
 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1449 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

░ ABSTRACT- Particularly when considering the Internet, recent developments in communication networks have resulted

in considerable rises in both the amount of information transmitted and the user base. Errors frequently occur during transmission

and reception of this spike in data transfer, which includes phone, video, and message connections. This work proposes a novel

approach to error repair and detection through the combination of two well-known techniques: checksum and Hamming code. This

combined strategy minimizes the drawbacks of each technique while leveraging its advantages. Even with single-bit errors,

Checksum techniques can cause delays and decreased bandwidth efficiency because they require retransmitting data. Nevertheless,

they are effective at detecting the existence of errors. However, when multiple-bit faults arise, hamming codes are ineffective at

identifying and fixing single-bit problems. The suggested system offers complete mistake detection and correction capabilities by

integrating these two approaches. To be more precise, it guarantees the detection of single- and multiple-bit errors and permits the

rectification of straightforward faults without requiring retransmission. This strategy was put into practice by using VHDL on an

FPGA platform to develop and simulate transmitter and receiver circuitry in addition to be applied by Python to demonstrate these

results. The effectiveness of the combined strategy in improving data integrity and transmission reliability is demonstrated by the

successful integration of checksum techniques and Hamming codes within the FPGA architecture.

Keywords: Hamming code, Checksum, VHDL, Error Detection, and Error Correction.

░ 1. INTRODUCTION
In digital communication, hamming code considering as a

potent error detection/correction technique while several of

parity bits are added to the original data using this coding

approach. Because of its ability to identify single-bit errors

with correction, it was helpful in field for data integrity

importance. The basic idea behind the Hamming code is to add

extra bits or sometimes called parity bits. These bits are added

to the original data in order to create distinct patterns that help

in error detection. In order for this method to function, parity

bits must be embedded into a data sequence so that each parity

bit will responsible of about certain sets of binaries counted

places. The code can identify faults due to this coverage, while

the receiver recalculates the parity bits and compares them to

the received parity bits to identify any issues or errors. Utilizing

a group of these bits with original data in a predetermined

structure would offer a methodical way to guarantee data

quality and dependability. Hamming code is highly

recommended among articles for its ease of use and

effectiveness. It is a good option for many applications since it

achieves a balance between the error correction level and the

quantity of added bits. Some studies emphasize the trade-offs

between complexity and efficiency in order to enhance some

fields like wireless communication networks in [1]. It

determined developments in energy-efficient error control

coding when incorporated into network designs. Also, a review

of the most recent techniques for wireless communication

networks is provided by this article. In this field authors

examined ACM, CDM, FEC and error correction coding across

a variety of domains, including LPWAN and IoT technologies.

Hamming code, which is utilized in memory systems,

communication protocols and data storage is essential for

preserving the accuracy of digital data since it demonstrates

that data sent and received even when errors are present.

In [2], a new technique for using Galois fields (GF) to improve

the security of data delivered via noisy communication

channels is presented. Numerous fields of contemporary

cryptography, error correction and combinatorial design

Design a Merging Technique Circuit to Error Detection and

Correction Based on Hamming Code and Checksum Using

VHDL

Mohammed Sami Mohammed1 , Hanan Badeea Ahmed2 , Yasir Ghazi Rashid3 , and Adham Hadi

Saleh4

1Department of Computer, University of Diyala, 32001 Diyala, Iraq
2,4Department of Electronic Engineering, University of Diyala, 32001 Diyala, Iraq
3Department of Electrical Power and Machines, University of Diyala, 32001 Diyala, Iraq

*Correspondence: adham.hadi@yahoo.com; Tel.: (009647713036552)

ARTICLE INFORMATION

Author(s): Mohammed Sami Mohammed, Hanan Badeea Ahmed,

Yasir Ghazi Rashid, and Adham Hadi Saleh;

Received: 03/10/2024; Accepted: 19/12/2024; Published: 30/12/2024;

e-ISSN: 2347-470X;
Paper Id: IJEER 0309-02;

Citation: 10.37391/IJEER.120439

Webpage-link:
https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120439.html

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
https://doi.org/10.37391/ijeer.120439
https://ijeer.forexjournal.co.in/archive/volume-12/ijeer-120439.html
https://orcid.org/0000-0001-5446-2620
https://orcid.org/0000-0002-9733-7288
https://orcid.org/0000-0002-9733-7288
https://orcid.org/0000-0002-7919-4930

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1450 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

heavily rely on GF computations, sometimes referred to as

finite field arithmetic. The aim of [2] was to use these domains

to create an encoding and decoding technique that is more

effective and safer. The analysis's findings point to two main

benefits of the suggested strategy. First, the technique provides

a more reliable solution than traditional encoding techniques

like the GOLAY code, improving the security of data

transmission over noisy channels. Second, it effectively used

the frequency bandwidth on Field-Programmable Gate Array

(FPGA), which makes it a viable option for hardware

implementations in the real world that need strong security and

quick processing speeds. The technical history of the Viterbi

decoder and its component parts was thoroughly covered in [3].

Three essential components that are essential to the decoder's

architecture were used in the design of the suggested Viterbi

decoder: The Branch Metric Unit, the Path Metric Unit and the

Survivor Memory Unit. I-sim is utilized for the design

synthesis, and Xilinx 14.1 is utilized for the simulation of the

suggested Viterbi decoder. Both the simulation and synthesis

procedures have been effectively completed by the suggested

design without any issues. In order to prevent false alarms, an

effective background circuit was created in this study to

identify objects in the dynamic or static backdrop as explained

in [4]. The suggested background circuit, which was based on

FPGA, processes the real-time collected image. It had been

noted that this proposed work yields good results in terms of

area usage and processing time. Two conditions are taken into

account for the circuit's operation in [5], when output data for

the other ports will be zero when the first port is in a high

condition. On the other hand, the outputs of the remaining ports

will be proportionate to the outcomes of the calculation of the

incoming data when the first port is in a low condition. The

processing mechanism used in [5] was a modulo-2 division

parallel circuit based on Xilinx ISE Simulator and compared

with the Spartan 3E XC3S500E device implementation.

Compared to earlier studies that employed the same CRC

technique, the suggested circuit design was simple, produces

less noise and uses fewer resources. In particular, 223 4-input

LUTs, 114 occupied slices, 72 IOB flip-flops, 114 bonded

IOBs, and 1 BUFGMUX were used in this investigation. In

[Highly Efficient Security Level Implementation in Radiation-

Tolerance FPGA Using a Combination of AES Algorithm and

Hamming Code: LST-SW Case], a secure land surface

temperature (LST) implementation using a radiation-tolerant

Virtex-4QV-FPGA that combines the Advanced Encryption

Algorithm (AEA) with Hamming code was presented. This

paper implemented the Advanced Encryption Standard (AES)

algorithm using an iterative looping technique to improve

speed and security. In [6], the findings showed that the

suggested hardware design achieves a high throughput of

1854.82 Mbps by using 3319 slices and 2 BRAMs. The

outcomes of these analyses validated the efficacy of the

cryptosystem with respect to its high-security capabilities and

hardware efficiency. In order to improve area efficiency and

power consumption, [7] presented a unique method for

forecasting intermittent failures in Network-on-Chip (NoC)

systems. The Presage Debacle model tracked the traffic flow

across the network links in real time to predict these sporadic

failures within an application-specific architecture. The model

contributed to increased system dependability by anticipating

possible link failures during runtime. Designing a hardware

chip for a turbo encoder and decoder and assessing its

performance were the goals of [8]. An interleave, also known

as a permute, separates the two convolutional codes that were

concatenated in parallel in the turbo encoder. The two linked

decoders then iteratively process the channel's received data to

increase system performance and decoding accuracy.

One popular error correction technique used in communication

systems to fix mistakes is the multiplication error correction

scheme as explained in [9]. To fix the flaws in the on-chip

connectivity link authors have been suggested a triplication

error correction approach. Every encoded message bit is triple-

copied using the triplication error correcting process. The

ultimate number of bits in the triplication message is therefore

3n. The use of parity-check to find errors is one of the main

characteristics of the Hamming code. Binary operations such

as XOR, are used to calculate the parity bits’ value regarding

the sending data which assures that parity-check set has an

even total number of 1s. The same parity-check formulae are

used to see if errors are founded when a codeword is received

in the other side. In the case of founding error, the parity checks

determine the particular bit position of the error. Some

modifications and studies utilized BPSK modulation in

Additive White Gaussian Noise (AWGN) channels to

investigate and compare the error correcting capabilities of

Hamming code by comparing it with Bose Chaudhuri

Hocquenghem (BCH) code cyclic code as explained in [10]. It

presented the general and familiar codeword from each decade

of the past century in chronological order. Additionally, when

the input signal is a Bernoulli binary sequence, it compares the

bit error rates of the output signals of the three codes added to

the BPSK modulation communication process. Hamming code

operates within a mathematical framework known as the

Hamming distance, which measures the minimum number of

bit changes required to sending data. The minimum distance

for Hamming codes is 3, which means the code can detect up

to two-bit errors and correct single-bit errors. This property is

basic to its effectiveness in error correction with typically

implemented in various formats such as (7,4), (15,11) or

(31,26). These notations indicate the number of added bits in

the codeword and the number of original data bits. Each format

provides a balance between the number of parity bits added and

the level of error correction. In [11], the authors provided an

example of how compact (7, 4) Hamming encoders and

implemented using QCAD designer. It is employed to measure

the and realize the circuits characteristics, such as latency, cell

area, Clock zone and QCA cost. A low-cost QCA-based (7, 4)

Hamming encoder and decoder design is proposed in [12]. The

Hamming decoder employs a multilayer structure for its error

detector while the Hamming encoder is constructed with a

coplanar structure. The main objective was to maximize the

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1451 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

dissipation of energy, cost and area. The two components of

the Hamming decoder implementation are the error detector

and the syndrome calculator. The proposed (7, 4) Hamming

encoder circuit reduces counting by 49.47% and 9.52%

respectively. In addition, it compared to another research with

about 56.54% cost reduction and 11.11% area decreasing. The

practical applications of Hamming code have numerous fields

including computer memory systems, data storage and network

communications. In computer memory, hamming code detects

and corrects errors that might occur during data storage or even

in retrieval process which ensuring the reliability of software

and hardware operations. Hamming is useful to manage

memory issues due to its simplicity in encoding/decoding with

faster process compared to other techniques such as Reed-

Solomon as explained in [13]. Authors presented an error

model to control memory issues with a developed technique of

Hamming code. Similarly, in network communications, it

helps to maintain data integrity over unreliable channels and

reducing the need for costly retransmission process. Despite its

simplicity, its ability to correct errors makes it a valuable tool

in various digital systems. DNA storage technique one of the

applications that produces a high error rate, which poses a great

challenge for the researchers as in [14]. Error detection and

correction should be implemented for such an issues to

synthesis DNA or providing free-errors. DNA storage

especially for big data need these systems as suggested in this

article by comparing two algorithms to measure the system

effectiveness. To prevent overloading of the transmission

channel and to prove the data reliability as well, an accurate

selection of code is required as in [15]. The primary benefit of

the suggested approach is that it can be used to perform defect

repair and information integrity control for a specific security

level with the least amount of duplication. Some authors as in

[16] suggested a strategy successfully reduces unnecessary bits

of the created code, data improving storage and transmission

as a whole. There are applications for this study in a number of

fields including network protocols, data storage systems and

telecommunications. However, hamming code is only able to

detect and deal with a single bit of error; it is unable to handle

multiple-bit errors without improvement. For that reason, it

was applied when there is little chance of multiple errors

happening and can provide simple error correcting features

while maintaining data integrity.

In the other hand, there is also a basic technique for error

detection in data storage which is called as Checksum. It works

by adding up the whole transmission data to generate a single

number that is called the Checksum value. The Checksum of

the original data is calculated by the sender and sent with the

data when it is transmitted from a source to a receiver. The

receiving side computes the same Checksum on the received

data and compares the outcome with the transmission

Checksum. It is considering as no error data if the computed

checksum matches with the transmitted value. If there are any

differences, it leads that there might have been a transmission

error [17]. The complexity of a Checksum evaluation can range

from basic addition to more complex algorithms. The

Checksum can be computed in its simplest form by adding up

all bits of data, then dividing the result by a specified amount

like 256. Polynomial division is used by more sophisticated

Checksum algorithms such Cyclic Redundancy Check to offer

a more reliable error detection ability. The Checksum approach

is useful for identifying common error types, like single-bit or

brief bursts of errors despite its simplicity. It might miss some

kinds of corrupted data, especially when there are several

mistakes or when they cancel each other out in somehow of

calculations. In [18], authors presented a novel method for error

identification and correction in Very Large-Scale Integration

systems with an ability of multiple error class version of

checksum. Nevertheless, there is no mechanism for error

correction built into the Checksum method; it is just utilized

practically in several previous researches for error detection. It

is limited to indicating the happening of an errors occurring and

it cannot specify the location of the error. In [19], authors

studied on how effective of modulo 11 container number at

error detection. Although the modulo 11 checksum calculation

approach works well for identifying errors in container

numbers, issues can still happen. Error correction is not an

intrinsic feature of the container number code; therefore, a new

modulo 13 with improved error correction and detection

capabilities is suggested by authors. Additional error-correction

techniques are frequently applied in order to cover the limits of

Checksums, which are incapable of correcting errors. Error-

correcting codes like Hamming or Reed-Solomon codes are

utilized with Checksums in some cases when multiple detection

is required. Reed-Solomon codes are good at managing multiple

errors mistakes, while Hamming codes are better at specifying

and correcting single-bit positions. This combination can

demonstrate both error detection and correction by adding

Checksums to one of these error-correcting ability methods and

offering reliable method of required application as in [20], [21]

and [22]. By combining Checksums and Hamming code, a

reliable error detection and correction system is produced which

will utilize of the advantages of both methods. By using

redundant bits into the data to create a codeword, hamming code

is highly effective in identifying and fixing single-bit faults.

This makes it possible for error that might happen during

transmission or storage to be automatically corrected. In

contrast, a Checksum generates a numerical value depending on

the contents of the data that providing straightforward approach

to error detection. Checksums and Hamming codes

combination offer a number of important advantages like

addressing several facets of error control. The possibility of

error in transmitted data are going to be decreased because of

the error correction capacity of the hamming code. In the

meanwhile, the Checksum serves as a prior error detection tool

by spotting potential errors occurrences before more involved

errors repair is required. Reliability is increased by this dual

additional techniques, which aids in recognizing both single-bit

and more complicated error patterns. Moreover, the

performance can be improved by combining the usage of

Checksums and Hamming codes. The Checksum offers a rapid

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1452 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

and computationally simple way for early error detection, which

can quickly spot data errors. Additionally, this combination

offers a more comprehensive error management technique that

helps to create a more dependable data transmission where

many types of mistakes can occur [23] and [24].

░ 2. PROPOSED METHODS FOR

ERROR DETECTION COMBINATION
The suggested system combines Checksum and Hamming code

techniques to take advantage of each method’s advantages.

While single-bit errors are corrected using the Hamming code

approach, faults are detected using the checksum method. This

hybrid technique lowers the need for retransmissions and

increases overall system efficiency by ensuring extensive error

detection and correction capabilities. Using an FPGA, the error

detection and correction system's architecture were constructed

using VHSIC Hardware Description Language (VHDL). The

great degree of flexibility and real-time processing provided by

this implementation platform option make it appropriate for

evaluating and verifying the efficacy of the combined strategy.

2.1 Hamming Code Technique
By using some specific arrangements for additional parity bits,

hamming code is designed for the purpose of detection and

correction errors. For example, when having 4 bits of original

transmission data, Hamming will have three additional parity

bits to these data bits. This approach is allowing the receiver to

both detect and correct errors that occur during transmission,

thus enhancing the reliability of data communication [25]. This

technique has some steps that should be explained to make the

combination process based on this sequence and overlapping

with another technique. Steps of Hamming code are listed as

follow:

2.1.1. Specifying Parity Bit Numbers

Transmission data is transformed to binary representation with

additional parity bits. For example, if data would be 10101100,

Hamming has three more additional bits which calculated

through equation 1. The additional bits are equal to 4 with these

positions in sequence (1, 2, 4, 8) based on the power of 2.

 2r ≥ m+ r+ 1 (1)

Where m is the original bit numbers, r is required number to

specify additional parity bits.

2.1.2. Rearrange Data

Based on step 1, the position of these bits are (1, 2, 4, 8) and the

new representation of required transmission data would be as

follow: H1 H2 D1 H3 D2 D3 D4 H4 D5 D6 D7 D8. The data will be

for the selected bits as H1 H2 1 H3 010 H41100, which should be

calculated in the next step.

2.1.3. Parity bits’ calculations

The calculation of 4 additional parity bits can be done based on

each Hamming code basic approach. For example, for the first

Hamming code H1, it will be evaluated through the XOR of all

position numbers that has 1 in their first bits as given in equation

2.

H1 ⊕ D1 ⊕D2 ⊕D4 ⊕D5 ⊕D7=0.

Based on equalizing these values with zero and regarding the

XOR operation H1 will be 1 to satisfy the required equation.

According to this procedure, the rest Hamming bits (H2, H3, H4)

are equal to (000) and the original data will be as follow: -

(101001101100). This would be the final transmission data

based on Hamming code technique with its additional parity

four bits.

2.1.4. Receiver Verification Process

After sending these data to the destination, the XOR operation

will be re-count again to demonstrate the error-free data. For the

previous example, the recalculation process of equation 2 which

belongs to H1 would be zero. This value represents the free-

error case. However, if there is an error occurred during

transmission operation then the results wouldn’t be zero. The

error position will be calculated according to Hamming

checking bits, for example if H1H2H3H4 equal to 1000, that

means the bit error is in 8 position[26][27].

2.2 Checksum Technique
Checksum involves the calculations of a specific value from the

original data with a determinate procedure. This value will be

added to the original data before sending it, while the receiver

performs the same calculation and compares the resulting

checksum with the transmitted data. With matching data,

transmission is considering as free-error and if not, it indicates

that errors may have occurred during transmission. This method

is in general utilized in various applications, including file

transfers and network communications [28][29]. However, it

generally does not offer error correction capabilities like

Hamming code. checksum steps can be listed briefly as

followed:

2.2.1. Transforming Data

Data will be read as a decimal number, for example having this

value 11001010 will be 202 in Decimal.

2.2.2. Checksum Generation

Checksum generated using the highest possible value based on

the power of 2 that should have covered the required sending

data. In this example, it would be 255-202=53 and it represented

the Checksum value.

2.2.3. Receiver Verification Process

After sending these data to the destination, the summation

between received data and available Checksum value in the

receiving side would be zero. This value represents the free-

error receiving, while any different result would be an error

occurrence and need another technique for error position

specifications and correction. The Checksum technique

involves calculating a value based on the original data by

sending this value along with the data. Then recalculating the

checksum upon receipt to check for errors. This approach

ensures that data can be quickly checked and making it an

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1453 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

effective tool for error detection in several system fields like

Hamming code. This similarity in usage and simplicity process

between these techniques would be helpful to combine them

together [30][31].

2.3 Hamming Code Plus Checksum Combination

Technique
By utilizing the advantages of both techniques, the

combination of Checksum and Hamming code improves data

integrity in digital communication. By introducing redundancy

in the form of parity bits, the Hamming code offers error

correction capabilities that enable the identification of single-

bit errors in the sent data. A checksum, on the other hand,

provides an extra degree of error detection by calculating a

value based on the complete data block. This would help in

locating any errors that might happen during transmission.

When combined, these features demonstrate the identification

of smaller mistakes as well as the specifications of larger issues

to enhance the general dependability of data transmission. This

hybrid strategy is especially useful in settings where data

accuracy is essential and need more error detection ability at

the same time. The steps of combination process would be as

followed:

The steps of the proposed algorithm (Hamming + Checksum)

1. Sender Side Flow Chart

A. Start

B. Divide Input Data (32 bits into 4 groups)

➢ Input datain1 (8 bits)

➢ Input datain2 (8 bits)

➢ Input datain3 (8 bits)

➢ Input datain4 (8 bits)

C. Process Data (Applying Checksum)

➢ Apply Checksum to obtain Dataout1, Dataout2,

Dataout3, and Dataout4 (each 12 bits)

➢ Zer010 and Zero11 are initialized to zero

D. Process data (Applying Hamming Code)

➢ Apply Hamming code to form Dataout5 (17 bits)

E. Output Data

➢ Output Dataout5 (17 bits)

F. End

The proposed model steps and sender side diagram are shown

in figure 1.

Figure 1. The Sender Side Diagram of related 32 bits based on

proposed algorithm

2. Receiver Side Flow Chart

A. Start

B. Receive Data

➢ Receive DATAIN5 (17 bits)

C. Process Data

➢ Apply Hamming code to form Dout1, Dout2,

Dout3, Dout4 (each 8 bits)

D. Check Retransmission Signal

➢ Check RETRANS

▪ If RETRANS is zero, data is correct

▪ If RETRANS is non-zero, request retransmission

E. Output Data

➢ Output Dout1 (8 bits)

➢ Output Dout2 (8 bits)

➢ Output Dout3 (8 bits)

➢ Output Dout4 (8 bits)

F. End

The proposed model steps and receiver side diagram are shown

in figure 2.

Figure 2. The Receiver Side Diagram of related 32 bits based on the

receiver side

In this proposal work we divided the 32 bits into 4 bytes (four

groups of 8 -bits) this proposal method is getting high

performance as compared with classic hamming coding

method with 32- bits, since the classic method will be detected

only one error bit and corrected it. Where the proposed method

will have corrected single error bit at 4 bytes which mean

corrected 4 bits at the overall 32- bits. As shown in figure 3.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1454 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

Figure 3. Hamming proposal technique

In the other hand if there are many errors getting at one byte the

error corrected by using check sum so the data will be corrected

by retransmitted. The proposal error detection and correction is

shown in figure 4.

Figure 4. The proposed system design

These steps were applied for an example which is shown in

figure 3, six steps were applied and obtaining the same results

at sending and receiving side as well.

░ 3. HARDWARE DESIGN AND

SIMULATION RESULTS

The privilege of the combined Hamming code and Checksum

approach was proved by the VHDL construction of the

transmitter and receiver circuits. Simple errors did not need

retransmission because the system correctly identified and fixed

errors, including single-bit and multiple-bit errors. The

transmitter circuit bock diagram is shown in figure 5. Where the

pin description of the transmitter circuit is explaining in table 1.

Figure 5. The proposed transmitted circuit

░ Table 1: IP-v4 selection for the proposed method

Input

Pins
Description

Output

Pins
Description

Datain1
Input data /one

byte (8- bits)
Dataout1

Output transmitted

data (12- bits)

Datain2
Input data / one

byte (8- bits)
Dataout2

Output transmitted

data (12- bits)

Datain3
Input data /one

byte (8- bits)
Dataout3

Output transmitted

data (12- bits)

Datain4
Input data / one

byte (8- bits)
Dataout4

Output transmitted

data (12- bits)

Zer010

Rest pins for

initial value

which always

equal to zero

Dataout5
Output transmitted

data (17- bits)

Zero11

Rest pins for

initial value

Which always

equal to zero

0 0

With multiple examples as illustrated in figure 6 and figure 7,

this system has undergone validation and testing to guarantee

the effectiveness and resilience of the applied system. The

desired message is represented by the initial 1A 1A 1A 1A 1A

input data to the transmitter circuit. Nevertheless, the

transmitter outputs 92A 92A 92A 92A B38 following

processing (perhaps involving error detection and repair

procedures). The last B38 indicates that extra information, like

a parity bit or checksum, was added to the message for error-

checking. The receiver can confirm the accuracy of the data

they have received thanks to this redundancy. The identical data

(92A 92A 92A 92A B38) is subsequently sent to the recipient,

who processes it to recover the original message. The receiver

confirms that the data was successfully recovered by producing

1A 1A 1A 1A after decoding, which corresponds to the original

input data from the transmitter. This proves the system's ability

to identify and fix any possible transmission faults,

guaranteeing an error-free final output. Error correction

techniques and error detection codes, such as B38, guarantee

dependable communication even when there is interference or

transmission noise.

Figure 6. The proposed simulation results based on the proposed

method and for input data 1A 1A 1A 1A at the transmitter side

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1455 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

Figure 7. The proposed simulation results based on the proposed

method and for input data 1A 1A 1A 1A at the receiver side

The transmitter Time simulation is shown using ISE and Python in

figure 8 (a) and (b), respectively.

Figure 8. (a) Time simulation of the transmitter circuit /data ISE

program

Figure 8. (b) Time simulation of the transmitter circuit data /python

program

A summary of the use of slice logic in an FPGA design is given in the

accompanying table 2. With an emphasis on slice registers, LUTs,

route-thrus, occupied slices and IOBs, the metrics in the table show

how the FPGA uses its resources. The design uses one, for a 1%

usage rate of the 19,200 possible slice registers. This suggests that the

design uses the slice registers that has a limited effect on this specific

resource. With 3 route-thrus used out of 38,400 available, the design

utilizes 1% of the available space. The limited employment of route-

thrus, which link various logic units within the FPGA, suggests that

the design has less internal routing complexity. This low utilization

rate indicates a well-thought-out design that maximizes the use of

slice resources. Furthermore, the design contains unused LUTs equal

to zero, which implies that even when slices are used, a large

percentage of them are still unused, especially when it comes to flip-

flops. In addition, out of the 78 available pairs, there is just one fully

utilized LUT-FF pair representing a 1% usage rate for these particular

pairs. The limited number of completely utilized LUT-FF pairings

highlights the effective resource utilization of the architecture even

more. Also, out of the 220 available, the design uses 118 bonded

IOBs, or a 53% usage rate. This shows a moderate to high IOB

resource utilization, indicating that the design is utilizing a sizable

amount of the FPGA's I/O capabilities. The table shows a design that

uses a modest amount of IOBs and very little slice registers, LUTs,

route-thrus and occupied slices.

░ Table 2. Design summery of transmitter proposed system

S
lice

 L
o
g

ic

U
tiliza

tio
n

U
sed

A
v

a
ila

b
le

U
tiliza

tio
n

Number of Slice Registers 1 19,200 1%

Number of Slice LUTs 78 19,200 1%

Number used as logic 78 19,200 1%

Number of route-thrus 3 38,400 1%

Number of occupied Slices 43 4,800 1%

Number with an unused

Flip Flop

77 78 98%

Number with an unused

LUT

0 78 0%

Number of fully used

LUT-FF pairs

1 78 1%

Number of bonded IOBs 118 220 53%

The input and output pin description of the receiver circuit show

in table 3, and the design summary of the receiver circuit is

show in table 4. Figure 9 shows the used percentage of logical

devices based on the total available ratio. The results show how

an FPGA design uses logic resources. With only one slice

register used in this instance out of 19,200 possible slice

registers, the design had made little use of register resources.

All 78 of the slice LUTs that were being used are also being

used for logic. This indicates that just a small portion of the

19,200 slice LUTs available were been used for the current

architecture. Furthermore, out of the 38,400 available route-thru

elements, the design used only three of them to route signals

between logic blocks, indicating that routing resources were not

widely utilized. Out of the 4,800 slices that are accessible, 43

slices had been taken by the design. This shows that just a small

portion of the FPGA's slice resources have been utilized by the

current setup, with the majority still being available. All things

considered, these findings imply that the architecture uses

resources quite effectively, leaving plenty of room for more

reasoning, routing or optimization. The design is not pushing

the boundaries of the FPGA's capabilities, as evidenced by the

limited consumption of slice registers, LUTs, and routing

resources.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1456 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

Figure 9. Logical devices ratio based on the total available number of

Slice in the sending side

While figure 10 shows the Logical devices ratio based on the

total available Flip Flop and LUTs. An in-depth examination of

the use of flip-flops, LUTs and IOBs in the FPGA architecture

was provided by the results in table 2 and shown by this figure.

As shown in figure 10, 77 of the 78 accessible LUTs were not

fully utilized, meaning that most LUTs are either not used at all

or are only used partially. This implies that the LUT resources

have a sizable amount of unused capacity that might been used

for more logic if necessary. The fact that there was one fully

utilized LUT is noteworthy since it indicates that at least one

LUT was being properly optimized for its intended purpose.

Since all 78 of the flip-flops in the design are being used, the

data indicate that none were left unused. This suggests that flip-

flops have been used effectively, with each one actively

contributing to the design, perhaps for data synchronization or

storage. Although the results did not explicitly state how many

LUT-FF pairs were utilized, the use of both LUTs and flip-flops

indicates that the design was balancing the use of logic and

storage components. Finally, 118 of the 220 bonded IOBs on

the FPGA were in use, which indicates that roughly 53% of the

I/O pins had utilized. A sizable percentage of IOBs are thus still

open for growing external relationships.

Figure 10. Logical devices ratio based on the total available Flip

Flop, LUTs and IOBs/ sending side

░ Table 3. The receiver pins description

Input

Pins

Description Output

Pins

Description

DATAI

N1

Input data

 /(12-bits)

Dout1 Output received

 / (7- bits)

DATAI

N2

Input data

/ (12-bits)

Dout2 Output received

/ (7- bits)

DATAI

N3

Input data

/ (12-bits)

Dout3 Output received

/ (7- bits)

DATAI

N4

Input data

 / (12-bits)

Dout4 Output received

/ (7- bits)

DATAI

N5

Input data

 / (17-bits)

RETRANS Output signal if it

has zero value the

received data is

correct else data

need to be

retransmitted

ZERO1

0

Rest pins for

 initial value

 which always

 equal to zero

/ /

ZERO1

1

Rest pins for

 initial value

 which always

 equal to zero

/ /

░ Table 4. Design summary of the receiver circuit 3

Logic Utilization Used Available Utilization

Number of Slice Registers 44 19200 0%

Number of Slice LUTs 143 19200 0%

Number of fully used Bit Slices 44 143 30%

Number of bonded IOBs 131 220 59%

Several resource metrics were used to assess the FPGA

implementation's logic usage for the suggested security

technique as explained more for the receiving side in Figure 11.

In particular, 44 of the 19,200 Slice Registers that are available

on the FPGA are utilized. This suggests that the available slice

registers—the FPGA's fundamental storage components—are

being used sparingly. With regard to Slice LUTs (Look-Up

Tables), 143 of the 19,200 possible LUTs are used, indicating a

comparatively low logic gate resource use. Additionally, 44 of

the 143 available Bit Slices are fully utilized, indicating that the

FPGA's bit-level resources are likewise effectively used. Lastly,

the method utilized input/output resources to connect the FPGA

to external components or interfaces, using 131 of the 220

available bonded I/O blocks (IOBs). The suggested approach

was effective in terms of FPGA resource usage, as evidenced

0

5000

10000

15000

20000

25000

30000

35000

40000

Number of

Slice

Registers

Number of

Slice LUTs

Number

used as logic

Number of

route-thrus

Number of

occupied

Slices

Used Available

0

50

100

150

200

250

Number

with an

unused

Flip Flop Number

with an

unused

LUT Number

of fully

used

LUT-FF

pairs

Number

of bonded

IOBs

Used Available

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1457 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

by the generally low resource utilization, which left plenty of

room for future scalability or extra features.

Figure 11. Logical devices ratio based on the total available Flip

Flop, LUTs and IOBs/ Receiving side

░ Table 5. The Results of proposed system

Figure 12. Time simulation of the receiver circuit data

based on ISE program for data example 1

Figure 13. Time simulation of the receiver circuit data based on

Python program for data example 1

Figure 14. Time simulation of the receiver circuit with burst error at

different byte based on ISE Program for data example 2

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Number of

Slice Registers

Number of

Slice LUTs

Number of

fully used Bit

Slices

Number of

bonded IOBs

Used Available

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1458 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

Figure 15. Time simulation of the receiver circuit with burst error at

different byte based on Python Program for data example 2

When compared to earlier approaches as shown in table 6, the

suggested algorithm exhibits a number of significant resource

efficiency benefits. Specifically, it effectively reduces the usage

of slice registers and LUTs, using only 44 of the 19,200

available slice registers and 143 of the 19,200 available slice

LUTs. Compared to the benchmarks offered by other

approaches, as those in references [2] and [3], where

significantly larger percentages of resources are used, this

compares favorably. Furthermore, the suggested approach

employs a very small number of completely utilized bit slices—

44 out of 143—suggesting minimal waste and effective

resource utilization. The algorithm uses 131 of the 220 available

IOBs, which is better optimized than the examples in references

[4] and [7]. The bonded IOBs also demonstrate an

improvement. The suggested algorithm's potential for effective

implementation in FPGA or other hardware platforms is

demonstrated by its low resource consumption and balanced

distribution across available resources, which makes it

appropriate for applications where resource constraints are a

crucial consideration.

░ Table 6. Comparison table over previous methods and

based on different fields

R
eferen

c
es

S
lice

R
eg

isters

S
lice L

U
T

s

F
u

lly
 u

sed

B
it S

lices

B
o

n
d

ed

IO
B

s

U
sed

A
v

a
ila

b
le

U
sed

A
v

a
ila

b
le

U
sed

A
v

a
ila

b
le

U
sed

A
v

a
ila

b
le

[2] 192
72840

0
568

36420

0
154 606 168 600

[3] 32 11440 75 5720 28 79 141 102

[4] 4364
12680

0
932
6

63400 1257
1243

3
19 210

[5] 114 8672 223 17344 / / 114 250

[6] 3319 24576
309

0
49152 / / 325 640

[7] 2101 93120
352
3

46560 3525 3525 36 240

[8] 75 150 120 125 87 103 64 96

P
ro

p
o

sed

44 19200 143 19200 44 143 131 220

░ 4. CONCLUSION
In communication systems, the combination of checksum

techniques and Hamming codes offers a reliable solution for

error detection and repair. Data integrity and transmission

reliability are improved by the integrated approach, which

addresses the shortcomings of each individual method. This

technique has been successfully tested and implemented using

VHDL on an FPGA platform, demonstrating its practical uses

in contemporary communication systems. Additional

applications and refinements of this hybrid error management

system may be investigated in future study. Many different

fields, such as computer memory, embedded systems, satellite

communications, modems, shielding cables, connectors and

plasma cameras use Hamming codes for error detection and

repair. Even though they are widely used, hamming codes have

a few drawbacks such in high-noise conditions. It became less

effective even though they are excellent at identifying single-bit

errors and do not necessitate retransmission. Hamming codes'

main benefit is their ability to quickly detect and fix single-bit

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1459 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

faults; yet, in situations where there are several errors or in

transmission media with a lot of noise, their effectiveness is

minimized. On the other hand, the Checksum method detects

faults that are both single-bit and multiple-bit, providing a

thorough approach to error detection. The delay resulting from

having to retransmit complete data sets even in cases where a

single-bit error is found is the main disadvantage of checksums.

This study suggests an innovative integrated strategy to

leverage each method's benefits while addressing its inherent

limitations. This technique improves error detection and

correction by combining checksums and Hamming codes. In

particular, rather than applying Hamming codes to bigger data

blocks, like 32 bits, the research presents a bit fragmentation

technique where data is separated into smaller segments, such

8-bit groups. The error repair probability increases from

3.125% to 12.5% as a result of this fragmentation. The

suggested system achieves over 98% error detection and

correction accuracy by combining these techniques. By

successfully designing and implementing the integrated

approach in VHDL and deploying it on an FPGA Virtex 5

platform, it has been shown to be effective in enhancing the

performance and reliability of communication systems.

░ REFERENCES
[1] M. M. Ali, S. J. Hashim, M. A. Chaudhary, G. Ferré, F. Z. Rokhani, and Z.
Ahmad, “A Reviewing Approach to Analyze the Advancements of Error

Detection and Correction Codes in Channel Coding with Emphasis on LPWAN

and IoT Systems,” IEEE Access, vol. 11, pp. 127077–127097, 2023, doi:
10.1109/ACCESS.2023.3331417.

[2] M. S. O. Anil Dixit, “Design and implementation of hybrid GALOIS filed
encoder & decoder,” J. Comput. Technol., vol. 10, no. 3, pp. 1–6, 2022.

[3] G. Patil and D. Patle, “Design and implementation of an enhanced - using
Viterbi Decoder,” IOP Conf. Ser. Mater. Sci. Eng., vol. 12, no. 06, pp. 1–6,

2023, doi: 10.1088/1757-899X/331/1/012009.

[4] N. K R, M. K.S, and S. C M, “Fpga Implementation of Object Detection in

Background Modeling Using Gaussian Mixture Model,” Int. J. Trendy Res.

Eng. Technol., vol. 06, no. 02, pp. 35–43, 2022, doi: 10.54473/ijtret.2022.6207.

[5] A. P. Dewanty and B. A. Wardijono, “Analysis and Design of CRC-32 IEEE

802.3 Generator for 8 Bit Data Using VHDL,” Kilat, vol. 11, no. 1, pp. 78–87,
2022, doi: 10.33322/kilat.v11i1.1536.

[6] A. EL Makhloufi, S. EL Adib, and N. Raissouni, “Highly Efficient Security
Level Implementation in Radiation-Tolerance FPGA Using a Combination of

AES Algorithm and Hamming Code: LST-SW Case,” Int. J. Electr. Electron.

Eng. Telecommun., vol. 12, no. 4, pp. 223–234, 2023, doi:
10.18178/ijeetc.12.4.223-234.

[7] S. Singh, J. V. R. Ravindra, and B. R. Naik, “Prediction of Intermittent
Failure by Presage Debacle Model in Network on Chip,” Int. J. Mod. Educ.

Comput. Sci., vol. 14, no. 4, pp. 75–88, 2022, doi: 10.5815/ijcnis.2022.04.06.

[8] A. Devrari and A. Kumar, “Turbo encoder and decoder chip design and

FPGA device analysis for communication system,” Int. J. Reconfigurable

Embed. Syst., vol. 12, no. 2, pp. 174–185, 2023, doi:
10.11591/ijres.v12.i2.pp174-185.

[9] S. G. Priyadharshini, C. Subramani, and J. Preetha Roselyn, “An IOT based
smart metering development for energy management system,” Int. J. Electr.

Comput. Eng., vol. 9, no. 4, pp. 3041–3050, 2019, doi:

10.11591/ijece.v9i4.pp3041-3050.

[10] Y. Tao, “Research and Application of Several Error Correction Codes in
Communication,” Highlights Sci. Eng. Technol., vol. 53, pp. 49–55, 2023, doi:

10.54097/hset.v53i.9681.

[11] P. Belegehalli Siddaiah, M. Puttaswamy, and N. Kamat, “Compact and

Energy Efficient QCA Based Hamming Encoder for Error Detection and

Correction,” Adv. Electr. Electron. Eng., vol. 21, no. 2, pp. 120–126, 2023, doi:
10.15598/aeee.v21i2.4794.

[12] P. Megha, B. S. Premananda, and N. Kamat, “Area and energy optimized
Hamming encoder and decoder for nano-communication,” vol. 75, no. 3, pp.

229–236, 2024.

[13] D. D. T. Tran Do Hon Nhien, Vo Tan Thanh, Nguyen Thanh Khoa, Nguyen

Quoc Thang, Nguyen Van Thanh Loc, Huynh Hoang Ha, Nguyen Ngo Lam,

“Application of Hamming Code for Error Control in Memory,” J. Tech. Educ.
Sci., no. 71B, pp. 19–28, 2022, doi: 10.54644/jte.71b.2022.1141.

[14] M. Sais, N. Rafalia, and J. Abouchabaka, “DNA technology for big data

storage and error detection solutions: Hamming code vs Cyclic Redundancy

Check (CRC),” E3S Web Conf., vol. 412, 2023, doi:

10.1051/e3sconf/202341201090.

[15] S. Mitsenko, S. Naumenko, I. Rozlomii, and A. Yarmilko, “Information

Protection and Recovery Hamming Codes Based’ Hash Technique,” CEUR
Workshop Proc., vol. 3513, pp. 64–77, 2023.

[16] R. Alom, N. Shakib, and M. A. Rahaman, “Enhanced Hamming Codes :

Reducing Redundant Bit for Efficient Error and Correction,” in 2023 5th

International Conference on Sustainable Technologies for Industry 5.0 (STI),
2024, no. December 2023, pp. 1–7.

[17] X. Wei et al., “ReIPE: Recycling Idle PEs in CNN Accelerator for
Vulnerable Filters Soft-Error Detection,” ACM Trans. Archit. Code Optim.,

2024, doi: 10.1145/3674909.

[18] T. Manivannan, Y. Basheerbaba, B. A. Kumar, and D. N. Siva, “Advanced

VLSI Technique for Error Detection and Correction in Space Systems,” vol. 5,

no. 2, pp. 7–18, 2024.

[19] M. P. Kiogora, Loyford Njagi, and Josephine Mutembei, “Errors, error

detection and correction efficiency in the container number code,” African J.
Sci. Technol. Soc. Sci., vol. 2, no. 2, pp. 93–103, 2024, doi:

10.58506/ajstss.v2i2.166.

[20] A. H. Saleh and M. S. Mohammed, “Enhancing Data Security through

Hybrid Error Detection: Combining Cyclic Redundancy Check (CRC) and

Checksum Techniques,” no. August, 2024, doi: 10.37391/IJEER.120312.

[21] Louis Narmour, Steven Derrien, and Sanjay Rajopadhye, Automatic

Algorithm-Based Fault Detection (AABFD) of Stencil Computations, vol. 1,
no. 1. Association for Computing Machinery, 2023.

[22] S. Priyadarshan, H. Nguyen, R. Chouhan, and R. Sekar, “SAFER: Efficient
and Error-Tolerant Binary Instrumentation,” 32nd USENIX Secur. Symp.

USENIX Secur. 2023, vol. 2, pp. 1451–1468, 2023.

[23] Y. Huang, “Quaternary checksum, redundancy and Hamming code,” no.

May, 2022, [Online]. Available: https://github.com/tom123jack321/.

[24] V. Sokolovskyi, E. Zharikov, and S. Telenyk, “Development of the Method

of Detecting and Correcting Data Transmission Errors in Iot Systems for

Monitoring the State of Objects,” Eastern-European J. Enterp. Technol., vol. 1,
no. 9(127), pp. 22–33, 2024, doi: 10.15587/1729-4061.2024.298476.

[25] A. Hadi Saleh, “Design of Hamming Code for 64 Bit Single Error
Detection and Correction Using Vhdl,” Diyala J. Eng. Sci., vol. 8, no. 3, pp. 22–

37, 2015, doi: 10.24237/djes.2015.08305.

[26] Delphine Mary. P and S. A, “Design and Implementation of Triplication

Error Correction Using Hamming Code,” Irish Interdiscip. J. Sci. Res., vol. 07,

no. 03, pp. 106–114, 2023, doi: 10.46759/iijsr.2023.7312.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 12, Issue 4 | Pages 1449-1460 | e-ISSN: 2347-470X

1460 Website: www.ijeer.forexjournal.co.in Design a Merging Technique Circuit to Error Detection

[27] C. Ding, Z. Sun, and Q. Yan, “The Support Designs of Several Families of
Lifted Linear Codes,” pp. 1–15, 2024, [Online]. Available:

http://arxiv.org/abs/2407.15104.

[28] A. O. Hoori, “A Modified 2D-Checksum Error Detecting Method for Data

Transmission in Noisy Media,” J. Eng., vol. 19, no. 08, pp. 992–998, 2023, doi:

10.31026/j.eng.2013.08.05.

[29] P. Koopman, “An Improved Modular Addition Checksum Algorithm.”

[30] P. Zhang, “Polynomial Intermediate Checksum for Integrity under

Releasing Unverified Plaintext and Its Application to COPA,” Mathematics,

vol. 12, no. 7, 2024, doi: 10.3390/math12071011.

[31] H. Pereira et al., “SEGUID v2 : Extending SEGUID checksums for circular

, linear , single- and double-stranded biological sequences,” 2024.

 © 2024 by the Mohammed Sami Mohammed,

Hanan Badeea Ahmed, Yasir Ghazi Rashid, and

Adham Hadi Saleh. Submitted for possible open

access publication under the terms and conditions of the Creative

Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

