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░ ABSTRACT- Nowadays, the amount of smoke and dust in the air is increasing significantly due to industrialization. The 

smoke and dust particles accumulate in the relatively dry air and cause haze in the surrounding area, impairs visibility. This haze 

also affects photography, which reduces the images' quality and looks unnatural. The hazy atmosphere affects even pictures taken 

with a cell phone in everyday life. There are many methods to remove this haze content from the image, but they have not yielded 

great results. The long-time and short-time shots constantly differed while attempting to eliminate atmospheric haze from the 

images. To solve this problem, a fusion rule was proposed to fuse the luminance and dark channel prior (DCP) methods. The 

transmission estimated with the DCP method contributes mainly to the foreground regions, while the luminance model deals with 

the celestial regions. The fusion technique is a pixel-level fusion approach in the transform domain. The proposed approach 

combines the transmittance values obtained from the dark channel in front of the foreground region (background) and the luminance 

model for the sky region in the transform domain using the Stationary Wavelet Transform (SWT) with the optimized level of 

decomposition. The proposed algorithm was subjected to quantitative analysis of some statistical measures. The result shows that 

the proposed method successfully maintains the maximum visual truth content by effectively removing atmospheric haze from the 

images. 
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░ 1. INTRODUCTION   
In recent years, industrialization and urbanization have 

increased in India. At the same time, pollution has increased, 

resulting in a very hazy atmosphere. The deferred elements in 

the atmosphere, such as dust, smoke, and other pollutants, linger 

between the sky and the ground. This leads to a deterioration in 

the quality of captured images, which in turn leads to difficulties 

in analysis, such as CCTV surveillance, aerospace object 

tracking and detection, advanced driver assistance systems 

(ADAS), and especially in taking artistic images in daily life 

with cell phones [1]. Therefore, the technique of image 

enhancement is of practical importance. Image Restoration is 

ultimately about enhancing an image in a certain way. The 

degradation phenomenon should be known in advance to 

restore the original image efficiently. Restoration models have 

been developed to treat haze and insignificant colours in close-

up images [2-4]. However, dealing with atmospheric haze and 

the lack of a basic standard for measuring atmospheric thickness 

in long-distance images is difficult. 

Haze removal using a physical atmospheric scattering model 

has recently gained much popularity. Numerous single-image 

haze reduction techniques have been proposed based on the 

atmospheric scattering model first described and derived in 

1999 [6,7]. An atmospheric veil, like dark channel matting with 

a median filter, was suggested in [8] as a quick way to process 

dehazing. To get satisfactory results, though, many factors must 

be changed. A model for the prior likelihood of scene radiance 

dehazing was developed [9]. As statistical priors on the depth 

and albedo, it made it possible to integrate structural 

restrictions. The authors in [10] suggested combining the 

intrinsic boundary restriction for image dehazing with the 

contextual regularized weighted L1-norm to estimate an 

optimal transmission map. All other approaches are ineffective 

for the sky treatment effect, except the method used in [11]. An 

innovation in the dehazed field is the dark channel prior method 

put out by [1]. Nevertheless, it still has limits regarding colon 

distortion following haze removal and processing the sky area. 

Luminance prior haze removal was used in certain works to 

preserve the image's natural appearance following haze 

removal. According to the authors in [12], there is a significant 

variation in intensity value when the concentration of haze 

changes. There was almost no residual error in the relationship 

between intensity and haze concentration. Consequently, the 

whole image's haze was removed by simulating the depth using 

the linearly converted luminance. Several techniques were used 

to segregate and process the sky and non-sky regions to create 

a natural sky in dehaze images. The study in [2] used an 

intensity gradient to divide the sky and non-sky regions. In [3], 

transmission map and intensity data were utilized to divide the 

sky and non-sky regions using a constant threshold. The depth 
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map was clustered to sky and non-sky regions in [4] using the 

Gaussian Mixture Model (GMM). A context-adaptive super 

pixel segmentation technique was presented by Yoon [5] to 

separate an image into labels such as ground and sky. Images 

with much haze tend to have a connection between the sky and 

distant background. With these methods [2–5], it is difficult to 

determine the precise border between sky and non-sky regions 

in a strong hazy image. In [14], a supervised learning method 

by learning the parameters of the dehaze model was presented, 

whereas in [13], a learning framework for dehazing in tandem 

with the growing body of research on deep learning was 

proposed. A multi-scale deep network was used in [15] to 

forecast a holistic transmission map. In [16] a Dehaze Net 

model utilizing Convolutional Neural Networks (CNN) was 

proposed. The CNN layers were created specifically to embody 

the pre-existing priors in the field of image dehazing. The 

outcome was dismal but natural. 
 

The prior model for the dark channel is a widely accepted 

technique for image rectification. This model assumes that the 

pixel value tends to be higher in the hazy region while it 

approaches zero in the haze-free region. The value of the dark 

channel in the haze-free sky region is higher than zero. 

Therefore, the output image of this model is usually distorted. 

Another fundamental problem with this method is the 

evaluation of atmospheric light. Since there is no standard 

measurement procedure, the estimated value corresponds to a 

factor of 0.001 of the main intensity value of the dark channel 

[1]. This leads to a colour shift in the resulting image, i.e., the 

higher the value, the darker the restored image. 
 

The restored image's effectiveness is increased using the 

luminance model [13, 19]. The sky region requires more 

luminance, i.e. high transmission values. Therefore, the 

luminance model replicates the scene depth for higher 

transmission values. To improve the visualization of the output 

image, the appropriate and useful amount of information from 

both transmission models is fused in the transformation domain. 

Image fusion is a valuable method of consolidating images of 

the same scene to obtain the greatest information content from 

the final, restored image. Image fusion can be performed at 

three basic levels: the pixel, feature, and decision levels [20, 

21]. In feature-level image fusion, features are extracted, and 

then a fusion algorithm is applied based on the extracted 

features. In decision-level image fusion, the extraction and 

classification of useful information from the input images are 

performed independently. In pixel-level image fusion, each 

pixel is determined from a set of pixels in different source 

images. Thus, pixel-level images have shown remarkable 

success in image denoising. 
 

There are different approaches to image fusion. The basic 

classification is spatial domain fusion and transformation level 

fusion. In spatial domain fusion, local spatial features such as 

gradient, local standard deviation, angle, etc. are used for image 

fusion, resulting in spatial distortions in the fused image. 

Transformation domain fusion, on the other hand, uses three 

basic steps: Images in the spatial domain are converted to the 

transform domain, the fusion rule required by the proposed 

method is applied to obtain the required coefficients, and then 

the fused coefficients of the transform domain are fed back to 

the spatial domain to obtain the fused image. There are various 

pyramid-based declinations, such as the discrete wavelet 

transform (DWT), the stationary wavelet transforms (SWT), 

etc., to obtain such changes. 
 

The transformation used in this work is the stationary wavelet 

transform (SWT), which is quite like the DWT, with the 

fundamental difference that no down-sampling of images 

between hierarchy levels in the SWT [22-24]. Therefore, the 

resolution of the sub-images obtained after the decomposition 

process of the transformation is well preserved. 
 

This paper proposes a fusion approach in the transform domain 

for effective and natural recovery of haze-free sky images that 

considers the yields of the two basic recovery models. 
 

The paper is structured as follows: Section 2 briefly overviews 

the image degradation model, the DCP model, and the 

luminance model. Then, the proposed SWT-based fusion 

approach is explained in Section 3, and finally, simulated results 

along with performance analysis are shown in Section 4. 

 

░ 2. IMAGE DEGRADATION MODEL  
The following expression indicates the degradation model 

widely used in computer vision [25]: 
 

HI(w) = RI(w)Tm(w) + LA(1 − Tm(w))                                      (1) 

                                               

Here 𝐻𝐼  is the original blurred image,  RI  is the restored 

defocused image and 𝑇𝑚  describes the mean transmission, 

which expresses the strength of the light intensity that survives 

the path between the viewer and the sight in the visual view and 

𝐿𝐴 describes the global atmospheric light. 
 

Various atmospheric degradation factors and even increasing 

distance from an object lead to an increase in opacity. Since the 

proportion of light reaching the object is determined by the 

transmittance due to the reflection of light from the object, a 

greater attenuation is observed for light traveling over a greater 

distance [26]. The transmission is therefore given as 
 

 Tm(w) = e−βd(w)                                                                   (2)                                                                                                  
 

Here β is the coefficient of scattering. It depends on the 

wavelength of the light, its polarization state, etc., and d 

represents the scene's depth. 
 

2.1. Dark Channel Prior Model (DCP) 
The DCP is based on detecting dark channel values in 'haze-

free' images and the absence of the sky. As a rule, pixels with 

low intensity are observed in haze-free image fields in at least 

one colour channel, i.e., the dark channel of the haze-free image 

normally has zero values. It is mathematically expressed as, 
 

RI
dark_ch(w) = min

y∈Ω(w)
( min

c∈{r,g,b}
RI

c(y)) → 0                                 (3)                                                            

 

Here, 𝑅𝐼
𝑐  is the value of 𝑅𝐼 in one colour channel and 𝛺(𝑤) a 

regional patch with w was center. The coefficients of 

https://www.ijeer.forexjournal.co.in/
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transmission, determined by the DCP model with 

normalization, are defined as: 
 

T̃d(w) = 1 − ω min
y∈Ω(w)

( min
c∈{r,g,b}

HI
c(y)

LA
c )                                     (4)    

 

Here, 𝜔 defines the degree of de-hazing to present depth with 

its value ranging as (0≤ 𝜔 ≤1). 
 

The guided filter can also be used to refine the dark channel 

transmission defined by Td to increase computational speed, 

improve image quality, and even remove artifacts and halos 

[18]. 
 

2.2. Luminance Model 
The DC estimate in the sky area is much higher than zero, which 

makes the sky area look unnatural. Therefore, the use of the 

DCP method is unsuitable for covering the sky area. Similarly, 

the DCP method fails when the atmospheric light and the 

objects' colour match and there are no shadows. 
 

Based on model equation (1), the transfer is modified as 

follows: 
 

Tactual(x) =
1−HIc(x)/LAc

1−RIc(x)/LAc

                                                          (5)                                                                                          

 

As assumed in equation (3), the denominator of equation (5) 

must be set to one to obtain the estimated transmission value. 

The estimated transmission in the sky region is lower than its 

actual value. Therefore, the efficiency of the haze removal 

technique is lower in the sky region because the demand for 

transmission values is larger. It is difficult to estimate the actual 

depth of the sky because it is uncertain. According to the 

luminance distribution in the HSL colour space, hazy images 

are justified with a change in depth. Luminance is therefore 

used to imitate the depth of the scene. 
 

Based on luminance, estimated transmission is given as:  
 

TL(x) = e−βL̃(x)                                                                     (6)   
    
Here 𝑇𝐿  defines the estimated luminance transfer. L is the 

revised luminance. There are various models such as the 

Henyey and Greenstein phase function [7], the Mie scattering 

model [27] and the Rayleigh scattering model [16] to describe 

atmospheric scattering. In a hazy atmosphere, the Mie 

scattering model is most suitable. The Mie scattering model 

states that the angle of the camera, the amount of haze and the 

distance of the object together determine the scattering 

coefficient β. To capture the sky images, a camera angle of 60° 

is sufficient. Therefore, we used the corresponding values of β 

in the Mie scattering model [27] for a camera angle of 60°. The 

values of the scattering coefficient are given as: 
 

β = {

0.3324, λ = 700μm(red)
0.3433, λ = 520μm(green)

0.3502, λ = 440μm(blue)
                                            (7)                                                            

                                                                              

To obtain the actual depth, the luminance is expanded as 

follows: 

 L̃(x) =
τ

l∗ l(x)                                                                        (8)   

                                                                                                                               

Where τ is a range of real depth determined based on an 

optimization procedure, l is the luminance of the input image, 

and l* is set to 95% of the luminance value, which describes the 

range of available luminance. 
 

This parameter is set so that the difference between the 

transmission maps of DCP and luminance, P(τ), is the smallest. 

The difference is calculated as 

                                                                                                                 

P(τ) =
1

n
∑ (TL(τ) − Tdn )2                                                    (9)                                                                                                                                                                  

                                                                                                         

Here 𝑇𝐿  is the luminance transmission,  Td is a transmission of 

DCP and the total number of images is represented by n, which 

is used to calculate the mean square error P. The higher the 

value of τ, the greater the haze removal in strong haze. 

However, a lower value provides a more natural visual effect in 

less hazy conditions. 

 

░ 3. PROPOSED FUSION METHOD 

FOR IMAGE DE-HAZING 
This piece of work presents a Fusion of Luminance and Dark 

Channel Prior method to effectively and organically restore the 

sky region by de-hazing the hazy image. The medium 

transmission correction and atmospheric light estimate in the 

image degradation model are the primary steps of the suggested 

technique.  While examining hazy images, it is observed 

that the shift in luminance from the foreground to the sky often 

corresponds well with the change in depth. It is suggested that 

the transmission of sky and background regions be determined 

from the luminance model. The dark channel prior is the main 

basis for estimating the foreground region's transmission. A 

transmission weight is utilized to fuse the transmissions from 

the luminance and dark channel prior models. An 

atmospherically degraded image's visual quality can be greatly 

improved by the suggested fusion technique by maintaining 

colour distortion and processing the sky area more organically. 

Furthermore, in the process of refining raw transmissions, a 

novel technique called Fast Guided Filter [9] is used instead of 

the more time-consuming and memory-intensive Guided Filter 

[10] by down-sampling to estimate the dark channel prior 

transmission map. Due to this, the proposed approach is faster 

than other equivalent methods currently in use and saves 

computing time. 
 

The proposed approach combines the transmission values 

obtained from dark channel prior for foreground (background) 

region and luminance model for sky region in transform domain 

using SWT. The fusion of the transmission values is done at 

pixel level in this proposed approach. The framework of the 

proposed fused transmission model is depicted in figure 3.  
 

• Initially the dark channel prior transmission model was 

applied on the original hazy image to obtain a haze-free 

image. This method was carried out to obtain the 

transmission values for foreground or background region. 

The output image was further passed through guided filter 

https://www.ijeer.forexjournal.co.in/
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to remove artifacts and halos. Similarly, to obtain the 

transmission values for sky region, luminance model was 

used. 
 

• Then, both the haze-free images obtained were transferred 

to transform domain by use of 2-D stationary wavelet 

decomposition, and we get approximate detail coefficient 

along with horizontal, vertical, and diagonal coefficients 

for both the images. 
 

• The approximate detail coefficient obtained from both the 

images were fused using the fusion rule as follows: 
 

 FA(x, y) = p(x, y). CAd
(x, y) + q(x, y). CAl

(x, y)                    (10)  
 

Where  
 

p(x, y) + q(x, y) = 1                                                             (11)                                                                                                                                                                                                                    
 

Here p and q are the weighted coefficients and 𝐶𝐴𝑑
  represent 

the approximate coefficients from the dark channel prior and 

𝐶𝐴𝑙
 is the approximate coefficient from the luminance model. 

 

The horizontal, vertical, and diagonal coefficients for the fused 

image were selected considering the lowest value from the 

respective decomposed sets. 
 

In the end, the image was restored by an inverse stationary 

wavelet transform of the fused image. 

 
Figure 1.  Framework of the proposed transmission model based on 

fusion 

 

░ 4. RESULT AND DISCUSSION 
In this section, the effectiveness of the proposed fusion method 

in the transformation domain is presented based on various 

statistical parameters.  
 

The quantitative analysis shown in table 1 is based on the 

analysis of seven different hazy images, namely A, B, C, D, E, 

F and G. The seven initial images with the respective de-hazed 

images corresponding to the different methods are shown in 

figure 2. The performance of the proposed method is evaluated 

using statistical parameters such as PSNR, deviation index, and 

correlation and structural similarity measurement indices. A 

brief description of the parameters is given below. 
 

4.1 Peak Signal to Noise Ratio (PSNR) 
PSNR is an important tool to quantify the acceptability of the 

image. PSNR [28] is dependent on the Root Mean Square Error 

(RMSE), which can be mathematically determined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ ∑ [𝑅𝑖𝑚𝑔(𝑢,𝑣)−𝑅𝐹𝑖𝑚𝑔(𝑢,𝑣)]2𝑛

𝑣=1
𝑚
𝑢=1

𝑚∗𝑛
                              (12)                                                                     

 

𝑅𝑖𝑚𝑔 serves as the model image and 𝑅𝐹𝑖𝑚𝑔 is the fused image 

that was restored. The corresponding PSNR is: 
 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑛(
𝑃 𝑚𝑎𝑥∗ 𝑃𝑚𝑎𝑥

𝑅𝑀𝑆𝐸2 )                                             (13)  

                                                                                                                                                                  

𝑃𝑚𝑎𝑥   is the maximum intensity in the fused image. A higher 

PSNR value indicates a better fusion process. 
 

4.2. Deviation Index (DI) 
The deviation index is measured as follows: 
 

Dindex =
1

p∗q
∑ ∑

|ImgH(s,t)−IF(s,t)|

ImgH(s,t)

q
t=1

p
s=1                                 (14) 

 

𝐼𝑚𝑔𝐻 stands for the intensity of the blurred image and  𝐼𝐹  for 

the intensity of the fused image. A better fusion process is 

achieved if the value of DI is lower. 
 

4.3. Correlation Coefficient (CC) 
It is calculated as follows: 
 

CC(If, Ig) =
∑ |(Ifs,t−μf)×(Igs,t

−μg)|s,t

√∑ (Ifs,t−μf)2×∑ (Igs,t
−μg)2

s,ts,t

                                  (15) 

 

𝐼𝑓𝑠,𝑡
  and 𝐼𝑔𝑠,𝑡

are the intensities at the position (s,t) of the 

original and the fused image.  μf and 𝜇𝑔 are the mean values of 

the fused and original image. A higher CC value means a better 

fusion result. 
 

4.4. Structural Similarity Index (SSIM) 
The structural similarity index essentially measures three basic 

properties of an image: luminance, contrast, and structure. The 

SSIM is the multiplicative combination of all these three terms 

[28]. 
 

𝑆𝑆𝐼𝑀(𝑝, 𝑞) = [𝐼𝑙(𝑝, 𝑞)]𝛼 . [𝐼𝑐(𝑝, 𝑞)]𝛽 . [𝐼𝑠(𝑝, 𝑞)]𝛾                     (16)                                                    
 

𝐼𝑙 , 𝐼𝑐 and 𝐼𝑠 are the terms for luminance, contrast, and structure 

respectively. A higher value of SSIM indicates a better 

performance of the fusion process. 
 

░ Table 1. Results of several de-hazing methods 
 

Image Method PSNR DI CC SSIM 

A 

DCP model 15.5435 
0.427

4 

0.885

6 

0.7126 

Luminance 

model 
16.7449 

0.406

2 

0.930

6 

0.7456 

Proposed 

model 
19.2181 

0.213

5 

0.944

5 

0.8139 

B 

DCP model 15.5824 
0.521

9 

0.932

7 

0.5799 

Luminance 

model 
20.5913 

0.313

6 

0.944

8 

0.7506 

Proposed 

model 
23.2350 

0.220

3 

0.964

1 

0.7657 

C DCP Model 16.1545 
0.338

7 

0.944

4 

0.6394 

https://www.ijeer.forexjournal.co.in/
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Luminance 

model 
20.8178 

0.260

7 

0.969

3 

0.6687 

Proposed 

model 
20.9928 

0.187

5 

0.986

7 

0.6960 

 

D 

DCP Model 20.1898 
0.447

1 

0.891

6 

0.7415 

Luminance 

model 
24.7872 

0.261

3 

0.913

6 

0.8976 

Proposed 

model 
32.4007 

0.099 0.929

2 

0.9609 

E 

DCP model 19.1817 
0.537

5 

0.969

3 

0.6960 

Luminance 

model 
24.0105 

0.388

2 

0.964

9 

0.5544 

Proposed 

model 
26.0968 

0.217

3 

0.979

7 

0.6845 

F 

DCP model 20.1898 
0.447

1 

0.913

6 

0.7415 

Luminance 

model 
24.7872 

0.261

3 

0.926

3 

0.8976 

Proposed 

model 
27.4007 

0.190

3 

0.969

2 

0.9609 

G 

DCP model 25.5824 
0.521

9 

0.932

7 

0.5799 

Luminance 

model 
28.5913 

0.313

6 

0.964

1 

0.7506 

Proposed 

model 
33.2350 

0.220

3 

0.984

8 

0.7656 

 

The proposed method is compared to two existing popular de-

hazing methods. The first method is dark channel prior, and the 

other one is the luminance model. The results of the models are 

in the second column and column of figure 2 respectively. In 

addition to the visual analysis, the suggested algorithm is 

evaluated by the analysis of four quantitative assessment 

parameters. The original, haze-free images served as the ground 

truth for comparison with the final de-hazed images because it 

was challenging to obtain the corresponding ground truth data 

for the input haze images. The two metrics used to assess the 

variations between each pair of ground truth haze-free image 

and de-hazed result were PSNR (Peak Signal to Noise Ratio) 

and SSIM (Structural Similarity Index). The CC (Correlation 

Coefficient) and DI (Deviation Index) were the other two 

evaluation metrics that were measured using the haze image as 

the reference. Table 1 presents a summary of the results of the 

objective assessment. The highest PSNR, SSIM, and CC values 

are obtained using the suggested strategy. It attests to the fact 

that that outcome is the most accurate. Additionally, it is evident 

that the predicted outcome, which is consistent with the ground 

reality, maintains the optimal natural weather conditions in the 

sky region. The PSNR score of the luminance model approaches 

that of the suggested method, although the output is typically a 

little fuzzy and the foreground is excessively dark. Their score 

illustrates that their results have a lot of black points. The results 

of Luminance model and DCP model have large DI values than 

the proposed method. This is because the suggested method 

does not result in over-sharpened edges, but the outputs of these 

methods have a lot of noise in the sky region. The result shows 

that the proposed algorithm treats both the sky region and the 

foreground region more naturally and restores the details of the 

scene well. 

 
 

Figure 2.  Hazy Images (A, B, C, D, E, F, G) and results based on 

different de-hazing   methodologies 

 

░ 5. PROCEDURE FOR LEVEL 

OPTIMIZATION FOR WAVELET 

DECOMPOSITION 
The total number of decomposition levels must be optimized to 

obtain an optimal fusion result for the restoration since 

changing the scale of the decomposition levels leads to a 

different performance of the fusion technique. The performance 

of wavelet-based image fusion depends on the number of 

decomposition levels in the wavelet transform. To obtain the 

optimal fusion results, the number of decomposition levels need 

to be optimized using optimization algorithm. As shown in 

figure 3, the flow is as follows. 
 

 
 

Figure 3.  Flowchart for Optimization of Decomposition Level of 

SWT 
 

https://www.ijeer.forexjournal.co.in/
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• Let the number of the decomposition levels for the 

wavelet-based image fusion is J. The value range of J is 
 

 0 ≤ J ≤ log2 (N −1)                                                               (17) 
     
 where the size of original images is N by N. 
 

• Thereafter, SWT of the resulted DCP model output and 

luminance model output images A and B were found up to 

specified decomposition level. Each coefficient sub-image 

is divided into non-overlapping blocks with the size of m 

x n. The ith image blocks of A and B sub-images are 

referred to as Ai and Bi respectively. 

• The transmittance values of two corresponding blocks Ai 

and Bi, given by Ta and Tb are compared to determine the 

sharper image block and ith image block Fi of the fused 

image can be constructed as: 
 

   Fi = {

Ai if Ti
a > Ti

b

Bi if Ti
b > Ti

a

(Ai + Bi)/2 otherwise

                                (18) 

 

Subsequently, using inverse transform, all the fused coefficients 

are coupled to get final fused image employing hybrid approach 

and then optimization algorithm, as shown in the above 

flowchart, is developed under the condition of obtaining 

maximum PSNR and CC to achieve the optimal degree of 

decomposition of SWT. The termination criterion for the 

algorithm is set so that the decomposition level with the 

maximum PSNR value has the largest similarity value so that 

maximum information content can be recovered in the restored 

image. 

 

░ 6. CONCLUSIONS 
In this work, a simple but innovative and very efficient method 

for reducing haze in single images was proposed. The main 

problems of the DCP method were investigated and a novel 

strategy was proposed to solve the haze reduction problems of 

images with sky. In the proposed approach, dark channel prior 

and luminance models were first used to find the transmission 

coefficients for each hazy source image, and then SWT was 

applied to each transmission coefficient. To obtain better 

results, the estimated transmission coefficients were fused and 

reconfigured using inverse wavelet processing. The visual 

impact and quantitative evaluation of the statistical    parameters 

show that the proposed transmission model-based image fusion 

provides significant added value in preserving the structural 

features of the objects and the resolution of the image compared 

to other currently used restoration methods. It was also found 

that the method also improves the colour and contrast and 

removes the colour cast from the images. The suggested method 

could help improve the technical and aesthetic results of 

denoising sky images from a long distance. The approach has 

been tried on high-resolution images captured by drones and the 

result is successful within a reasonable computational time. It is 

also observed from the result that the method has advantages in 

preserving the authenticity of images with the sky, as a 

comparison with analogous modern methods. 
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