9720 180.5160 108.4130 90.4130 

Variance (€ct) 41.9755 42.0878 42.4442 43.0513 42.8693 4.8492 3.0100 

Std (€ct) 6.4789 6.4875 6.5149 6.5614 6.5475 2.2021 1.9800 

Elapsed time (s) 1144.6930 840.6840 1250.6400 1575.9800 784.5030 614.0530 581.0530 

Minimizing the pollutant emission in scenario1 

Best fitness (kg) 182.0810 182.3590 275.5860 183.1260 582.5390 182.0740 56.0740 

Worst (kg) 873.3610 631.5600 892.0540 557.4120 951.0020 575.9690 485.9690 

Mean (kg) 185.7870 195.4290 313.6610 197.3650 650.6400 185.7230 50.7230 

Median (kg) 182.1350 182.8690 290.5860 184.7770 626.0950 182.1240 38.1240 

Variance (kg) 8.8562 8.8339 8.4013 8.7153 54.6283 0.0052 0.0032 

Std Std  (€ct) 2.9759 2.9722 2.8985 2.9522 7.39109 0.0718 0.0049 

Elapsed time (s) 1144.6900 840.6840 1250.6400 1575.9800 784.5030 614.0530 522.0530 

 
Figure 3. BF analysis of RTSPIEM-AVOA method on scenario1 

 
Figure 4. ET analysis of RTSPIEM-AVOA method on Scenario1 

https://www.ijeer.forexjournal.co.in/
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Figure 5 shows the emission results of the RTSPIEM-AVOA 

method with existing systems under Scenario1. According to 

the findings, the DAOA approach performed less well than 

optimal at maximum emission levels. Followed by, the TDO, 

ARO, CHIO, MRFO, and HBA models have resulted in 

somewhat reduced emission levels. Nevertheless, the 

RTSPIEM-AVOA technique shows better performance over 

other models with the lowest emission levels. 
 

 
 

Figure 5. Emission analysis of RTSPIEM-AVOA approach on 

Scenario1 

Table 2 examines the overall TOC outcomes of the RTSPIEM-

AVOA approach with existing methods in Scenario2. Figure 6 

reviews the BF outcomes of the RTSPIEM-AVOA method with 

existing techniques. The results emphasized that the TDO, 

ARO, and CHIO approaches have shown worse performance 

with minimum BF of 55.582€ct, 55.724€ct, and 60.165€ct, 

correspondingly. Simultaneously, the MRFO and DAOA 

techniques have shown slightly decreased BF of 57.764€ct and 

56.676€ct correspondingly. Meanwhile, the HBA has managed 

to attain certainly decreased BF of 55.580€ct. But the 

RTSPIEM-AVOA method obtains optimum performance with 

least BF of 48.580€ct. 

 

Figure 7 inspects the ET results of the RTSPIEM-AVOA 

method with existing techniques. The results highlighted that 

the TDO, ARO, and CHIO approaches have revealed worse 

performance with minimum ET of 1144.693s, 840.684s, and 

1250.640s, correspondingly. Simultaneously, the MRFO and 

DAOA techniques have shown slightly decreased ET of 

1575.980s and 784.503s correspondingly. Meanwhile, the HBA 

has managed to attain certainly decreased ET of 614.053s. 

However, the RTSPIEM-AVOA method obtains optimum 

performance with least ET of 557.053s. 
 

 

░ Table 2. TOC analysis of RTSPIEM-AVOA technique with existing models on Scenario2   
 

Minimizing the TOC in scenario2 

Parameter TDO ARO CHIO MRFO DAOA HBA 
RTSPIEM-

AVOA 

Best fitness (€ct) 
55.582 55.724 60.165 57.764 56.676 55.580 48.580 

Worst (€ct) 939.290 630.610 933.870 434.750 535.890 435.650 425.650 

Mean (€ct) 63.146 67.508 97.845 72.105 134.530 60.390 55.390 

Median (€ct) 
56.291 56.440 67.705 63.149 139.220 55.580 50.580 

Variance (€ct) 
18.301 18.417 19.928 19.567 18.681 18.300 10.300 

Std (€ct) 
4.278 4.291 4.464 4.423 4.322 4.278 2.722 

Elapsed time (s) 1144.693 840.684 1250.640 1575.980 784.503 614.053 557.053 

Minimizing the pollutant emission in scenario (2) 

Best fitness (kg) 
145.944 145.945 159.634 146.171 324.958 137.008 30.008 

Worst (kg) 
752.899 600.313 658.708 550.711 459.245 708.795 615.795 

Mean (kg) 
148.770 157.656 211.261 158.956 356.798 141.685 32.685 

Median (kg) 145.946 146.073 187.347 147.267 358.102 137.650 42.650 

Variance (kg) 0.604 0.604 0.983 0.599 12.163 0.001 0.000 

Std (€ct) 
0.777 0.777 0.991 0.774 3.488 0.025 0.015 

Elapsed time (s) 
1069.830 790.374 1507.500 1176.130 651.459 607.052 512.052 

https://www.ijeer.forexjournal.co.in/
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Figure 6. BF analysis of RTSPIEM-AVOA method on Scenario2 

 

 
Figure 7. ET analysis of RTSPIEM-AVOA technique on Scenario2 

 

Figure 8 shows the emission outcomes of the RTSPIEM-

AVOA method with existing approaches under Scenario2. The 

outcome shows that the DAOA method has demonstrated poor 

performance with maximum emission levels. Followed by, the 

TDO, ARO, CHIO, MRFO, and HBA approaches have resulted 

in somewhat reduced emission levels. Nonetheless, the 

RTSPIEM-AVOA method illustrates the best performance over 

other techniques with minimum emission levels. 
 

 
Figure 8. Emission analysis of RTSPIEM-AVOA technique in 

Scenario2 

Table 3 reports the overall TOC outcomes of the RTSPIEM-

AVOA method with existing techniques in Scenario3. Figure 9 

examines the BF outcomes of the RTSPIEM-AVOA method 

with existing techniques. The outcomes emphasized that the 

TDO, ARO, and CHIO approaches have shown worse 

performance with minimum BF of 89.069€ct, 89.066€ct, and 

108.673€ct, correspondingly. Simultaneously, the MRFO and 

DAOA methods have shown slightly reduced BF of 91.822€ct 

and 122.796€ct correspondingly. Meanwhile, the HBA has 

managed to attain certainly decreased BF of 87.890€ct. 

However, the RTSPIEM-AVOA method obtains best 

performance with least BF of 33.890€ct. 
 

 

░ Table 3. TOC analysis of RTSPIEM-AVOA technique with existing models on Scenario3    

Minimizing the Total operating cost in scenario (3) 

Parameter TDO ARO CHIO MRFO DAOA HBA 
RTSPIEM-

AVOA 

Best fitness (€ct) 89.069 89.066 108.673 91.822 122.796 87.890 33.890 

Worst (€ct) 738.853 588.108 829.766 506.106 741.180 529.737 484.737 

Mean (€ct) 101.297 100.793 143.768 112.734 222.409 95.403 40.403 

Median (€ct) 91.783 91.256 113.314 100.052 218.107 87.971 31.971 

Variance (€ct) 35.103 35.607 38.499 36.783 52.976 4.816 3.084 

Std (€ct) 5.925 5.967 6.205 6.065 7.278 2.195 1.906 

Elapsed time (s) 1707.730 1464.074 2155.500 1892.530 1224.859 1199.552 1095.352 

Minimizing the pollutant emission in scenario (3) 

Best fitness (kg) 134.988 135.479 173.532 139.118 458.675 134.805 96.805 

Worst (kg) 624.170 467.957 636.160 413.689 647.019 452.889 421.889 

Mean (kg) 137.663 143.881 210.747 148.178 527.224 136.880 85.880 

Median (kg) 135.369 135.955 191.142 140.098 531.177 134.839 74.839 

Variance (kg) 0.014 0.022 1.316 0.011 29.901 0.016 0.010 

Std (kg) 0.120 0.148 1.147 0.105 5.468 0.126 0.104 

Elapsed time (s) 1044.730 764.074 1468.500 1140.530 620.859 575.552 476.352 

https://www.ijeer.forexjournal.co.in/
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Figure 10 scrutinizes the ET outcomes of the RTSPIEM-

AVOA method with existing techniques. The outcomes 

emphasized that the TDO, ARO, and CHIO approaches have 

shown worse performance with minimum ET of 1707.730s, 

1464.074s, and 2155.500s, correspondingly. Simultaneously, 

the MRFO and DAOA methods have shown slightly reduced 

ET of 1892.530s and 1224.859s correspondingly. Meanwhile, 

the HBA has managed to attain certainly decreased ET of 

1199.552s. However, the RTSPIEM-AVOA method obtains 

optimum performance with least ET of 1095.352s. 
 

 
Figure 9. BF analysis of RTSPIEM-AVOA technique on Scenario3 

 
 

 

 
 

 
Figure 10. ET analysis of RTSPIEM-AVOA technique on Scenario3 

 

 
Figure 11. Emission analysis of RTSPIEM-AVOA technique on 

Scenario3 

Figure 11 demonstrates the emission outcomes of the RTSPIEM-AVOA method with existing approaches under Scenario3. The 

results show that the DAOA approach had unsatisfactory performance, resulting in the greatest levels of emissions. Followed by, 

the TDO, ARO, CHIO, MRFO, and HBA techniques have resulted in somewhat decreased emission levels. Nonetheless, the 

RTSPIEM-AVOA method is superior to other techniques with minimum emission levels. Therefore, the RTSPIEM-AVOA 

technique can be applied for enhanced scheduling in hybrid MG environment.  
 

░ Table 4. Comparison of cost estimation and voltage convergence with traditional methods 
 

Reference Wind 
system 

($/kW) 

Solar 
Panel 

($/kW) 

Fcs 
($/kW) 

Electrolyzer 
($/kW) 

Total or 
Total 

Number of 

Iterations 

Total cost after 
Assessment $ 

Voltage 
Convergence 

Power 
quality 

improvem

ent 

[23] - 60 2 45 - - No No 

[24] 5 5 5 30 1408s - No No 

[25] 200 360 150 - 3500s - No No 

[26] 900 770 907 439 200 iterations 2.44×107 to 
2.33×107 

  

Proposed 700 800 900 400 100 iterations 2.99×107 to 

2.173×107 

Yes Yes 

Table 4 demonstrates unequivocally that the method used 

lowers the cost of a microgrid system from $24.4 million to 

$22.9 million while improving power quality over 100 

iterations. 
 

░ Table 5. Computational complexity Analysis for proposed 

RTSPIEM-AVOA model 

 

 

Models Computational complexity 

TDO 1.191   

ARO 1.204   

CHIO 1.232 

MRFO 1.278 

DAOA 1.156 

HBA 1.123 

RTSPIEM-AVOA 1.029 
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Figure 12. Computational complexity Analysis for proposed 
RTSPIEM-AVOA model 

 

In table 5 and figure 12, the computational complexity of the 

proposed RTSPIEM-AVOA method is associated to that of 

existing methods. The data clearly displays that the RTSPIEM-

AVOA method outperformed all other approaches. The 

recommended RTSPIEM-AVOA method, for instance, took 

only 1.029ms to compute, whereas other present approaches 

such as TDO, ARO, CHIO, MRFO, DADO, HBA and HBA 

have taken 1.191ms, 1.204ms, 1.232ms, 7.198ms, 1.278ms, 

1.156ms and 1.123ms, respectively.  
 

5.2 Discussion 
The integration of the African Vulture Optimization Algorithm 

(AVOA) for optimizing real-time scheduling in post-islanding 

energy management represents a significant advancement in 

hybrid microgrid environments. The research demonstrates that 

AVOA effectively addresses the complex challenges of energy 

distribution and management following an islanding event, 

where traditional centralized control methods may falter. The 

algorithm’s bio-inspired mechanisms, mimicking the foraging 

behavior of African vultures, facilitate efficient exploration of 

the solution space, enabling the identification of optimal energy 

management strategies that balance supply and demand while 

minimizing operational costs. This adaptive approach is 

particularly crucial in hybrid microgrids, where diverse energy 

sources, including renewable and conventional, must be 

seamlessly integrated. The outcomes also highlight the essential 

function that flexible scheduling systems with the ability to 

swiftly adapt to changing real-time situations perform. By 

leveraging AVOA, the proposed method not only enhances the 

responsiveness of the microgrid system but also contributes to 

its resilience against potential disruptions, thereby ensuring 

reliable energy supply during critical periods. 

 

░ 6. CONCLUSION  
In this study, we have presented an RTSPIEM-AVOA on 

hybrid MGs environment.  The RTSPIEM-AVOA method is 

used to improve its operation by detecting the optimum 

scheduling of the installed generation unit. The AVOA balances 

the exploitation and exploration stages to effectively deal with 

complex optimization problems and prevent local optima. The 

proposed MG includes FC, PV, WT, battery storage, and MT 

systems. Three scenarios are examined in this study: 

photovoltaic (PV) and wind turbine (WT) systems operating 

normally, WT systems operating at maximum power 

generation, and both PV and WT systems operating at their 

rated capacity. We take into account two target functions: 

lowering operational costs and decreasing pollutant emissions. 

Based on experimental results, the RTSPIEM-AVOA technique 

works better than previous models and efficiently optimizes 

microgrid scheduling to meet community demands as they 

change and to support a more environmentally conscious and 

sustainable energy future. 
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