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░ ABSTRACT- The intricate morphology of brain tumors poses significant diagnostic challenges in MRI interpretation. 

While AI-driven systems offer potential for automation, balancing accuracy with computational efficiency remains critical for 

clinical adoption. This work introduces a lightweight convolutional neural network optimized for brain tumor detection and 

classification in MRI scans. The architecture’s design emphasizes a systematic exploration of layer-ordering strategies, with 

experiments revealing that batch normalization in post-activation mode (Post-BN) outperforms Pre-BN in training stability and 

classification accuracy. Contrary to expectations, integrating shortcut connections for residual learning demonstrated negligible 

performance gains. Evaluated on the Figshare (multi-class) and Br35H (binary) datasets, the model achieves state-of-the-art 

accuracy while maintaining resource efficiency through minimized parameters and FLOPs. These findings highlight the importance 

of strategic layer ordering over architectural complexity in deep learning for medical imaging, offering a framework for efficient 

and reliable tumor detection that could generalize to other vision-based diagnostic tasks. 
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░ 1. INTRODUCTION  
 

1.1. Clinical context and diagnostic challenges 
When the mechanisms that maintain cellular balance are 

disrupted, abnormal cell division occurs, leading to the 

formation of tumors. If this uncontrolled growth affects brain 

tissue, it results in a brain tumor. Brain tumors can be either 

benign, characterized by slow growth and well-defined borders, 

or malignant, which grow rapidly and have the potential to 

invade surrounding tissues. Based on their cellular origin, brain 

tumors are primarily classified into gliomas, meningiomas, or 

pituitary tumors. Gliomas, originating from glial cells, are 

typically aggressive and account for the majority of malignant 

brain tumors. In contrast, meningiomas and pituitary tumors are 

often benign, with the former arising from arachnoid cells and 

the latter from pituitary gland cells [1, 2, 3, 4]. Accurate and 

timely diagnosis of brain tumors is critical for determining the 

most appropriate treatment strategy based on the tumor’s type 

and grade. Magnetic resonance imaging (MRI), when available, 

is the preferred diagnostic tool due to its ability to provide high-

contrast images of the brain’s soft tissues [4, 5, 6]. However, 

MRI diagnosis is often costly and time-consuming compared to 

other methods, which can delay treatment. Manual 

interpretation, relying on expertise and experience, is prone to 

human error, particularly in complex cases. Furthermore, this 

approach struggles to handle large datasets efficiently, 

especially as the workload increases [7, 8]. Automated systems 

leveraging machine learning and deep learning have addressed 

many of these challenges, with the scientific community 

developing numerous models to enhance the accuracy and 

efficiency of brain tumor detection [9, 10]. 
 

1.2. Critical review of automated approaches 
Recent advances in deep learning have yielded multiple 

promising systems for detecting brain anomalies in medical 

imaging. Table 1 provides an overview of the models presented 

in the published literature.  Researchers in [3] introduced a CNN 

model designed to classify major brain tumors using MRI 

images. The network architecture comprises ten consecutive 

convolutional layers, with each pair followed by a pooling 

element. The features extracted from these layers are flattened 

and fed into a two-layer neural classifier, achieving an accuracy 

of 94.74%. However, the model struggled with meningioma 

classification, yielding an F1 score of only 89.68%, which 

suggests class-specific performance bias. In [4], a specialized 
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CNN was proposed, consisting of three convolution-pooling 

blocks followed by a fully connected neural network. The 

model demonstrated accuracies of 99.31% and 93.1% for 

training and testing, respectively, surpassing traditional 

handcrafted feature extraction methods such as GLCM and 

GLDM. Notably, the significant performance gap between 

training and testing phases highlights potential overfitting to the 

training dataset. Similarly, a study in [5] employed a feature 

extractor with three convolution-pooling blocks and a four-

layer fully connected neural network. This model achieved a 

training accuracy of 99.21%, while its testing accuracy reached 

95.87%. Critically, class imbalance severely impacted 

minority-class accuracy, which ranged from 21.3% (with 

Adagrad) to 89.8% (with RMSprop). In [9], researchers 

developed a five-block convolution-pooling system for feature 

extraction from MRI images. The extracted features were then 

classified using either a two-layer neural network or an SVM 

algorithm, with the former achieving 95.42% accuracy and the 

latter slightly outperforming it at 96%. The inclusion of 

Anisotropic Diffusion Filter (ADF) and Adaptive Histogram 

Equalization (AHE) in preprocessing introduces computational 

overhead and deployment challenges. Another approach in [10] 

involved a model with three parallel convolutional networks, 

each containing five convolution-pooling blocks. The features 

from these networks were either combined and passed to a k-

NN classifier or processed separately by three k-NN instances 

using majority voting. The first approach achieved an accuracy 

of 95.3%, while the second reached 95.6%. However, using k-

NN as the final classifier reduces scalability, as the entire 

training dataset must be stored and processed during inference. 

Additionally, reliance on the first nearest neighbor (1-NN) rule 

increases sensitivity to noise and outliers. 
 

Beyond custom-built systems, retraining standard models offers 

a practical alternative that circumvents the need to develop 

specialized architectures from scratch. Reference [11] 

introduces a lightweight approach for brain anomaly detection 

in MRI scans, combining the YOLOv5m framework with an 

Enhanced Spatial Attention (ESA) mechanism. This hybrid 

configuration demonstrates improved performance with 92% 

precision and 87.8% recall, surpassing the baseline YOLOv5m 

results. A related investigation by researchers in [12] employed 

the YOLOv8s architecture, which reached 94.2% precision and 

90.8% recall. For both studies, the F1 score derived from the 

harmonic mean of precision and recall yields values of 89.86% 

for the YOLOv5m variant and 92.47% for the YOLOv8s 

implementation. However, given the critical role of brain tumor  

detection in clinical decision-making, where diagnostic 

accuracy directly affects treatment planning and patient 

survival, these YOLO models still require substantial 

performance improvements to meet the rigorous reliability 

standards expected in medical practice. 
 

To reduce the computational burden of training deep networks, 

pre-trained benchmark networks are often utilized. In [13], the 

weights of the InceptionV3 and Xception models, previously 

trained on the ImageNet dataset, are frozen and employed as 

feature extractors for MRI images. The extracted features are 

then fed into an ensemble classifier comprising three 

algorithms: k-NN, SVM, and RF. The model based on 

InceptionV3 features achieves an accuracy of 94.34%, while the 

Xception-based model reaches a slightly lower accuracy of 

93.79%. In [14], researchers proposed a brain tumor detection 

system using the pre-trained VGG16 model. Deep features are 

extracted from denoised MRI images and classified using a 

neural network, achieving an accuracy of 96.01%. This high 

performance was achieved exclusively with geometric 

augmentation techniques, but accuracy dropped to 92.33% for 

the original unmodified dataset. Similarly, in [15], the 

DenseNet169 model was integrated into a brain tumor 

recognition system. Numerical features extracted from the 

model are classified using a majority voting approach among 

RF, SVM, and XGBoost classifiers, resulting in a reported 

accuracy of 95.10%. While transfer learning models reduce 

training costs, their extreme depth (InceptionV3 with 94 

convolutional layers and DenseNet169 with 87) introduces 

impractical computational demands during inference. This 

trade-off becomes critical in clinical settings, where latency and 

hardware limitations prioritize lightweight, specialized 

architectures over general-purpose pre-trained networks. 
 

It can be observed that the developed models mainly suffer from 

insufficient accuracy, high complexity, and inadequately 

addressed overfitting, as evidenced by the observed gap 

between training and testing performance. Employing pre-

trained models with frozen weights can mitigate overfitting 

caused by training networks with millions of parameters. 

However, the high dimensionality of extracted features can lead 

traditional classifiers to fail in generalizing to test data. 
  

░ Table 1. Summary of recent related literature 

  

Ref. 
Dataset 

used 
Data classes 

Data 

splitting 
Augmentation 

Feature 

extraction 
Classification Performance 

[3] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors   

Five-fold 

CV 
Not used Ten-layer CNN 

Two-layer neural 

classifier 
ACC: 94.74% 

[4] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Hold-out 

(70:30) 

Color-space and 

geometric 

transformations 

Three-block 

CNN 
Neural classifier ACC: 93.1% 
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[5] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Hold-out 

(70:30) 
Not stated 

Three-block 

CNN 

Four-layer neural 

classifier 
ACC: 95.87% 

[9] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Hold-out 

(80:20) 

Geometric 

transformations 
Five-block CNN 

Two-layer neural 

classifier 
ACC: 95.42% 

SVM ACC: 96% 

[10] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Train-test-

validation 

(60:20:20) 

GAN Augmentation 
Three parallel 

CNNs 

KNN ACC: 95.3% 

Ensemble 

learning 
ACC: 95.6% 

[11] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Five-fold 

CV 

Copy-paste 

augmentation, 

color-space and 

geometric 

transformations 

Modified 

YOLOv5m 
Neural classifier F1: 89.86% 

[12] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Train-test-

validation 

Color-space and 

geometric 

transformations 

YOLOv8s Neural classifier F1: 92.47% 

[13] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Hold-out 

(80:20) 
Not stated 

Inception-v3 
Ensemble 

learning 

ACC: 94.34% 

Xception ACC: 93.79% 

[14] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Ten-fold CV 

Color-space and 

geometric 

transformations 

VGG16 Neural classifier ACC: 96.01% 

[15] 

Figshare 

brain MRI 

dataset 

Meningiomas, 

gliomas, and 

pituitary tumors 

Hold-out 

(80:20) 

Geometric 

transformations 
DenseNet169 

Ensemble 

learning 
ACC: 95.10% 

1.3. Research objectives and contributions 
In this study, we aim to address the challenges discussed above, 

with our main contributions outlined as follows: 

 

• Proposing a specialized deep learning model for brain 

tumor detection in MRI images that balances low 

complexity (in terms of parameter count and FLOPs) with 

high performance (in terms of classification accuracy). 

• Investigating the impact of batch normalization in both pre-

activation and post-activation modes to determine the 

optimal approach for the proposed network. 

• Exploring the effectiveness of incorporating residual 

connections into few-layer convolutional neural network 

architectures. 

• Evaluating modified instances of the proposed system on 

two independent datasets using a variety of evaluation 

metrics. 

 

1.4. Paper organization 
The remainder of the paper is structured as follows: The 

Materials and Methods section outlines the datasets employed, 

along with the components and operational details of the 

proposed model. The Results and Discussion section presents 

the experimental outcomes and their analysis. The Limitations 

and Future Work section discusses the current shortcomings of 

our approach and potential directions for improvement. Finally, 

the Conclusion section summarizes the core contributions and 

insights of the research.  

░ 2. MATERIALS AND METHODS  
2.1. Data sets and preprocessing 
This study aims to enhance the efficiency of brain tumor 

classification in MRI images. To ensure the reliability of the 

results, the proposed model requires a high-quality dataset for 

training and evaluation. The primary dataset used in this work 

is the Figshare brain tumor MRI dataset, which was gathered 

from 223 patients by a team of experts and specialists across 

multiple hospitals in China and made publicly accessible for 

research purposes [16]. The dataset comprises 3064 samples 

categorized into three tumor types: 708 meningiomas, 1426 

gliomas, and 930 pituitary tumors. The figshare dataset is one 

of the few MRI data sources that have been systematically 

organized and processed, enhancing the credibility of models 

validated using it. 

 

Testing the proposed model on an independent dataset provides 

robust validation of its effectiveness. The second MRI dataset 

employed in this work is the Br35H: Brain Tumor Detection 

2020 dataset, publicly available on Kaggle and commonly used 

in research [17, 18, 19]. This dataset contains 3000 samples, 

evenly split into 1500 normal images and 1500 brain tumor 

images, offering a well-balanced platform for evaluation. 

 

The preprocessing pipeline involves only resizing all images to  
224 × 224 pixels  before inputting them into the network. This 

minimal approach enhances inference speed and system 

efficiency, as complex preprocessing steps applied during 

http://www.ijeer.forexjournal.co.in/
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training would need to be replicated during deployment to 

maintain consistency and reproducibility [20]. Additionally, 

unlike the perfectly balanced Br35H dataset, the Figshare 

dataset exhibits a natural, non-extreme imbalance that reflects 

real-world clinical prevalence. Introducing synthetic samples 

through augmentation risks generating unrealistic artifacts in 

MRI scans, which could compromise model reliability. Instead 

of relying on data balancing or augmentation, this work 

prioritizes a robust architectural design that learns generalizable 

features rather than overfitting to the majority class. Figure 1 

displays representative samples from the datasets utilized in this 

work. 
 

 
 

Figure 1. Samples from the datasets employed in the study 

 

2.2. Baseline CNN architecture 
Figure 2 illustrates three variations of the proposed CNN model 

designed for detecting brain abnormalities in MRI images, each 

featuring slightly distinct architectures. The foundational model 

(figure 2a) comprises five sequential convolutional blocks.  

Within each block, a Conv2D layer is followed by a batch 

normalization (BN) element and a ReLU activation function.  The 

convolutional layers are responsible for extracting spatial 

features, such as edges and textures, from the input images. The 

BN layer standardizes these features to enhance and accelerate 

the learning process, while the ReLU activation introduces 

nonlinearity, enabling the network to model complex patterns. 

Following the first and fifth convolutional blocks, a Pooling2D 

layer is included to down sample the input volume, effectively 

reducing computational complexity. After the final pooling layer, 

a flattening layer transforms the output volume into a one-

dimensional array, which is then fed into a fully connected 

network. The neural classifier is structured into three layers: two 

dense layers, each preceded by a dropout element and followed 

by a ReLU function, and a final dense output layer with a softmax 

activation. The dropout layer functions as a regularization 

technique, reducing the risk of overfitting by randomly 

deactivating subsets of neurons during the training process. The 

softmax activation function transforms the network’s output into 

a probability distribution, assigning likelihood values to each 

class. Consequently, the network processes a brain MRI image as 

its input and generates an output representing the probability of 

the image belonging to each class, as defined by the training 

dataset. 

Figure 2. Proposed CNN instances: (a) Plain CNN with batch normalization in pre-activation mode (Pre-BN CNN), (b) Plain CNN 

with batch normalization in post-activation mode (post-BN CNN), (c) Residual CNN with batch normalization in post-activation 

mode (post-BN Res CNN) 

2.3. Architectural variants: BN placement and 

residual connections 
The initial network employs batch normalization in pre-

activation mode, where normalization is applied to the linear 

output of the convolution prior to the ReLU activation. This 

configuration, referred to as Pre-BN CNN, is a widely adopted 

approach in many models, particularly those designed for natural 

images [21, 22]. However, medical images such as MRIs exhibit 

distinct intensity distributions that may not align well with this 

architecture. Specifically, zero mean/unit variance normalization 

can result in many feature values becoming negative, which are 

subsequently eliminated by the ReLU activation. This increases 

sparsity and risks the loss of potentially discriminative features 

critical for MRI image analysis. Despite the widespread adoption 

of pre-activation normalization in brain MRI anomaly detection 

models [9, 15, 23, 24], the impact of normalization layer 

placement on medical imaging systems remains understudied. 

Existing work often treats pre-activation as a default practice 

without rigorously evaluating how this design choice affects 

http://www.ijeer.forexjournal.co.in/
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training dynamics or model performance. To address this issue, 

the second version of the system, depicted in figure 2b, proposes 

a modification to the convolutional block. In this revised 

architecture, normalization is applied to the activated features, 

meaning the Conv2D layer is followed by the ReLU activation 

function and then the BN layer. This configuration, termed plain 

CNN with BN in post-activation mode (post-BN CNN), will be 

evaluated to assess its influence on performance and training 

dynamics. 
 

A potential strategy for boosting the performance of specialized 

CNN systems involves the utilization of shortcut connections, 

also referred to as skip connections. These connections create 

pathways that bypass one or more network blocks, linking the 

output of one layer to a layer further ahead in the architecture. 

Skip connections enable more efficient gradient flow during 

backpropagation and allow the network to reuse features from 

earlier layers, which can enhance learning capabilities. In this 

study, we explore the effectiveness of employing shortcut 

connections to design a residual network for brain tumor 

detection, as illustrated in figure 2c. The post-BN CNN is 

adjusted by introducing two skip connections: the first connects 

the output of the first Pooling2D layer (which acts as the input to 

the second convolutional block) to the output of the third Conv2D 

layer, while the second links the output of the third convolutional 

block (the input to the fourth Conv2D layer) to the output of the 

fifth Conv2D layer. This adapted architecture is referred to as 

post-BN Res CNN, combining residual learning principles with 

the post-activation batch normalization approach. 

2.4. Detailed architecture specifications 
The microarchitecture of the proposed approach is detailed in 

table 2. A consistent and modest number of filters is applied 

across all convolutional layers. This design choice reduces the 

parameter count and may facilitate more efficient generalization 

compared to hierarchical approaches, particularly when 

working with limited dataset sizes. The initial convolutional 

layer utilizes 5×5 filters to capture coarse spatial context, which 

is beneficial for learning low-level features in early layers. 

Subsequent layers switch to 3×3 filters to achieve finer-grained 

representations and reduce computational complexity. Pooling 

layers employ relatively large windows to effectively 

downsample spatial dimensions, with aggressive 

downsampling in Pool_2 ensuring the selection of the most 

informative high-level features after a series of consecutive 

convolutions. The largest number of parameters lies between 

the flattening layer and the first fully connected layer, making 

it logical to insert a dropout element with a high ratio to mitigate 

overfitting. It is important to note that the structure outlined in 

table 2 primarily describes the Pre-BN CNN model. The Post-

BN CNN and Post-BN Res CNN models differ only in the 

placement of normalization layers and the inclusion of skip 

connections, without altering the microarchitecture. Despite 

having the same number of parameters across all versions, the 

residual network incurs a slight increase in computational cost 

due to the additional element-wise addition operations. 
 

░ Table 2. Proposed structure details 

Layer Type Kernal size #Filters Stride Padding Output shape #Param 

Input_1 Input layer –   – – – 224×224×3 0 

Conv_1 Conv2D 5×5 16 1 same 224×224×16 1216 

BN_1 Batch norm – – – – 224×224×16 64 

Act_1 ReLU – – – – 224×224×16 0 

Pool_1 MaxPool2D 3×3 – 3 valid 74×74×16 0 

Conv_2 Conv2D 3×3 16 1 same 74×74×16 2320 

BN_2 Batch norm – – – – 74×74×16 64 

Act_2 ReLU – – – – 74×74×16 0 

Conv_3 Conv2D 3×3 16 1 same 74×74×16 2320 

BN_3 Batch norm – – – – 74×74×16 64 

Act_3 ReLU – – – – 74×74×16 0 

Conv_4 Conv2D 3×3 16 1 same 74×74×16 2320 

BN_4 Batch norm – – – – 74×74×16 64 

Act_4 ReLU – – – – 74×74×16 0 

Conv_5 Conv2D 3×3 16  same 74×74×16 2320 

BN_5 Batch norm – – – – 74×74×16 64 

Act_5 ReLU – – – – 74×74×16 0 

Pool_2 MaxPool2D 5×5 – 5 valid 14×14×16 0 

Flatten_1 Flatten – – – – 3136 0 

Drop_1 Dropout 50% – – – – 3136 0 

FC_1 Dense 25 – – – – 25 78425 

Drop_2 Dropout 30% – – – – 25 0 

FC_2 Dense 10 – – – – 10 260 

FC_3 Dense 3 – – – – 3 33 

Act_6 SoftMax – – – – 3 0 

http://www.ijeer.forexjournal.co.in/
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2.5. Hyperparameter configuration and training 

protocol 
Table 3 summarizes the hyperparameters adopted for all 

experiments. The Adam optimizer is selected to update the 

network weights based on the gradients of the loss function. To 

ensure consistency in the model structure, the output is 

converted to one-hot encoding, and a softmax activation is 

applied in the final layer for both binary and multi-class 

classification tasks, rather than using a single output neuron 

with a sigmoid function for binary brain tumor detection. This 

approach allows the use of the categorical cross-entropy loss 

function to quantify the difference between the predicted and 

actual probability distributions. A relatively small batch size is 

employed, enabling more frequent weight updates, which can 

enhance learning efficiency, particularly on smaller training 

datasets. Given that the primary activation function is ReLU, 

the He-normal initialization method is used to set the initial 

weights in the network. 
 

While the computational complexity is roughly constant across 

all presented CNN models, performance and training dynamics 

are likely to exhibit notable variations. The following section 

details experimental results for both primary (multi-class brain 

tumor classification) and secondary (binary tumor detection) 

tasks. 
 

░ Table 3. Hyperparameter settings for model training 
 

Hyperparameter Adjustment 

Optimizer Adaptive moment estimation (Adam) 

Loss function Categorical cross entropy 

Learning rate 0.001 

Epochs 200 

Initializer He-Normal 

Batch size 8 

 

░ 3. EXPERIMENTS, RESULTS AND 

DISCUSSION 
3.1. Experimental setup 
All experiments were conducted in Google Colab, connected to 

a local notebook server running on a dedicated Anaconda 

environment. The hardware configuration features an NVIDIA 

GeForce RTX 4070 GPU with 8 GB VRAM, paired with a 12th 

Gen Intel Core i7-12650H processor and 16 GB system 

memory. For constructing convolutional networks, the 

TensorFlow machine learning framework and Keras deep 

learning API were utilized, both powered by CUDA 12.8 and 

cuDNN 8 for NVIDIA GPU acceleration. Three variants of the 

proposed model were trained and evaluated on two distinct 

datasets using two complementary validation strategies: 

holdout (80:20 split), where 80% of the data is allocated for 

training to optimize feature learning, and the remaining 20% is 

reserved for performance evaluation, and 5-fold cross-

validation, a rigorous technique that partitions the dataset into 

five equal subsets, iteratively training the model on four folds 

and validating on the fifth to ensure statistical reliability and 

mitigate overfitting. This experimental design generated twelve 

distinct test cases, with their outcomes analyzed and presented 

in the following discussion. 
 

3.2. Multi-class classification results 
For the multi-classification of brain tumor types (Figshare 

dataset), the learning curves and classification report are 

presented in Figure 3 and Table 4, respectively. The accuracy 

versus epoch curve for the Pre-BN CNN exhibits pronounced 

oscillations and sudden jumps, reaching a final accuracy of only 

94.12%. In contrast, modifying the architecture by placing BN 

after ReLU in the Post-BN CNN, then introducing skip 

connections in the Post-BN Res CNN, resulted in significantly 

smoother and more stable learning curves, with notable 

performance improvements. The accuracies rose to 98.04% and 

98.86%, respectively. The confusion matrices in Figure 4 

indicate that 36 samples were misclassified when normalization 

preceded activation, while this error reduced to only 12 samples 

for the Post-BN CNN and further declined to 7 samples with the 

residual network. These findings demonstrate the effectiveness 

of the Post-BN approach within the proposed specialized 

architecture, which enhanced overall performance, improved 

training dynamics, and stabilized weight updates through better 

feature representation and scale-consistent activations. 

Furthermore, the residual connections provided a very slight 

improvement in accuracy, attributable to enhanced gradient 

flow and feature reuse. 
 

While data is shifted when selecting the training and testing sets 

in the common holdout approach for model evaluation, using a 

5-fold cross-validation can provide a more robust estimate of 

performance without biasing toward a subset of the data. The 

bar charts in figure 5 show the performance at each fold. The 

average accuracy across the test folds for the Pre-BN model was 

only 92±3.16%, while it achieved 96.80±0.59% for Post-BN 

CNN, and 96.80±0.52% for Post-BN Res CNN. 
 

The paired t-test analysis of the 5-fold cross-validation 

accuracies across the three models reveals statistically 

significant differences between the Pre-BN CNN and Post-BN 

CNN (t=3.1151, p=0.0357) as well as between the Pre-BN CNN 

and Post-BN Res CNN (t=2.9308, p=0.0428), demonstrating 

that the order of normalization layers has a measurable impact 

on model performance. In contrast, the comparison between 

Post-BN CNN and Post-BN Res CNN yielded no statistical 

difference (t=0.0000, p=1.0000), indicating that adding a 

residual shortcut connection within this specific network 

architecture provides negligible practical improvement. 
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Figure 3. Learning curves for multi-class brain tumor classification 

(Figshare dataset): (a) Pre-BN CNN, (b) Post-BN CNN, (c) Post-BN 

Res CNN 

░Table 4. Classification report for multi-class brain tumor 

classification (Figshare dataset) 
 

 

Model Category Precision Sensitivity 
F1-

score 

Mean-

F1 
ACC 

Pre-

BN 

CNN 

Glioma 99.60 89.21 94.12 

93.76 94.12 Meningioma 83.33 97.12 89.70 

Pituitary 96.02 98.97 97.47 

Post-

BN 

CNN 

Glioma 98.20 98.20 98.20 

97.79 98.04 Meningioma 95.68 95.68 95.68 

Pituitary 99.49 99.49 99.49 

Post-

BN 

Res 

CNN 

Glioma 99.64 98.56 99.10 

98.70 98.86 Meningioma 95.83 99.28 97.53 

Pituitary 100 98.97 99.48 

 

 

 

 

Figure 4. Confusion matrices for multi-class brain tumor classification (Figshare dataset): (a) Pre-BN CNN, (b) Post-BN CNN, (c) Post-BN Res 

CNN 

 

 

Figure 5. Performance by fold for multi-class brain tumor classification (Figshare dataset): (a) Pre-BN CNN, (b) Post-BN CNN, (c) Post-BN 

Res CNN 
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3.3. Binary classification results 
In the binary classification of brain MRIs (Br35H dataset), the 

learning curves remain stable across all cases, as illustrated in 

figure 6. Table 5 presents classification results showing 97.83% 

accuracy for the Pre-BN CNN model compared to 99.17% for 

Post-BN variants. From the confusion matrices in figure 7, it is 

evident that 13 test samples were misclassified when 

normalization was applied immediately after convolution, 

whereas the error dropped to only 5 samples when batch 

normalization scaled the activation outputs. The 5-fold cross-

validation results, presented in the bar charts of figure 8, 

demonstrate a tight convergence in performance among the 

evaluated models. Average accuracies across all test folds were 

97.90±0.86% for Pre-BN CNN, 98.10±0.99% for Post-BN 

CNN, and 98.13±0.98% for Post-BN Res CNN. While minor 

numerical differences exist between models, comprehensive 

paired t-test analysis across all model combinations (Pre-BN vs. 

Post-BN, Pre-BN vs. Post-BN Res, and Post-BN vs. Post-BN 

Res) showed no significant differences (all p-values > 0.05), 

demonstrating that these minimal variations do not represent 

statistically meaningful enhancements. The strong performance 

of all models can likely be attributed to the relatively simpler 

nature of tumor detection compared to multi-class classification 

tasks. Additionally, the Br35H dataset is balanced, with an 

equal number of samples per class, and all images are in a single 

plane (axial), unlike the Figshare dataset, which includes axial, 

sagittal, and coronal views. 

 

 

 
 

Figure 6. Learning curves for brain tumor detection (Br35H dataset): (a) Pre-BN CNN, (b) post-BN CNN, (c) post-BN Res CNN 

 

░ Table 5. Classification report for brain tumor detection (Br35H dataset) 
 

Model Category Precision Sensitivity F1-score Mean-F1 ACC 

Pre-BN CNN 
No tumor 98.96 96.61 97.77 

97.83 94.12 

Tumor 96.79 99.02 97.89 

Post-BN CNN 
No tumor 99.66 98.20 99.15 

99.17 99.17 

Tumor 98.70 99.67 99.18 

Post-BN Res 

CNN 

No tumor 99.66 98.56 99.15 
99.17 99.17 

Tumor 98.70 99.67 99.18 

 

 

Figure 7. Confusion matrices for brain tumor detection (Br35H dataset): (a) Pre-BN CNN, (b) Post-BN CNN, (c) Post-BN Res CNN
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Figure 8. Performance by fold for brain tumor detection (Br35H dataset): (a) Pre-BN CNN, (b) Post-BN CNN, (c) Post-BN Res CNN 

3.4. Computational complexity analysis 
Regarding complexity analysis, parameter count and FLOPs 

provide clear insight into a model's computational efficiency. 

They offer more reliable evaluation of model complexity than 

training time since they quantify fixed architectural properties 

unaffected by hardware. Training time, however, varies 

substantially with computational resources. For example, using 

high-performance GPUs significantly reduces training duration, 

undermining its consistency for comparisons. In contrast, 

parameter counts and FLOP values remain stable across all 

computing platforms. As hardware-invariant measures, 

parameter count reflects total learned weights and biases, while 

FLOPs quantify floating-point operations per forward pass. 

These metrics reflect model size, inference speed, and 

deployment constraints. Table 6 displays the parameter and 

FLOP counts for our network along with other models 

demonstrating these characteristics. The proposed model 

contains 89374 parameters across all instances, fewer than those 

in a single convolutional layer of many deep brain tumor 

detection models. Neither batch normalization placement nor 

skip connections influence the total parameter count. The FLOP 

count measures 0.2258 GFLOPs for both Pre-BN CNN and 

Post-BN CNN, with Post-BN Res CNN requiring slightly more 

at 0.2260 GFLOPs. When compared to the modified 

YOLOv5m model in [11], noted as lightweight with 

approximately 22 million parameters and 106 GFLOPs, our 

model demonstrates substantially lower complexity and 

superior computational efficiency, making it deployable on 

resource-constrained edge devices. 
 

░ Table 6. Computational complexity analysis: Parameter 

counts and floating-point operations 

Ref. Approach 
FLOPs 

(GFLOPs) 

Parameter 

count (M) 

[3] Custom CNN – 3.3 

[5] Custom CNN – 13.1037 

[9] Custom CNN – 0.9534 

[11] YOLOv5m 102.5 21.2 

[11] 
Modified 

YOLOv5m 
106.3 22.1 

Proposed 

model 
Pre-BN CNN 0.2258 0.0894 

Proposed 

model 
Post-BN CNN 0.2258 0.0894 

Proposed 

model 

Post-BN Res 

CNN 
0.2260 0.0894 

3.5. Synthesis of key findings 
The preceding analysis shows that proper arrangement of layers 

in the proposed network, particularly the batch normalization 

component and ReLU activation function, meaningfully 

influences overall performance and training behavior, 

especially for multi-class brain tumor classification. That said, 

including skip connections produced minimal improvement, 

likely because the network's modest size already allows 

effective gradient propagation. In addition to accuracy 

considerations, the model's internal architecture, comprising 

specific layer types along with carefully chosen filter numbers 

and dimensions, contributes to its computational efficiency. 

 

░ 4. LIMITATIONS AND FUTURE 

WORK 
Despite the model's high performance and low computational 

complexity, its evaluation utilized datasets with limited tumor 

diversity. The Figshare dataset encompasses only 

meningiomas, gliomas, and pituitary tumors, while Br35H 

supports simple binary tumor/non-tumor classification. This 

restricted scope excludes clinically critical brain abnormalities 

such as medulloblastomas, schwannomas, and metastases, 

narrowing the model’s diagnostic applicability. Furthermore, 

validation relied exclusively on computational metrics without 

practical clinical assessment comparing predictions against 

radiologist interpretations or measuring real-world workflow 

impact. To address these constraints, future efforts will expand 

tumor class coverage by acquiring datasets encompassing 

additional tumor types through hospital partnerships and 

parsing verified medical imaging repositories. Concurrently, 

thorough clinical investigations will be initiated through pilot 

deployments to evaluate the model’s effectiveness in reducing 

diagnostic latency and improving early detection rates in real 

clinical settings. 
 

░ 5. CONCLUSIONS 
This research introduces a lightweight, specialized 

convolutional neural network for detecting and classifying brain 

tumors in MRI scans. The architectural placement of batch 

normalization (BN) and rectified linear unit (ReLU) 

components proves crucial for performance, with the Post-BN 

CNN achieving better results than the Pre-BN CNN. 

Interestingly, incorporating shortcut connections to create a 

residual network architecture showed minimal performance 
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impact. Comprehensive evaluation on both the Figshare dataset 

(multi-class tumor detection) and Br35H dataset (binary 

classification) demonstrates the model's strong performance 

across accuracy metrics while maintaining exceptional 

computational efficiency through optimized parameter counts 

and FLOPs. These findings underscore the significance of 

optimal layer ordering in deep models, which can enhance the 

automation of brain tumor detection in MRI scans and may 

extend to other computer vision applications. 
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