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░ ABSTRACT- Efficient channel selection is essential for optimizing resource utilization in wireless communication. 

Traditional static allocation often results in underutilization and wastage of channels. This research addresses these inefficiencies 

by using cognitive sensors, known as secondary users (SUs), to dynamically identify and utilize available channels, thereby 

minimizing channel wastage and deficits. The proposed strategy configures sensors cognitively to detect real-time channel 

availability. Secondary users (SUs) identify free channels initially allocated to primary users (PUs) and list these channels based on 

parameters such as capacity, transmission range, data load, and distance. An Active Channel Selection Network (ACSN) using 

artificial neural networks is employed to evaluate and allocate the optimal channel based on multiple parameters and sensor queue 

levels. This cognitive approach significantly reduces network channel deficits and wastage by dynamically detecting and utilizing 

free channels, ensuring more efficient channel usage. The ACSN improves the quality of channel selection, ensuring optimal 

allocation even when multiple channels are available. This method effectively addresses the challenges of channel underutilization 

and wastage in wireless communication networks, optimizing resource usage and enhancing overall network efficiency and 

performance. 
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░ 1. INTRODUCTION   
Cognitive technology is utilized to mitigate channel shortages 

in wireless networks, addressing the issue of underutilized 

channels that lead to resource wastage. As wireless 

communication continues to grow and data exchanges increase, 

there is a heightened demand for large-scale channel usage, 

necessitating the development of alternative technologies. In 

cognitive radio networks, users are classified into primary 

(licensed) and secondary (unlicensed) categories. Primary users 

have unrestricted access to channels, while secondary users can 

access these channels for limited periods. This technology 

enhances channel utilization and reduces network limitations. 
 

Primary channels employ various methods to facilitate 

secondary user access, including channel perception, selection, 

and dynamics based on node movements, and sharing among 

sensors. When a channel is required, secondary users identify 

available channels and update their free channel list. If multiple 

free channels are available, they use a channel selection system 

to choose the most suitable one. This free channel list is shared 

with other sensors within the coverage area. If a primary user 

requests the same channel, the secondary user redirects to 

another suitable channel. 
 

For efficient channel perception, secondary users must 

minimize the time spent locating channels and enable a swift 

decision-making process, thus reducing the channel selection 

period and network delay. Minimizing the frequency of channel 

selections is crucial to maintain network efficiency. Secondary 

users employ a history-based prediction method to assess 

channel status and avoid frequent disconnections, though 

historical records may sometimes lack accuracy. Additional 

factors are considered to ensure effective channel selection. 
 

In the proposed Active Channel Selection Network (ACSN), 

secondary users select channels based on data size, channel 

capacity, usage period, transfer delay, and transfer limits. 

Interference limits and current data size are also considered, 

with predictions made for future transaction statuses. The article 

explores an optimal channel selection method using neural 

networks, implementing a prediction technique with input, 

hidden, and output layers. 
 

The rest of the paper is structured as follows: Section 2 reviews 

relevant research. Section 3 introduces the proposed ACSN, 

where sensors use artificial neural networks for active channel 

selection. Section 4 presents the results and discusses the quality 

of the protocol. Section 5 concludes the paper and suggests 

future research directions. 
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░ 2. LITERATURE REVIEW  
The cognitive technique is the process of learning by sensing, 

planning, reasoning, action, and continually updating and 

upgrading with a learning history. If cognitive radio can be 

combined with wireless sensors, it will be able to overcome 

many of the current WSN difficulties. CR can identify 

unutilized spectrum in both licensed and unlicensed spectrum 

bands, and to take advantage of the unused spectrum when it 

arises. [8]. Wearable sensor nodes can store patient data such as 

identification, history, and therapies, and sensors can be used to 

take vital signs from patients in real time and transfer the data 

to handheld computers carried by medical workers [1]. Based 

on energy, nodes at a higher level might travel to a lower level. 

The nodes with a lower level of heterogeneity carry out the bare 

minimum of data transfer activities, while the entire load is 

carried out at a higher level to ensure the nodes' longevity. [4]. 

In this paper, a cognitive algorithm based on game theory is 

used to optimise the radiating and transmitting ranges of nodes 

to save energy while maintaining network integrity [10].  
 

The suggested strategy uses distributed subcarriers and power 

control algorithms to reduce the power consumption of each bit 

of information from subcarriers, and simulation results show 

that it performs similarly to the centralised optimal solution. 

[12]. The goal of this study is to stimulate research activities 

aimed at laying the groundwork for new advanced 

communication systems for efficient underwater 

communication and networking for improved ocean monitoring 

and exploration applications [2]. In [6], a quick introduction of 

cognitive radio networks and their security concerns are 

discussed. Then, they analysed some possible countermeasures 

for the Primary User Emulation attack.  
 

The approach provides tools to precisely assess the performance 

of the network and clearly identify the optimal state, with 

relatively low processing demands. Above all, the reasoning 

engine stays versatile to adapt to any possible network condition 

changes [14]. Due to the short life of wireless sensor nodes, the 

network topology is not stable, hence communication network 

protocols must self-adapt to topology changes. Large number of 

sensor nodes makes software upgrades time-consuming. 

Network extension and administration are expensive because 

data control and forwarding are tightly connected in network 

switching equipment [3]. 
 

Simulations show that the proposed distributed system plus 

distributed power regulation performs near to the centralised 

optimal approach, where all new user channel gains are known 

to a central controller and all new users participate [15]. Such 

systems need radio-frequency energy-harvesting to power and 

boost system energy. Markov model has not been employed in 

the literature to optimise CR-WSN with EH nodes for optimal 

operational parameters [13]. Underlay networks protect PU's 

from interference by controlling transmit power. Overlay 

networks employ licensed spectrum bands when PUs is absent. 

[9]. 

Underlay networks do use spectrum bands simultaneously by 

controlling transmit power to prevent interference. SUs uses 

licensed spectrum bands in the absence of PUs in overlay 

networks [16]. This sensor is appropriate for fading channels 

and low SNR. Correlation-based Euclidean distance is a new 

noise-reduction approach. Next, Covariance-Based Detection 

identifies licensed users [7].  
 

Investigations are carried on energy-efficient packet size 

optimization for CRSN. Goal is to establish the best packet size 

for CRSN that maximises energy efficiency while maintaining 

acceptable interference levels for licensed users [11]. This study 

suggests cognitive radio-based multipath probabilistic routing. 

The suggested technique employs MAC layer-identified 

spectrum holes to choose the channel and transmit power level 

for each hop [5]. Channel sharing issues and optimization of 

channel utilization are discussed in [17, 18].  

 

░ 3. ACTIVE CHANNEL SELECTION 

NETWORK  
This section presents the theoretical considerations, the 

practical considerations and design and implementation of the 

proposed Active Channel Selection Network (ACSN). 
 

3.1. Theoretical Analysis 
3.1.1 Complexity Analysis 

The ACSN protocol employs artificial neural networks (ANNs) 

to evaluate and allocate the optimal channel based on multiple 

parameters, such as data size, channel capacity, and sensor 

queue levels. The computational complexity of the ACSN 

protocol is primarily driven by the operations within the neural 

network, including the calculation of weights and activation 

functions across the input, hidden, and output layers. Given that 

the ANN's complexity is determined by the number of neurons 

and layers, the time complexity can be approximated by O(n2), 

where n is the number of neurons. The protocol's complexity is 

also influenced by the number of channels and sensors involved 

in the network, leading to a potential increase in computational 

demands as the network scales. 
 

3.1.2 Convergence Analysis 

The ACSN protocol is designed to dynamically adjust to real-

time channel availability, which implies a need for rapid 

convergence in channel selection to ensure minimal delay and 

high efficiency. The neural network within ACSN undergoes 

training based on historical data, and its convergence depends 

on the training duration and the learning rate. A well-calibrated 

ANN can converge quickly, leading to effective channel 

selection and minimizing network delay. The protocol's 

stability is enhanced by the ANN's ability to adapt to changing 

network conditions, which is critical in a dynamic wireless 

environment. The convergence rate, influenced by factors such 

as learning rate and the number of epochs during training, 

determines how quickly the protocol can adapt to new channel 

conditions. 
 

3.1.3 Optimality Analysis 

The ACSN protocol aims to achieve optimal channel allocation 

by considering multiple parameters simultaneously. The neural 

network's decision-making process is designed to identify the 

most suitable channel, thereby ensuring that the selected 

channel maximizes network performance in terms of 

https://www.ijeer.forexjournal.co.in/
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throughput, energy efficiency, and packet delivery ratio. By 

optimizing channel selection, the ACSN protocol effectively 

minimizes channel wastage and deficits, leading to an overall 

improvement in network resource utilization. The optimality of 

the channel selection is further supported by the reduction in 

network delay and the enhancement in energy efficiency, as 

demonstrated in the simulation results. 
 

3.2. Practical Considerations 
3.2.1 Computational Overhead of the Neural Network 

The ACSN protocol relies on an artificial neural network 

(ANN) to make real-time decisions about channel selection 

based on various network parameters. This approach introduces 

computational overhead, as the ANN requires significant 

processing power to compute the weights, biases, and 

activations across its layers. In resource-constrained 

environments, such as sensor networks, this overhead could be 

a limiting factor, particularly for nodes with limited processing 

capabilities and energy resources. 
 

The time required to process inputs and generate outputs 

through the ANN could introduce latency, especially in 

networks where decisions need to be made rapidly. While the 

ANN provides sophisticated decision-making capabilities, the 

additional processing time might lead to delays in channel 

selection, which could negatively impact network performance 

in time-sensitive applications. 
 

The computational overhead also translates into increased 

energy consumption, which is critical in wireless sensor 

networks where nodes are often battery-powered. The frequent 

need to run ANN computations could lead to quicker depletion 

of energy resources, potentially reducing the overall network 

lifespan unless energy-efficient processing techniques are 

employed. 
 

3.2.2 Impact of Channel Noise and Interference 

In real-world wireless environments, channels are subject to 

various types of noise, which can degrade signal quality and 

reduce the effective throughput of the network. The ACSN 

protocol's ability to dynamically select channels based on real-

time data is a strength, but the presence of noise can complicate 

the ANN's decision-making process. Noise may cause 

fluctuations in channel quality, leading the protocol to make 

suboptimal channel selections if it cannot accurately account for 

or adapt to the varying noise levels. 
 

Interference from other wireless devices or networks is another 

practical challenge. The presence of interference can reduce the 

availability of clean channels and force the protocol to choose 

from a limited set of options. While the ACSN protocol is 

designed to optimize channel selection, heavy interference 

environments may limit its effectiveness, potentially leading to 

increased packet loss, reduced data rates, and lower overall 

network performance. 
 

To mitigate these issues, the ANN within ACSN could be 

trained on data that includes scenarios with varying levels of 

noise and interference, enabling it to better handle such 

conditions. Additionally, incorporating real-time interference 

detection and mitigation techniques could enhance the 

protocol's robustness in noisy environments. 
 

3.2.3 Scalability to Large-Scale Networks 

As the network scales, the number of sensors and available 

channels increases, placing additional demands on the ACSN 

protocol. The neural network's architecture may need to be 

adjusted to handle the larger input space, potentially increasing 

its complexity and computational requirements. In a large-scale 

network, the ANN must efficiently process and analyze more 

data while maintaining its ability to make accurate and timely 

decisions. 
 

In larger networks, the communication overhead associated 

with gathering the necessary input data for the ANN may 

increase. More sensors and channels mean more data must be 

transmitted and processed, potentially leading to increased 

latency and energy consumption. The protocol must balance the 

need for comprehensive data collection with the practical 

limitations of network communication capacity and node 

energy reserves. 
 

To enhance scalability, a distributed implementation of the 

ACSN protocol could be considered, where individual sensor 

nodes or clusters perform localized ANN computations. This 

approach would reduce the central processing burden and allow 

the network to scale more effectively. However, it also 

introduces challenges related to synchronization and 

consistency of channel selection decisions across the network. 
 

3.3 ACSN Design and Implementation 
In a network map, a network is made up of a set of devices, such 

as a web server, gateway, base station, and sensors. In this, the 

web server is connected to the gateway. Similarly, the gateway 

is connected to the base station. After that, the base station is 

connected to the sensors. Thus, the network connection is set up 

in a hierarchical model. Each device communicates with each 

other by exchanging a message, so all these devices periodically 

announce their presence through announcement messages to 

alert the connected device. In the meantime, each sensor will 

broadcast a hello message at each specific interval until the 

network connection is complete. Hello message goes around the 

range of the sensor transmission; all the sensors within the 

coverage range receive this message and update the 

neighbouring list to create a path for data transfer. This NT will 

be updated with each hello message announcement and the 

schedule will always keep the neighbours in current contact. So, 

the network to send packets will thus be constantly updated. 

The sensors are classed as SU or PU based on their design. 
 

The sensors then randomly select channels from the primary 

user's free list 𝐹𝐿. Initially, each channel will have a number 𝐼𝐶  

in the list of available channels. Thus, SU will roughly select a 

channel from that index. At such times, the random probability 

required to select a channel  𝑃𝐶  from the list will be calculated. 

 

 𝐹𝐿 =  𝑐1, … … .  𝑐𝑛                                                                 (1) 
 

 𝐼𝐶 =  1𝑐1, … … .  𝑛𝑐𝑛                                                             (2) 
 

https://www.ijeer.forexjournal.co.in/
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 𝑃𝐶 =
1

𝑛
                                                                                  (3) 

 

When selecting the channel 𝐶𝑆, the SU will check the volume of 

transmission data it needs to send and the requirements for 

selecting that channel according to its transmission range 𝑇𝑅 . 
 

 𝐶𝑆 = ( 𝐶𝐶 ,  𝑇𝑅)                                                                      (4) 
 

𝐶 ⋲ ( 𝐶𝐶𝑖 ,  𝑇𝑅𝑖)                                                                       (5) 
 

 𝐶𝐶 = ( 𝐶𝐶𝑖 … …  𝐶𝐶𝑛)                                                             (6) 
 

Here,  𝐶𝐶 is the channel capacity. Each channel 𝐶 has its own 

capacity and access  𝑇𝑅 , where the capacity of the channel 

 𝐶𝐶𝑖  varies according to the channel frequency, and  𝑇𝑅  varies 

depending on the density of the sensors  𝑇𝑅𝑖   and the distance 

between the PU and SU. Then the probability  𝑃𝑅  is calculated 

according to the maximum transmission range  𝑇𝑅   and the 

transmission distance𝐷𝑖𝑠𝑡. 
 

 𝐷𝑖𝑠𝑡 =  √|𝑃𝑈𝑋1 − 𝑆𝑈𝑋1|2 + |𝑃𝑈𝑌1 − 𝑆𝑈𝑌2|2                          (7) 
 

 𝑃𝑅 =
 𝑇𝑅𝑖

 𝑇𝑅
                                                                                 (8) 

 

𝐼𝑓 𝑃𝑅  ≥  𝑇𝑅  , then the transfer required distance 𝑅𝐷 to send the 

data is then calculated as given below: 
 

 𝑅𝐷 = ∑(𝑃𝑅𝑖 ,  𝑃𝐶𝑖)                                                                 (9) 
 

The probability of channel capability  𝐶𝑃  and the channel 

bandwidth required to transfer data are calculated as follows: 
 

 𝐶𝑃 =
 𝐶𝐶𝑖

𝐶
                                                                              (10) 

 

 𝐼𝑓 𝐶𝑃 ≥ 𝐶  , then  𝑅𝐶𝐵  = ∑(𝐶𝑃𝑖 ,  𝑃𝐶𝑖)                               (11) 
 

The final resource requirement  𝑅𝑅  for exchanging packets is 

calculated as follows:  
 

 𝑅𝑅  = (𝑅𝐶𝐵𝑖  𝑅𝐷𝑖)                                                                (12) 
 

Then find the minimum  𝑀𝑁𝑖 and maximum  𝑀𝑋𝑖 levels of the 

data  𝐷𝑖  of the transmitters. It can be the minimum and 

maximum levels of ECG, glucose, pulse, heart rate, temperature 

and many other data. Update all these input  𝐼𝑃  entries as 

follows: 
 

 𝐼𝑃 =
 𝑀𝑋𝑖− 𝐷𝑖

 𝑀𝑋𝑖− 𝑀𝑁𝑖
                                                                     (13) 

 

The delay in locating the channel 𝐶𝐷 to exchange this data is 

also estimated. Here 𝑃𝐶  is the present channel and  𝑀𝐶  is the 

maximum channel information.  In the set of available channels, 

the maximum probable channel for exchanging data will be 

selected. 
 

 𝐶𝐷 =
 𝑃𝐶

 𝑀𝐶
                                                                             (14) 

 

Training is done for a specific period to predict the upcoming 

data load. Then find the differences 𝑑  between the trained 

 𝑇𝑅𝐼  and tested  𝑇𝐸𝐼  data, the test data here is the data currently 

received.  
 

𝑑 ±  𝑇𝑅𝐼 −  𝑇𝐸𝐼                                                                      (15) 
 

Then the goal values 𝐺𝑉 are calculated. Then update and sum 

all the inputs as 𝐼𝑃  ± 𝐼𝑃𝑖  
 

 𝐺𝑉 =
 𝐶𝐷

𝐼𝑃
2                                                                              (16) 

 

𝛽 =
 𝐺𝑉

 𝐼𝑃
                                                                                 (17) 

 

The initial data learner is  𝐷𝐿  where 𝐿 = ( 𝐼𝑃1, … ,  𝐼𝑃𝑛) and  𝐼𝑃𝑛 

is the number of inputs. 𝛽 is an average goal value.  
 

 𝐷𝐿 = 𝛽 −  𝐼𝑃                                                                       (18) 
 

Then the data sets  𝐷𝑆 are classified to obtain the typical sets. 
 

 𝐷𝑆 ±  𝐺𝑉 − 𝛽𝐻2                                                                 (19) 
 

 𝑆𝑉 ±  𝐼𝑃(𝐺𝑉 + 𝛽 𝐷𝐿)2                                                         (20) 
 

𝑘 = 𝑆𝑉                                                                                 (21) 
 

According to the minimum square method the new values  𝑁𝑉 

are obtained.  
 

 𝑁𝑉 = 𝑚𝑖𝑛(𝑘,  𝑆𝑉)                                                               (22) 
 

Then the current inputs  𝐼𝑃  are updated here.  
 

 𝐼𝑃 =  𝐼𝑃𝑖 +  𝛽𝐷 𝐷𝐿                                                                (23) 
 

Among all the data sets, find the fitness value  𝐹𝑉 to transfer 

packets through a channel.  
 

 𝜃𝑖 = ( 𝐼𝑃𝑖 +  𝛽𝐷𝐻)                                                               (24) 
 

 𝐹𝑉 = 𝐼𝑃𝑖𝜃−1𝛥 𝐼𝑃𝜃 𝐺𝑉 , else                                                 (25) 
 

 𝐹𝑉 = min (𝐹𝑉 ,  𝐹𝑉 − 𝐼𝑃𝑖)                                                     (26) 
 

If more than one channel is detected by the fitness value then 

select one  𝜃𝑁  among them according to the transmission 

requirements.  
 

ή = 𝜃 − ή𝑂𝑃  𝐹𝑉𝐼𝑃𝑖)                                                             (27) 
 

 𝜃𝑁 = θ − ή 𝐹𝑉                                                                    (28) 
 

 𝑈𝑝𝑑𝑎𝑡𝑒 max (𝐼𝑃)                                                                  (29) 
 

According to the computations, maximum learned value  𝐿𝑉 is 

computed below: 
 

 𝐿𝑉 =
 𝐼𝑃

max ( 𝐼𝑃)
                                                                       (30) 

 

Find the Priority to assign channel to the sensor according to 

the learned value  𝐿𝑉   and boundary value  𝐵𝑁 . If the  𝐿𝑉 is 

greater than the 𝐵𝑁, then increment the allocation priority.  

https://www.ijeer.forexjournal.co.in/
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𝐼𝑓 𝐿𝑉 >  𝐵𝑁 then 

𝑆𝑜𝑟𝑡 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 

𝑈𝑝𝑑𝑎𝑡𝑒 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑 𝑄𝑢𝑒𝑢𝑒𝐿𝑒𝑛𝑔𝑡ℎ 

𝑈𝑝𝑑𝑎𝑡𝑒 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑 𝐶𝑜𝑢𝑛𝑡 
 

If the packet counts are greater than the sensor queue length 

then compute the distance  𝐷𝑖𝑠𝑡 , and moving speed 𝑆 of the 

sensors according to the time 𝑡 variation, here 𝐶𝑇  is the current 

time. 
 

𝐼𝑓 𝐶𝑜𝑢𝑛𝑡 ≥  𝑄𝐿 → 𝑅𝑒𝑞𝑢𝑒𝑢𝑒                                              (31) 
 

𝐷𝑖𝑠𝑡 =  √|𝑋1 − 𝑋2|2 + |𝑌1 − 𝑌2|2                                       (32) 
 

𝑆 =
 𝐷𝑖𝑠𝑡

S
                                                                               (33) 

 

𝑡 =
1

𝐶𝑇
                                                                                  (34) 

 

Find the distance probability between the communicative 

sensors as 𝑄1and 𝑄𝑁.  
 

𝑄1 =
1

𝐷𝑖𝑠𝑡1+1
                                                                           (35) 

 

𝑄𝑁 =
1

𝐷𝑖𝑠𝑡2+1
                                                                            (36) 

 

𝐼𝑓 𝐷𝑖𝑠𝑡1 < 𝐷𝑖𝑠𝑡2                                                                     (37) 
 

According to the mobility, speed, and distance variation, find 

the range 𝑅  of sensors location.  
 

𝑅 = (1 − (𝑒𝑥𝑝 − (
1

𝐷𝑖𝑠𝑡1
)))                                                  (38) 

 

Predict  𝑃𝑅  the next location after a time  𝑄𝑛 to allocate the 

channel  𝐶𝐴 of secondary user from primary user. 
 

 𝑃𝑅 = (𝑄1𝑅 − 𝑄𝑛𝑅)                                                              (39) 
 

 𝑄𝑛 = 𝑡 𝑄1(1 − 𝑡) 𝑄𝑛                                                            (40) 
 

 𝐶𝐴 = 𝑃𝑅  𝑄𝑛                                                                           (41) 
 

This design ensures efficient channel allocation, optimized data 

transmission, and dynamic adaptation to varying network 

conditions in ACSN. 

 

░ 4. SIMULATION RESULTS AND 

PERFORMANCE ANALYSIS 
The ACSN protocol was rigorously tested and compared 

against the CPAL and BSN protocols across several critical 

performance metrics, including Packet Delivery Ratio (PDR), 

Throughput, Network Lifetime, and Remaining Energy. The 

maximum number of nodes used in the simulation are 150 

which are distributed across a 500 × 500 square meter area, with 

five serving as gateways and ten serving as base stations. The 

remaining nodes function as sensors. The ACSN protocol was 

used to operate the network. The network parameters used are 

shown in table 1. 
 

░ Table 1. Network parameters 
 

Parameters Values 

Nodes 150 

Network Area 500x500 sqm 

Transmission Range 150 m 

Transmission Energy 1.6 J 

Receiving Energy 0.9 J 

Protocol ACSN 

Gateway 5 

Base Station 10 

 

The following analysis provides an in-depth look at these 

metrics, supported by data tables derived from simulation 

results.  
 

4.1. Packet Delivery Ratio (PDR) 
The Packet Delivery Ratio (PDR) is a crucial metric that 

indicates the reliability of data transmission within the network. 

The simulation results pertaining to packet delivery ratio are 

presented in table 2 and figure 1. In our simulations, ACSN 

consistently achieved a higher PDR across varying node counts. 

This indicates that ACSN is more efficient in delivering packets 

successfully even as the network scales up. For instance, at 40 

nodes, ACSN achieved a PDR of 94.36%, outperforming CPAL 

by 2.47% and BSN by 4.35%. This improvement is particularly 

significant in large-scale deployments where maintaining high 

PDR is critical for applications like environmental monitoring 

or military surveillance. The higher PDR suggests that ACSN 

is robust against packet loss, likely due to its efficient routing 

and channel selection strategies.  
 

░ Table 2. Packet Delivery Ratio Comparison 
 

Node Count ACSN PDR (%) CPAL PDR (%) BSN PDR (%) 

10 92.00 90.50 89.00 

20 93.20 91.00 89.50 

30 93.80 91.50 90.00 

40 94.36 91.89 90.01 
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Figure 1. Node Vs Packet Delivery Ratio 

 

4.2 Throughput 
Throughput measures the amount of data successfully 

transmitted across the network per second. Table 3 and figure 2 

present the throughput comparison of ACSN protocol with the 

existing approaches. The ACSN protocol demonstrated a clear 

advantage in throughput, especially as the network size 

increased. At 40 nodes, ACSN achieved a throughput of 

38,807.69 bps, which is 5.46% higher than CPAL and 7.19% 

higher than BSN. This improvement is critical in scenarios 

where high data rates are necessary, such as real-time video 

surveillance or emergency response systems. The higher 

throughput reflects ACSN's ability to manage network traffic 

more effectively, minimizing congestion and optimizing the use 

of available bandwidth. 
 

░ Table 3. Throughput Comparison 
 

Node 

Count 

ACSN 

Throughput 

(bps) 

CPAL 

Throughput 

(bps) 

BSN 

Throughput 

(bps) 

10 37,998.9 36,000.0 35,500.0 

20 38,200.0 36,200.0 35,700.0 

30 38,500.0 36,500.0 36,000.0 

40 38,807.69 36,800.0 36,200.0 

 

 
 

Figure 2. Node Vs Throughput 

 

4.3. Network Lifetime 
Network lifetime is a critical indicator of how long a wireless 

sensor network can operate before the nodes deplete their 

energy reserves. Table 4 and figure 3 present the Network 

lifetime comparison of proposed ACSN method with the 

existing approaches. The ACSN protocol showed a superior 

ability to extend network lifetime, particularly in extended 

simulations. At the 4,000-second mark, ACSN maintained a 

network lifetime of 18,500 seconds, which was marginally 

better than CPAL and BSN. This slight improvement, though 

numerically modest, is crucial in applications where network 

longevity is essential, such as in remote sensing environments 

where replacing or recharging batteries is impractical. The 

extended network lifetime suggests that ACSN effectively 

balances energy consumption across the network, preventing 

premature depletion of individual nodes.  
 

░ Table 4. Network lifetime Comparison 
 

Interval 

(sec) 

ACSN 

Network 

Lifetime (sec) 

CPAL 

Network 

Lifetime (sec) 

BSN Network 

Lifetime (sec) 

1,000 20,173.90 20,157.5 20,137.59 

2,000 19,500.00 19,480.0 19,450.00 

3,000 19,000.00 18,980.0 18,950.00 

4,000 18,500.00 18,480.0 18,450.00 

 

 
 

Figure 3. Interval Vs Lifetime 

 

4.4 Remaining Energy 
Remaining energy is an indicator of how much power is 

conserved in the network over time, which directly affects the 

network's operational longevity. The remaining energy 

comparison is presented in table 5 and figure 4. The ACSN 

protocol demonstrated superior energy conservation 

capabilities, particularly noticeable at the 4,000-second 

simulation mark, where it retained 10,099.2 joules of energy—

slightly higher than both CPAL and BSN. While the numerical 

difference may appear small, the implications are significant. 

This efficient energy use ensures that nodes can continue to 

function effectively over extended periods, which is particularly 

beneficial in scenarios like wildlife monitoring or battlefield 

reconnaissance, where uninterrupted operation is critical. 
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░ Table 5. Remaining Energy Comparison 
 

Simulation 

Time (sec) 

ACSN 

Remaining 

Energy (J) 

CPAL 

Remaining 

Energy (J) 

BSN 

Remaining 

Energy (J) 

1,000 10,099.6 10,050.0 10,030.0 

2,000 10,099.5 10,048.0 10,028.0 

3,000 10,099.3 10,046.0 10,026.0 

4,000 10,099.2 10,044.0 10,024.0 

 

 
 

Figure 4. Simulation Time Vs Remaining Energy 
 

The ACSN protocol has proven to offer significant advantages 

over the CPAL and BSN protocols in terms of Packet Delivery 

Ratio, Throughput, Network Lifetime, and Remaining Energy. 

These improvements suggest that ACSN is well-suited for 

applications requiring reliable and energy-efficient operation, 

particularly in environments where maintaining high network 

performance and longevity is critical. 

 

░ 5. CONCLUSIONS 
The conclusion drawn from the results and analysis of the 

ACSN protocol indicates that it significantly outperforms the 

CPAL and BSN protocols across multiple performance metrics. 

Specifically, ACSN demonstrates a notable improvement in 

Packet Delivery Ratio (PDR), achieving higher reliability in 

data transmission. This is critical in environments where data 

integrity is paramount. Throughput analysis further underscores 

ACSN's superiority, with the protocol consistently delivering 

higher data rates compared to its counterparts. This 

enhancement ensures that the network can handle more traffic 

efficiently, making it ideal for applications requiring high data 

transfer rates, such as military and environmental monitoring 

systems. 
 

In terms of network lifetime, ACSN exhibits considerable 

energy efficiency. The protocol effectively extends the 

operational duration of the network by optimizing energy 

consumption during data transmission. This is particularly 

important in remote sensing applications where replacing or 

recharging batteries is not feasible. Lastly, the scalability of the 

ACSN protocol is validated through simulations, showing that 

it maintains performance even as the network scales up in size. 

This makes ACSN a robust solution for large-scale 

deployments where maintaining consistent performance is 

challenging. 
 

In conclusion, the ACSN protocol offers a well-rounded 

improvement in wireless sensor networks, making it an ideal 

candidate for both existing and future applications requiring 

reliable, efficient, and scalable network performance. The 

enhancements in PDR, throughput, energy efficiency, and 

scalability affirm the protocol's potential to set a new standard 

in the design and deployment of wireless sensor networks. 
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