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░ ABSTRACT- While the increased adoption of electric vehicles (EVs) is a promising alternative to reduce CO2 emissions, 

it creates new challenges for the power grid due to increased energy demand and power quality (PQ) issues. These impacts vary 

depending on several factors such as the level of EV adoption, charging technology, network voltage level, charging patterns, 

charging station location, battery condition, and driving habits. Analyzing these impacts and developing solutions, such as 

characterizing the demand curve for charging stations and understanding EV charging patterns, is crucial to ensure a sustainable 

transition to an electrified EV future. A study using the ZIP load model that represents voltage dependence by combining constant 

impedance (“Z”), constant current (“I”), constant power (“P”) components, and phasor measurement units (PMUs) demonstrates 

the effectiveness of EV demand characterization. The importance of this aspect for grid stability and charging management is 

highlighted. 
 

Keywords: load model, electric vehicle, minimum mean squared error (List three to ten pertinent keywords specific to the article, 

yet reasonably common within the subject discipline. 

 

 

 

░ 1. INTRODUCTION   
The Earth is currently experiencing a constant increase in 

temperature due to the accumulation of greenhouse gases 

(GHG). Consequently, solutions are sought to reduce them. One 

of the major contributors of emissions is the transport sector [1]. 

Electric vehicles that use electric batteries to power electric 

motors are presented as an alternative to replace vehicles that 

use internal combustion engines which use fossil fuels that 

increase GHG emissions [2]. To promote the use of electric 

vehicles, some European countries have resorted to subsidies to 

purchase and lower taxes on these vehicles [3]. EVs are a 

promising alternative for reducing CO2 emissions, but their 

large-scale adoption creates challenges for the electric grid. 

Increased power demand can lead to PQ problems such as 

harmonics, undervoltage, phase unbalance, and increased 

energy loss [4], [5], [6]. These impacts vary depending on 

several factors including the level of EV adoption, charging 

technology, voltage level of the network, charging patterns, 

charging station location, battery condition, and driving habits 

[7]. It is crucial to deeply analyze these impacts and develop 

solutions to ensure a sustainable transition to an electrified 

future with EVs [8]. Considering these factors affecting the 

power grid, there is the case of electric chargers to power the 

batteries of EVs. Due to their power electronics components, 

they have different dynamic behaviours compared to traditional 

grid-connected loads. This requires characterization to 

determine the demand curve of the charging stations; with this 

characterization, it is possible to determine how the load affects 

the network in terms of stability and when there are disturbances 

in the network to formulate programs for load control, load 

limiting, and voltage and frequency regulation [9]. This 

characterization also allows for the possibility of demand 

management. It is important to understand the charging patterns 

of EVs because their charging behaviour is variable and 

depends on many factors [10]. In addition to this, there is the 

uncertainty of when and where vehicles will be charged and the 

total energy demand of these vehicles in each area. To address 

these issues, current research focuses on analysing the impact 

of charging patterns and model-based control strategies. 

Therefore, the development of mathematical models of EV 

charging patterns becomes a key aspect that will allow scientists 

to perform more realistic studies to forecast energy demand and 

propose solutions to the problems that may arise [6], [11]. 

 

░ 2. LOAD MODELING  
2.1. ZIP Model 
This load model can be classified into three types: constant 

power, constant current, and constant load impedance; this 

classification depends on the ratio of power and voltage. For a 

constant load, the dependence of power on voltage is quadratic; 

for a constant current, it is linear; and for a constant power, it is 

independent of voltage [12], [13], [14], [15]. This model is 

represented as follows: 

Load Modeling of Electric Bus Charging Station from Data 

Obtained Through Phasor Measurement Units  
 

Ricardo Isaza – Ruget1, Cristhian Perilla2 and Javier Rosero-García3*  
                                                                                                 

1,2,3Universidad Nacional de Colombia; risazar@unal.edu.co1,  caperillag@unal.edu.co2,  jaroserog@unal.edu.co3 

 

*Correspondence: Javier Rosero-García;  jaroserog@unal.edu.co 

 

ARTICLE INFORMATION 

Author(s): Ricardo Isaza – Ruget, Cristhian Perilla and Javier 

Rosero-García; 
 

Received: 28/08/2024; Accepted: 16/10/2024; Published: 25/10/2024; 

e-ISSN: 2347-470X;  

Paper Id: IJEER 2808-20; 
Citation: 10.37391/ijeer.120409 

Webpage-link: 

https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120409.html  
 

Publisher’s Note: FOREX Publication stays neutral with regard to 

Jurisdictional claims in Published maps and institutional affiliations. 
 

https://www.ijeer.forexjournal.co.in/
mailto:caperillag@unal.edu.co2
https://doi.org/10.37391/ijeer.120409
https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120409.html


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 4 | Pages 1188-1195 | e-ISSN: 2347-470X 

 

1189 Website: www.ijeer.forexjournal.co.in                           Load modeling of electric bus charging station 

from data Conducting 

P = Po [a1 (
V

Vo
)

2

+ a2 (
V

V0
) + a3]                                           (1) 

 

𝑄 = 𝑄𝑜 [𝑎4 (
𝑉

𝑉𝑜
)

2

+ 𝑎5 (
𝑉

𝑉0
) + 𝑎6]                                              (2) 

 

The values Vo, Po, and Qo are the initial conditions of the 

system to be modeled and the coefficients a1 to a6 are model 

parameters [14],[15]. 
 

2.2. Exponential model 
The exponential model is expressed as a representation of the 

linear model, but with the voltage-dependent power as an 

exponential function, as shown in the following equation: 
 

P = Po (
V

Vo
)

np

                                                                           (3) 

 

Q = Qo (
V

Vo
)

nq

                                                                         (4) 

 

The exponential parameters np and nq are specific to the model, 

in which there are different values depending on the type of load 

describing the voltage dependence of the active and reactive 

load, respectively [15]. 
 

░ Table 1. np and nq values for common loads 
 

Load Component np nq 

Air-conditioning 0.50 2.50 

Heaters 2.00 0.00 

Pumps and fans  0.08 1.60 

High-load industrial motors 0.05 0.50 

Low-load industrial motors 0.10 0.60 
 

If the np or nq values are equal to 0.1 or 2, the load model will 

represent the cases of constant power, constant current, or 

constant impedance [15], [16]. 
 

2.3. Frequency model 
This model is a parameter that can be included in the previous 

ones to be frequency-dependent and is represented as follows: 

 
[1 + A(f − fo)]                                                                          (5) 
 

The value fo represents the nominal frequency of the system 

and f represents the frequency of the element being measured in 

Hertz; the parameter A represents the frequency sensitivity of 

the model [15], [17]. 
 

2.4. Dynamic exponential model 
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Pl = Pr + Po (
U
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The Uo and Po values are the voltage and power before a 

voltage change. Pr is the active recovery power, Pl is the total 

active power, Tp is the active load recovery time constant, αt is 

transient active load-voltage dependence coefficient, and αs is 

steady state active load-voltage dependence coefficient [18]. 
 

2.5. Mean Square Error (MSE) 
 

MSE =
1

n
∑ (n

i=1 yi − yĩ)
2                                                        (8) 

 

The root mean square error is used in regression and prediction 

model evaluation mode by measuring the differences between 

the values predicted by the model and the values measured. This 

value is calculated from the phasor measurement unit data and 

the data predicted from the ZIP model [19]. 
 

2.6. Optimization algorithm 
An optimization algorithm is used in which the values Z, I, P, 

voltage, and power measured at the charging station by the 

phasor measurement unit are taken as input. From these data, a 

cost function is performed that takes the parameters of model 

[12] and calculates the MSE between the active power and the 

active power predicted by the model. With these data, the model 

can be optimized by minimizing the cost function that is 

defined, in which the values Z, I, and P that minimize the value 

of the MSE are found. 
 

2.7. Rate of Change of Frequency (ROCOF) 
In today's power systems, the Rate of Change of Frequency 

(ROCOF) is defined as the first time derivative of frequency; it 

is an essential component in several applications, including 

Wide Area Monitoring, Protection, and Control (WAMPAC). 

These applications range from load shedding to electrical island 

detection and distributed generation control [20]. 

 

PMUs have the ability to perform ROCOF measurements 

quickly and with high responsiveness, meeting the rigorous 

IEEE C.37.118.1 accuracy standards [2]. This involves 

providing updated ROCOF estimates with reporting rates 

reaching tens of frames per second (fps), keeping the 

uncertainty at reduced levels of 0.01 Hz/s in stable conditions, 

6 Hz/s in the presence of harmonic distortions, and 3 Hz/s in 

dynamic situations. In addition, PMUs enable a distributed 

measurement infrastructure that facilitates synchronous 

monitoring of voltage and current phasors at various points in 

the network [21].  

 

ROCOF measurement becomes fundamental in the control of 

the electrical network, especially in the activation of the Load 

Disconnection process. This is because ROCOF values vary 

according to the particularities of the electrical network, with 

contingency events generating the highest values [2]. During a 

contingency, such as a power grid failure, the ROCOF may 

increase significantly, indicating the need to disconnect certain 

loads to maintain system stability. In addition, negative ROCOF 

values indicate load imbalances that require immediate 

adjustments to avoid problems in the network. However, during 

the process of restoring the network after a contingency, the 

https://www.ijeer.forexjournal.co.in/
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variation of ROCOF values depends on the restoration actions, 

which makes it difficult to accurately predict these values [21].  

It is essential to note that a persistent positive value of ROCOF 

does not necessarily guarantee the safe capacity of the power 

grid to support an increased load [22]. The safety and reliability 

of the power grid are critical; to achieve this, it is necessary to 

apply appropriate filters to the ROCOF estimates. These filters 

help reduce abrupt transitions and long-term oscillations in the 

system frequency after contingencies, contributing to 

maintaining stability. It is also important to note that the 

ROCOF filtering process leads to a 500 ms delay in the ROCOF 

relay interventions, which may influence the predictive 

capability of this parameter, since there is a time lag before the 

necessary measures are taken to maintain network stability [22].  

Taylor Fourier signal compression based model (csTFM), 

enhanced interpolated DFT (eIpDFT), and iterative interpolated 

DFT (iIpDFT) are approaches to estimate the ROCOF in non-

stationary signals [18]. csTFM uses a second-order Taylor 

expansion and a dynamic signal model to estimate the ROCOF 

along with other fundamental parameters, while eIpDFT and 

iIpDFT are based on a static signal model and use interpolation 

techniques to improve frequency resolution. It is important to 

note that static approaches calculate the ROCOF as an 

incremental ratio with a processing delay equal to the reporting 

period, while dynamic approaches relate the ROCOF to 

instantaneous frequency variations, but are more susceptible to 

noise and interference [20]. 

 

For reliability regulation purposes, the ROCOF calculation 

method proposed by the North American Electric Reliability 

Corporation (NERC) involves calculating the frequency change 

in the first 0.5 seconds after a frequency perturbation [22]. 
 

RoCoF =
f−f0.5

0.5
                                                                         (9) 

 

░ 3. FIELD TEST 
The growing demand for electric transportation has driven the 

need to develop accurate models to predict and manage electric 

load. In this work, in order to analyse the charging behaviour in 

an electric transport system, a Siemens UC Charge electric bus 

charging system was equipped with a phasor measurement unit 

under the scheme shown figure 1. With this equipment, it was 

possible to obtain high-resolution data, which will be used to 

evaluate the ability of the ZIP load model to accurately 

represent the charging dynamics in this type of system. PMUs 

provide measurements of voltages and currents in phasor form 

with the addition of positioning and time data through a GPS 

device that is incorporated in the measuring equipment [21]. For 

this test, Power side micro phasor measurement units (uPMU) 

were used, which collect data through current transformers (CT) 

with 200 amps to 333 millivolts ratio and voltage probes to the 

charging station; this charging station is energized at 440 volts. 

The EV charging station is used for public transport vehicle 

charging, in which the charging stations deliver power 

sequentially to three dispensers. 

 
 

Figure 1. Measurement scheme 
 

Measurements made with the uPMU record voltages, currents, 

active/reactive power, and frequency in phasor form. These data 

were recorded in a monthly measurement and the behaviour of 

the charging system on weekdays and weekends was separated, 

as shown in figure 1, in order to use these data in the ZIP model 

to determine the behaviour of the model in these two types of 

demand curves.  

 

Figure 2 shows the result of the demand behaviour during the 

week of the charging station; it is demonstrated that it is not in 

service in a range from 4:00 AM to 7:00 PM.  
 

 
 

Figure 2. Load behavior during the week 

 

https://www.ijeer.forexjournal.co.in/
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In order to validate the ZIP model under controlled conditions, 

a test field equipped with a configurable load bank was 

implemented, as shown in Figure. This bank, composed of 

resistive and inductive elements, made it possible to simulate a 

wide range of loads. Variable voltage profiles were applied, 

which included variations from 0 volts up to a 120, recording 

the voltage profiles shown in figure 3, in order to evaluate the 

model's ability to adapt to different operating conditions and 

accurately represent the load behaviour. The same CT 

configuration was used for the data logging system as for the 

measurement at the EV charging station. 

 

 
Figure 3. Laboratory test system 

 

This load bank relies on five inductors and ten resistors 

connected in series to increase the load of the network. The 

following voltage profiles were used in this load bank (see 

figure 3) from the variable transformer connected to the load 

bank (see Figure). This test bank consists of ten resistors and 

five inductors.  
 

 
 

Figure 4. Voltage profiles used 
 

Three scenarios were proposed to perform the laboratory tests 

by applying the voltage profiles shown in figure 4. These three 

scenarios were achieved by disconnecting the inductive and 

resistive elements that make up the load bank in order to 

evaluate the load model method in a laboratory setting. In the 

first scenario, the ten resistors and no inductance were 

connected. In the second scenario, the ten resistors were left 

fixed, and the inductances were varied from the minimum 

connection to the maximum inductances. In the third scenario, 

the ten resistors and five inductances were used to obtain the 

data using the PMU. With this, the proposed algorithm could be 

implemented.  

 

░ 4. METHODOLOGY 
The methodology shown in  figure 5 was used to obtain the 

values of the ZIP model from the data recorded by the phasor 

measurement unit, in which these data were used to generate the 

first parameters of the ZIP model and then the MSE was 

calculated. With these values, the optimization function could 

be implemented to reduce the MSE and obtain new parameters 

to feed the ZIP model in order to find the parameters that fit the 

MMSE. 
 

 
 

Figure 5. Flowchart 
 

The algorithm shown in  figure 5 reads the data obtained from 

the phasor measurement unit to use the model, cleans the data, 

and calculates the zero-load probability [24]. Then, it defines 

the load model function that takes the model parameters Z, I, P, 

active and reactive power, and voltage as inputs and calculates 

the total predicted active power [25]. The function that takes the 

model parameters and the active power, apparent and reactive 

power data as inputs and calculates the MSE between the real 

total active power and the total active power predicted by the 

model is defined [26]. For the optimization process, the 

minimize function of the SciPy. optimize library [27] is set to 

minimize the cost function and to find the values of the 

parameters Z, I, and P that minimize the MSE. From these data, 

the MSE and the coefficient of determination (R^2) are 

calculated to evaluate the performance of the optimized model. 

https://www.ijeer.forexjournal.co.in/
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░ 5. ANALYSIS OF RESULTS OF THE 

ZIP MODEL 
The curves shown in figure 6 obtained with the PMU 

measurements performed at the electric vehicle charging 

stations and the laboratory shown in  figure 4 are evaluated by 

applying the algorithm shown in figure 5. This analysis includes 

time fractions of the curves shown in  figure 6 to evaluate the 

algorithm model and its behaviour in a smaller amount of data. 

Additionally, there is the application for the reactive power 

curve and the behaviour of the algorithm.   

 

By using the proposed methodology, the result is obtained by 

evaluating the ZIP model for consumption on a business day, 

shown in  figure 6 in which the values of the ZIP model that 

result in the MMSE for the input values of the model on a 

business day shown in figure 2 are recorded. In this model, 

shown in figure 6, system transients caused by the change of 

EV charger dispenser are observed. There is a pulse that the 

model fails to follow, but it manages to follow most of the load 

curve; an MSE of 2.6% is obtained by using the algorithm 

proposed. For this model, the input data has a coefficient of 

determination of 0.99, which is a good input data sample for the 

model.  
 

 
 

Figure 6. Load model for business day demand 
 

Subsequently, the model is evaluated on a smaller sample of the 

behaviour on a random day during a time window of one hour 

as shown in figure 7, which represents the sequential charging 

behaviour of the three distributors of the charging station during 

the charging cycle in this time window. When a transient 

change occurs, the model generates a pulse and tries to follow 

the measured curve, but when it does this the model generates a 

pulse with opposite direction and then stabilizes to follow the 

measured load curve. The pulses generated by the model obtain 

an MSE of 2.47% with the input data; these data have a 

coefficient of determination of 0.99.  

 
 

Figure 7. Data measured at the charging station by the phasor 

measuring unit 
 

The measurement shown in figure 8 analyses a phenomenon 

that occurs in the EV charging station where there is power 

delivery. These data show a change of sign of the power factor. 

More pronounced pulses are obtained, but with a negative sign 

when delivering energy to the network; this causes new 

transient phenomena to evaluate the model proposed. When the 

load model is used for this data, the model does not follow the 

behaviour in the negative measurements; it generates a pulse 

trying to follow the same magnitude, but on the positive axis of 

the active power to continue with the model run. In this case, an 

MSE of 2.47% is obtained by applying the algorithm to obtain 

the load model including the pulses that deliver power to the 

grid.  
 

 
 

Figure 8. ZIP model obtained from active power 
 

The ZIP model is also used for reactive power. The algorithm 

is evaluated to obtain the load model for the reactive power 

from the measurements recorded by the PMU as shown in figure 

9. It is observed that no pulses are found as in the active power 

measurements shown in figure 8. Figure 9 contains data on the 

negative axis, but it is not comparable with the amount of data 

https://www.ijeer.forexjournal.co.in/


   International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                         Research Article | Volume 12, Issue 4 | Pages 1188-1195 | e-ISSN: 2347-470X 

 

1193 Website: www.ijeer.forexjournal.co.in                           Load modeling of electric bus charging station 

from data Conducting 

in the entire measurement. With these data, the load model has 

a better approximation by applying the proposed algorithm, 

since it results in an MSE of 2.3% for a data input that has a 

coefficient of determination of 0.99. 
 

 
 

Figure 9. ZIP model reactive power 
 

In the laboratory test using a load bank, as shown in Figure, 

there is a larger number of pulses in the data that the model 

attempts to follow, as shown in figure 10. However, when trying 

to follow it, it generates larger peaks compared to those of the 

measured data; this generates more error in the obtained model. 

When evaluating the MSE of the proposed algorithm, a 10% is 

obtained for a data input with a coefficient of determination of 

0.99; this gives a result that shows transient changes. The load 

model is not a best fit and increases the error with respect to 

previous data evaluations. 
 

 
 

Figure 10. Test bank model evaluation 
 

The measurements taken on the test bank show a significant 

error in the charging model compared to the data obtained at the 

electric vehicle charging station. From these measurements, the 

rate of change of frequency (RoCoF) was calculated using the 

method proposed by NERC [22], which establishes a 

calculation interval every 500ms. 

The analysis revealed a remarkable disturbance between 

seconds 45 and 46, where the RoCoF reaches a value higher 

than 200 Hz/s. This unusual behavior, which indicates a 

considerable disturbance in the system, due to the disconnection 

of the load from the test bench and bringing the voltage to zero 

volts as shown in figure 4 can be seen in figure 11, which shows 

the evolution of both the frequency and RoCoF in that time 

window. 
 

 
 

Figure 11. (a) Test bank frequency (b) Test bank RoCoF 500ms 
 

In the load model, during the time window in which the 

disturbance occurs, it is observed that the active power and 

voltage is equal to zero. However, when trying to follow this 

behaviour, the load model generates negative values during the 

disturbance, which significantly increases the error. This 

behaviour can be seen in  figure 12 where it is shown how the 

load model diverges from the real values of active power. 
 

 
 

Figure 12. Load model and active power applying voltage 

disturbance 
 

To ensure the reliability of the ZIP Model predictions at an 

electric vehicle charging station, an evaluation was performed 

https://www.ijeer.forexjournal.co.in/
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using statistical tests. The results of the tests as shown in table 

2 ANOVA, Kolmogorov-Smirnov, Jarque-Bera and Durbin-

Watson suggest that, while the model captures a significant 

portion of the variability in the data, there are violations of 

statistical assumptions that may affect the accuracy of the long-

term predictions, and the validity of inferences based on this 

model. 
 

░ Tabla 2. Load model statistical tests 

 
 

Performing the statistical analysis exhibits a high coefficient of 

determination (R²=0.9983), suggesting a good fit to the data. 

However, further analysis of the residuals reveals significant 

deviations from normality, as indicated by the Kolmogorov-

Smirnov and Jarque-Bera tests (p < 0.05 in both). In addition, 

the Durbin-Watson test (0.3523) points to a strong 

autocorrelation in the residuals, which questions the 

independence of the errors. Despite an ANOVA F-value close 

to zero (3.839×10-¹⁴), the results of the normality and 

autocorrelation tests suggest that the assumptions of the linear 

model are not fully met, limiting the generalizability of the 

results and the reliability of statistical inferences based on this 

model.  

 

The ZIP model evaluated from PMU measurements 

demonstrates its potential to accurately characterize the 

charging station, although limitations were identified in its 

ability to model abrupt transients and power factor changes due 

to the capacitive factor generated by the charging station. 

Despite these limitations, the model provides a solid basis for 

power grid planning by being able to perform simulations with 

this data, extending the capacity of transformers and conductors 

for large-scale charging systems, demand management and 

charging station operation optimization. ZIP can be modelled 

with energy management tools, strategies can be developed to 

smooth the load curve, reduce operating costs and improve grid 

stability. In addition, its incorporation into electric vehicle 

charging management systems can optimize energy utilization 

and minimize the impact on the grid. Future studies could focus 

on improving the accuracy of the model for transient events and 

explore its integration with other more complex load models by 

integrating Artificial Neural Network Load Modelling for 

implementation in smart grid design, which would better 

capture the dynamics of electrical load with more complex 

behaviour. 

░ 6. CONCLUSIONS 
The model has difficulties in accurately modelling transients 

caused by abrupt changes in load by the return of energy to the 

grid in cases of active power evaluation. In the case of reactive 

power, better accuracy is obtained because there are no peaks 

generated by the change of the power factor of the same 

magnitude as found in the active power. The accuracy of the 

ZIP model depends largely on the quality of the input data. It is 

recommended that the data be pre-processed to eliminate noise 

and outliers. Despite the limitations, the ZIP model remains a 

useful tool for demand estimation in electric vehicle charging 

systems. In this case, since these data are from the normal 

operation of the charging station, no voltage changes such as 

under-voltages or contingencies are made in the data obtained. 

As a result, the model may not receive enough data to have the 

best approximation. For this, it is necessary to obtain data on 

failures, but this contingency phenomenon is unlikely to be 

found in this voltage level. Additionally, the integration of the 

ZIP model with energy management systems can be explored to 

optimize the operation of power grids. 
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