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░ ABSTRACT- Electricity generation must satisfy the demand for electric loads in order to optimize the functioning of the 

power system. Load prediction can assist power companies in safely and efficiently operating their electrical systems. Load 

prediction is a process employed by power providers to predict the quantity of power or energy always demanded for balancing 

supply and demand. Short-term load prediction (STLP) with high accuracy is crucial to the seamless operation of the power system 

and the improvement of economic benefits. An approach for predicting short-term electrical demand utilizing long short-term 

memory (LSTM) based on actual data collected from Wasit Thermal Power Plant in Iraq is proposed in this paper. MATLAB 

software is utilized to implement the data used in this work. The assessment metrics employed were mean absolute error (MAE), 

mean absolute percentage error (MAPE), root mean square error (RMSE) and the coefficient of determination (R-squared) to assess 

the precision of load prediction. The findings demonstrate that the LSTM model is highly effective at forecasting the random 

characteristics of an electrical demand. 
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░ 1. INTRODUCTION   
Electric companies have several economic and technological 

obstacles that they must overcome in order to deliver reliable 

and cost-efficient energy to their customers. Scheduling, load 

flow analysis, planning, and electrical power system 

management are the most important of these issues. Load 

prediction is a very promising area of study that has gained 

significant attention in recent years. Load estimation can be 

stated as the level of precision in the difference between the real 

and predicted amounts of future load demand. Predicting load 

demand can optimize the generation unit start-up costs and 

prevent the need for additional power facilities [1]. Load 

prediction is an essential and crucial aspect of electric utility 

organization and administration. The system operator can 

efficiently arrange the location of spinning reserves using load 

prediction, which encompasses timeframes ranging from a few 

minutes to many months [2]. Four different types are used to 

categorize real power load forecasting: very short-term load 

prediction (VSTLP) contains load predictions for the next day 

[3], short-term load prediction (STLP) deals with load 

estimations for a few hours to a few days out, medium-term load 

prediction (MTLP) focuses on predictions for a few weeks to a 

few months out, and long-term load prediction (LTLP) focuses 

on load estimations from one year to a few years out [4]. 

 

To date, numerous STLF approaches have been developed, and 

these techniques may often be categorized into two categories. 

The first category comprises conventional methods like time 

series analysis [5], auto regressive integrated moving average 

(ARIMA) model [6], multiple linear regression [7], and so on. 

The second group includes computational intelligence (CI) 

methods like expert systems [8], support vector machine (SVM) 

[9], fuzzy systems [10], artificial neural network (ANN) [11], 

recurrent neural network (RNN) [12], convolutional neural 

network (CNN) [13], and a combination of these methods. 

 

This research is focused on short-term load prediction utilizing 

a long short-term memory (LSTM) network by dividing the 

input data into two models: all-data and weekday models, and 

comparing the outcomes of these models based on four 

assessment metrics. 

 

░ 2. LSTM NETWORK 
The LSTM network is a robust configuration of recurrent neural 

networks (RNN) that is highly effective at analyzing time series 

data and making predictions [14]. It is an advanced framework 

that accurately evaluates and understands the relationships 

between distant elements in a sequence of data. Several 

applications, including natural language processing and audio 

identification, frequently use it [15]. The architecture of the 

single cell of the LSTM network is illustrated in figure 1. 
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Figure 1. Architecture of single cell of LSTM 

 

A LSTM network consists of four fundamental parts: a cell, an 

input gate, an output gate, and a forget gate. The cell transmits 

data over a variety of time periods. The gates facilitate the 

transfer of data between the cell's input and output. An LSTM 

network calculates its outputs in the following manner: 
 

𝑖𝑡 =  𝜎(𝑊𝑖 . [ℎ(𝑡−1), 𝑥𝑡  ] + 𝑏𝑖  )                                    (1) 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑓)                                    (2) 

𝑜𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                      (3) 
 

where 𝑥𝑡 represents the input variable at a certain time; 𝑊𝑖, 𝑊𝑓, 

𝑊𝑐, 𝑊𝑜 refer to the weight matrices for the gates;  𝑓𝑡, 𝑜𝑡, and 𝐶𝑡  

refer to the forget gate, output gate, and cell output, 

respectively. The symbol 𝜎   denotes the sigmoid activation 

function, and ℎ𝑡  is refers to the hidden state at time 𝑡 . 

Additionally, 𝑏𝑖  , 𝑏𝑓 , and 𝑏𝑜  stand for the biased values of 

various gates. The new candidate value vector �̂�𝑡 is developed 

by the hyperbolic tangent function (𝑡𝑎𝑛ℎ) and also added to the 

cell state 𝐶𝑡.  
 

𝐶�̂� = tanh  (𝑊𝑐 . [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑐)                             (4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̂�                                       (5)  

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ (𝐶𝑡)                                               (6) 
 

The 𝑪𝒕  and 𝒐𝒕  of the hyperbolic tangent function (𝒕𝒂𝒏𝒉) are 

utilized to update the 𝒉𝒕 state [16]. 

 

░ 3. RESEARCH METHODOLOGY 
3.1 Input Dataset 
This study presents the actual data collected from the Thermal 

Power Plant of Wasit in Iraq. Hourly load and temperature 

measurements from August 1 to October 31, 2022 comprise the 

data. Six electricity-generating units equip this power station. 

This study uses unit 1 and unit 2 load values of the power plant 

to predict the future loads for these units. We have suggested 

two models to handle the acquired data: the all-data model and 

the weekday model. We execute the suggested models using 

MATLAB R2023a. 
 

3.2 Reprocessing Dataset 
The input dataset passes through different steps before the 

suggested approaches are implemented. The first step is data 

cleaning; it is the initial step following data collection when 

trying to develop an effective and reliable model [17]. In our 

load data, we have 7 hours in unit 1 and 5 hours in unit 2 equal 

to zero on August 6-7 because the power plant is shut down 

during these hours, so we used the correcting data 

inconsistencies method to replace these data so that the 

accuracy of the results is not affected. The second step involves 

feature selection, which refers to the methods used to choose 

the portion of input features that are most relevant to the 

expected target value. To enhance the accuracy of electrical 

demand prediction, the dataset incorporates the hourly load 

data, the corresponding temperature for each day, the day of the 

week, and the hour of the day. The third stage divides the data 

into separate parts. This study uses a dataset consisting of more 

than 2000 lines, each representing the load values for every day 

of the week. We divided the data into two models, as mentioned 

previously: 

a) All-Data Model: It includes data for all days, from August 

1, 2022, to October 31, 2022. 

b) Week-Days Model: It includes data for the days of the 

week, excluding holidays (Friday and Saturday). 

 

The fourth step is encoding the dataset, which means encode the 

day of the week as a numerical variable from 0 to 6 instead of a 

string variable, and encode the hour of the day as a numerical 

variable from 0 to 24. The fifth step is to normalize the load data 

to be between 0 and 1. The mathematical formula for 

normalization is: 
 

𝑍 =
𝑦−min (𝑦)

max(𝑦)−min (𝑦)
                                  (7) 

 

Here, 𝑧  refers to the normalized value, 𝑦  refers to the actual 

value, 𝑚𝑖𝑛(𝑦) is the minimum value of 𝑦, and 𝑚𝑎𝑥(𝑦) is the 

maximum value of 𝑥  [18]. The last step is converting to 

matrices,  which means storing the training and testing values 

within matrices, in order to facilitate handling and avoid errors 

in the training process. 

 

3.3 Hyperparameters Tuning 
Tuning is the process of selecting the ideal set of 

hyperparameters for a learning algorithm. The parameters 

utilized in this research are:  

• Optimizer: It is employed during training to update the 

model weights. 

• Learning rate: It specifies the step size at each iteration. 

• Learn rate drop factor: is a multiplicative factor that is 

applied to the learning rate when a particular number of 

epochs have passed. 

• Learn rate drop period: is the number of epochs at which 

the learning rate is dropped. 

• Max. epochs It refers to the maximum number of times 

the full training dataset is processed by the model. 

• Mini batch size: is the minimum number of samples 

utilized in each training iteration. 

 

3.4 Evaluation Metrics 
The suggested approach utilizes four indices to evaluate its 

effectiveness. The mean absolute error (MAE), mean absolute 

percentage error (MAPE), root mean square error (RMSE), and 

https://www.ijeer.forexjournal.co.in/
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the coefficient of determination (R-squared) are four metrics 

represented by: 

 

𝑀𝐴𝐸 =
1

𝑁𝑜
∑ |�̂� − 𝑦|𝑁𝑜

𝑖=1          (8) 

𝑀𝐴𝑃𝐸 =
1

𝑁𝑜
∑

|�̂�−𝑦|

�̂�

𝑁𝑜
𝑖=1                                                    (9) 

𝑅𝑀𝑆𝐸 = √[
1

𝑁𝑜
∑ (�̂� − 𝑦)2𝑁𝑜

𝑖=1 ]                         (10) 

𝑅2 = 1 −
∑ 𝑦−�̂�

𝑁𝑜
𝑖=1

∑ 𝑦−�̅�
𝑁𝑜
𝑖=1

                                                         (11) 

 

where 𝑁𝑜  stand to the number of test samples, �̂� is the predicted 

value, and �̅� refers to the mean of �̂� value. Figure 2 illustrates 

the flowchart of the suggested approach. 

 
 

Figure 2. Flowchart of the proposed methodology 

 

░ 4. RESULTS 
The dataset of all the suggested models is divided into training 

sets for training and testing processes to evaluate its 

performance on new data. The training set comprises 70% of 

the total data, whereas the test values comprise the remaining 

30%. Table 1 illustrates the number of values after being 

divided into training and testing sets for the models. All models 

and cases in this research are trained by the ADAM optimizer 

for the input data with a 0.01 initial learn rate. 

░ Table 1. The number of samples (rows) of input data used 

in the two models proposed 
 

Model 
No. of samples 

Training Testing 

All-Data 1545 663 

Weekday 1109 476 

 

4.1. All-Data Model 
The features used for training the input dataset to predict the 

load demand using the LSTM approach for Unit 1 and Unit 2 

are described in table 1. Figure 3 and figure 4 display the 

simulation results for the first model's prediction for Unit1 and 

Unit 2, respectively. 
 

░ Table 2. The features used in LSTM approach for 

training process of all-data model 

Feature Unit 1 Unit 2 

LSTM layer 1 1 

Hidden cell 280 200 

Learn rate drop factor 1 1 

Learn rate drop period 2 2 

Max. epochs 200 200 

 

 
 

Figure 3. Electrical load prediction results of Unit 1 based on the 

LSTM approach using all input data (all days) 
 

 
 

Figure 4. Electrical load prediction results of Unit 2 based on the 

LSTM approach using all input data (all days) 

https://www.ijeer.forexjournal.co.in/
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The proposed model requires a small number of epochs for 

learning, preventing an exceedingly slow learning process. 

Additionally, the proposed model provides an accurate 

prediction for the STLP problem. The performance comparison 

findings of load prediction between Unit 1 and Unit 2 using the 

evaluation indices for the all-data model are presented in table 

3. 

 

░ Table 3. Evaluation metrics of Unit 1 and Unit 2 for the 

all-data model 
 

 

 MAE MAPE RMSE 𝑹𝟐 

Unit 1 8.1646 2.7490 0.0123 0.7706 

Unit 2 5.2593 1.8262 0.0079 0.8470 

 

4.2. Weekday Model 
The features used for training the input dataset to predict the 

load demand using the LSTM approach for Unit 1 and Unit 2 

described in table 4. Figure 5 and figure 6 illustrate the 

simulation results for the second model's prediction for Unit1, 

and Unit 2, respectively. 

 

░ Table 4. The features used in LSTM approach for 

training process of weekday model 
 

 

Feature Unit 1 Unit 2 

LSTM layer 1 1 

Hidden cell 350 350 

Learn rate drop factor 1 1 

Learn rate drop period 2 2 

Max. epochs 300 300 

 

 
 

Figure 5. Electrical load prediction results of Unit 1 based on the 

LSTM approach using only weekday data (Sunday to Thursday) 

 

 
Figure 6. Electrical load prediction results of Unit 2 based on the 

LSTM approach using only weekday data (Sunday to Thursday) 
 

In this model, the quantity of data is less than in the previous 

model. Therefore, we need a greater number of hidden cells for 

the two generating units. Furthermore, increasing the number of 

maximum epochs resulted in improved prediction accuracy. 

The performance comparison findings of load prediction 

between Unit 1 and Unit 2 using the evaluation indices for the 

weekday model are presented in table 5. In this model, the value 

of these indices increases. 
 

░ Table 5. Evaluation metrics of Unit 1 and Unit 2 for the 

weekday model 
 

 
MAE MAPE RMSE 𝑹𝟐 

Unit 1 8.1418 3.0380 0.0171 0.7281 

Unit 2 8.4016 3.1349 0.0177 0.7395 

 

░ 5. CONCLUSION  
This paper employed the LSTM approach to predict the short-

term loads. We evaluated the efficacy of the proposed models 

using actual data from the Wasit Thermal Power Plant in Wasit 

Governorate, Iraq, as a real-world example. We implemented 

the proposed methodology on two distinct data models: an all-

model data model that encompasses all values from the input 

dataset, and a weekday model that includes the values of the 

input dataset for weekdays from Sunday to Thursday. 
 

The prediction findings obtained from MATLAB R2023a 

demonstrated that the LSTM approach for the all-data model 

has more precise load prediction than the weekday model 

measured by prediction error (MAE, MAPE, RMSE, and R-

squared). The average MAE for the all-data model is 6.71195, 

and for the weekday model, it is 8.2717. The average MAPE for 

the all-data model is 2.2876, and for the weekday model, it is 

3.08645. The average RMSE for the all-data model is 0.0101, 

and for the weekday model, it is 0.0174. The average R-squared 

for the all-data model is 0.8088, and for the weekday model, it 

is 0.7338. 

 

https://www.ijeer.forexjournal.co.in/
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