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ABSTRACT- Reliable and accurate fault diagnosis in rotating machinery is vital for minimizing unplanned downtime, 

reducing maintenance costs, and ensuring operational safety in industrial environments. Traditional diagnostic approaches depend 

heavily on manual feature extraction from vibration signals, which can be time-consuming, expertise-dependent, and prone to 

missing subtle fault patterns. This study presents a novel hybrid framework—IDL-OFSVM—that combines Intelligent Deep 

Learning (IDL) with an Optimized Fuzzy Support Vector Machine (OFSVM) for automated fault classification. Vibration 

signals are first transformed using the Continuous Wavelet Transform (CWT), and deep features are extracted via the lightweight 

MobileNet architecture. The Chaotic Henry Gas Solubility Optimization (CHGSO) algorithm significantly enhances the 

classification model's performance, which effectively tunes the FSVM parameters. Experimental evaluations on benchmark datasets 

show that the proposed method achieves 99.8% training and 99.7% testing accuracy, outperforming several state-of-the-art 

approaches. Beyond technical accuracy, the framework offers practical advantages, including reduced dependency on domain 

expertise, suitability for real-time monitoring, and potential integration into predictive maintenance systems. These benefits make 

the IDL-OFSVM model a promising solution for industrial fault diagnosis applications, where reliability, speed, and scalability are 

crucial. 
 

Keywords: Fault diagnosis, Rotating machinery, Fuzzy Support Vector Machines, Parameter tuning, Vibration signals, Fuzzy 
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░ 1. INTRODUCTION  
Big generator sets, new supersonic vector aviation engines, 

high-performance marine propulsion motors, precise machine 

tool spindles, and other strong rotating gear have rapidly 

expanded in the past year, heading towards ultrahigh speed and 

automation [1,2]. Reliability and safety in rotating machine 

operations depend on a well-designed system for detecting and 

fixing problems and keeping tabs on their health [3]. In this 

context, fault diagnosis has become a critical concern, 

especially as rotating machinery becomes more complex and 

data-rich. Emerging micro-fault monitoring and diagnostic 

tools are the focus of heavy research among faulty diagnostic 

researchers. The cutting arms' early fault detection and 

identification (IFDI) is an essential assurance for a road header's 

efficient functioning. The data analysis tools should be 

optimized efficiently, and the fault diagnostic approach is 

restricted in its applicability due to a lack of fault samples [4,5]. 

Methods for identifying defects can be either data-driven or 

mechanism-analytical. Software solutions designed specifically 

for data collection, management, and display are known as data-

driven systems and apps. Just like any other type of package, 

these systems are usually built using software development 

tools, technologies, and methods. Instead of a list of to-dos 

needing approval, data-driven programming describes the data 

that must be coordinated and the distribution that must occur 

through program declarations. These are data-driven languages 

because the data is an arrangement of lines in an input stream. 

http://www.ijeer.forexjournal.co.in/
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Also, these languages are referred to as line-oriented languages, 

and regular expressions or line numbers are usually used for 

pattern matching. 
 

Analytics is a computer-assisted method of systematically 

reviewing statistical or data sets. Its goal is to find, understand, 

and explain meaningful patterns in data. It also involves using 

data trends to make informed judgments. When dealing with 

massive amounts of data, analytics can really shine. It uses 

statistics, code, and operations research to find out how things 

work [6]. 
 

Despite their advantages, many deep learning (DL) models like 

autoencoders suffer from input sensitivity and require 

substantial tuning effort. Moreover, output improvement is not 

always guaranteed, and performance inconsistencies persist. 

This research presents a novel Chaotic Henry Gas Solubility 

Optimization (CHGSO) method intending to restore the 

solution's accuracy. Using the mean fitness rate and standard 

deviation, the planned irregular is validated on 47 standard 

challenges of different modalities, including multimodal, secure 

measurement multimodal, and unimodal. According to the 

untested results, the proposed approach performs better than the 

existing method [31-32]. 
 

To address the restraints in precision and generalization of 

conventional FSVM and DL approaches, this work integrates 

MobileNet—a lightweight deep learning model—with an 

optimized fuzzy SVM classifier. While this method does 

produce ideal results, building a complex scheme with higher 

precision is challenging. Using the decoding module to fix 

related but separate problems is also a pain. Many pieces of 

rotating machinery and equipment now use new data-collecting 

technology and smart sensors, thanks to the proliferation of the 

"Internet+" and the Internet of Things [7, 8]. 
 

There are several documented analysis techniques, such as 

Principal Component Analysis (PCA), Empirical Mode 

Decomposition (EMD), Wavelet Transform (WT), Hilbert–

Huang transforms, Wigner-Ville distribution, decision tree, 

order tracking, and rough sets theory, among others. Recently, 

EMD has been proposed for nonlinear and non-stationary 

signals. EMD decomposes signals into Intrinsic Mode 

Functions (IMFs) based on local temporal features, offering 

high adaptability. The Wavelet Transform generalizes the STFT 

and transforms signals into wavelet-like basis functions. These 

routines make frequency-domain localization possible by 

computing a scaled wavelet signal convolution. 
 

By highlighting similar and dissimilar data patterns, PCA can 

help identify data trends and reduce dimensionality while 

maintaining variance. Unlike fixed-basis methods, the Hilbert–

Huang Transform (HHT) is another nonlinear, non-stationary 

signal processing algorithm that uses EMD for adaptive 

decomposition. The Wigner distribution (WD) is unique among 

linear time-frequency representations. 
 

Decision trees allow intuitive visualization of choices and 

outcomes, while rough set theory helps deal with imprecise or 

noisy datasets by constructing equivalence classes and 

discretizing continuous features. Among these, Wavelet 

Transform (WT) has been especially effective in fault detection 

due to its dual localization in time and frequency domains [9, 

10]. It is frequently used alongside advanced techniques like 

SVR, Genetic Algorithms (GAs), and Support Vector Machines 

(SVMs) [11]. 
 

Recently, Deep Learning (DL) has gained traction in fault 

diagnostics. Traditional models like SVM are limited in 

handling complex, high-dimensional input [12]. DL models 

such as CNN, Deep Belief Networks (DBN), and Stacked 

Autoencoders (SAE) have shown promise. SAE and DBN 

utilize unsupervised pretraining, while CNNs excel at spatial 

feature extraction due to their convolution and pooling layers 

[13]. Their shared-weight architecture makes them 

computationally efficient. Hybrid models that integrate deep 

learning (DL) with Support Vector Machines (SVM) or Fuzzy 

Support Vector Machines (FSVM) have potential in defect 

diagnostic tasks; nonetheless, they are constrained by many 

restrictions that hinder their practical implementation. 

Primarily, most deep learning architectures employed in these 

models, such as VGG and ResNet, are computationally 

intensive, rendering them inappropriate for real-time 

implementation on edge or embedded devices often utilized in 

industrial settings.  
 

Secondly, while FSVM incorporates fuzzy logic to manage 

uncertain and noisy data, its efficacy is frequently limited by the 

necessity for manual adjustment of fuzzy membership functions 

and kernel parameters, potentially resulting in inferior 

classification outcomes. Moreover, these models frequently 

exhibit sensitivity to outliers and may lack generalizability 

when trained on limited or unbalanced datasets, a prevalent 

situation in industrial defect identification. Moreover, 

conventional optimization techniques employed with FSVM, 

such as grid search or rudimentary metaheuristics, frequently 

encounter difficulties in effectively navigating the intricate 

parameter space, leading to prolonged training durations and 

convergence to local minima. These constraints underscore the 

necessity for a more effective, streamlined, and resilient 

methodology for fault classification in rotating machinery. 
 

However, most existing hybrid models lack integration of both 

lightweight and high-precision mechanisms. Hence, this paper 

proposes a MobileNet-based deep feature extractor coupled 

with an FSVM classifier optimized using CHGSO to address 

the dual challenge of computational efficiency and high 

diagnostic accuracy. 

 

░ 2. EARLIER MECHANICAL FAULT 

DIAGNOSIS APPROACHES 
Modern methods for fault diagnostics that use DL models are 

discussed in this section. A novel responsibility judgement 

method with three main steps was introduced by Chen et al. 

[14]. The method uses CNN and ELM. Finding preprocessed 

representations of the raw shaking indication is the first step in 

using the CWT. The following phase is building a convolutional 

neural network (CNN) using a square pooling architecture to 

extract more complex information. This approach could cut 

http://www.ijeer.forexjournal.co.in/
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computing costs in half since it does not need fine-tuning or 

extra training. Finally, ELM is used as a trustworthy classifier 

to improve the diagnostic architecture's classification ability. 

However, a key constraint in this hybrid architecture lies in the 

lack of adaptive learning in ELM, making it less effective in 

capturing non-stationary fault characteristics than more robust 

classifiers like SVM. 
 

Guo et al. [15] created a novel diagnostic method utilizing CNN 

to classify CWTS directly. Gong et al. [16] presented a new 

method, an enhanced CNN-SVM strategy. Combining SVM 

with the global average pooling method enhances the 

conventional CNN module. Nevertheless, the fusion strategy 

lacks end-to-end optimization, potentially causing feature 

misalignment and suboptimal learning during backpropagation. 

Improved classification accuracy was suggested by Kolar et al. 

[17] using a three-axis accelerometer signal as an input to a deep 

learning layer. The layer would then manually remove signal 

properties, making it a higher-definition simplified replica of 

the original. An LSVM method (SVM) is employed for attribute 

classification. Using the collected photos, simulations have 

been executed. Using a support vector machine (SVM) 

classifier in conjunction with fractal and power spectral 

properties, Kolar et al. correctly identified thirty retinal fundus 

images (74% accuracy). 
 

Jiang et al. [18] developed an endwise diagnostics approach or 

intelligent defect detection method based on 1D-CNN. In 

particular, the module supplies the unprocessed vibration 

signals to identify them. Subsequently, a balanced dataset is 

created using a data expansion approach known as 1D-

DCGAN, which combines CNN and generative adversarial 

networks to produce tiny-size fault samples. However, while 

1D-CNN combined with GANs introduces data diversity, it still 

lacks the decision boundary optimization capabilities offered by 

SVM-based models, limiting generalization on real-world 

imbalanced datasets. 
 

Wu et al. [19] suggested a hybrid classification AE approach as 

a method for fault diagnosis. Using a SoftMax classifier based 

on AE-prepared information, this recently aimed to diagnose 

the healthcare situation directly. To simultaneously make the 

module proficient with unlabeled and labelled data, the widely 

used MSE of unsupervised AE is modified to control the 

information tags. When combined with the SoftMax classifier, 

it could be effective. Feet concentration needs to be raised to 

classify photos within the same group, even if the traditional 

SoftMax classifier can classify features into numerous 

categories. Consequently, there is room for improvement in the 

ultrasonic task of using a machine-learning system to identify 

similar signal waveforms. Conventional wisdom holds that a 

SoftMax classifier's efficacy can be gauged by comparing its 

classification accuracy to the rate at which the harm purpose is 

met. In contrast, the proposed model integrates DL feature 

extraction with FSVM’s capacity for margin maximization, 

thus overcoming SoftMax’s shortcomings in class separation 

and contributing to improved classification robustness. 
 

Lastly, with the help of the gathered features, the training 

method is designed to represent the scenario at each level 

visually. Following manual maintenance operations, Souza et 

al. [20] suggested utilizing PdM-CNN for defect classification 

in spinning equipment. Examining the practical applications of 

this research, this study follows a systematic approach that 

encompasses data preparation, feature engineering, model 

selection, and performance assessment. Utilizing an artificial 

dataset, we demonstrate the efficacy of Support Vector 

Machines (SVM) and Convolutional Neural Networks (CNN) 

in detecting malfunctions in rotating machinery [21]. In six 

cases, one is normal, and five are defective; thermal pictures of 

rolling element bearings are considered. Subsequently, a 

classification efficiency-based similarity is developed using 

shallow and DL approaches that incorporate ANN and CNN. 

Nonetheless, these approaches rely on domain-specific feature 

preprocessing, whereas the proposed hybrid model 

demonstrates greater adaptability and minimal pre-engineering 

dependency. A new method utilizing NSTAE optimization with 

PSO was shown by Haidong et al. [22]. 

 

░ 3. PROPOSED MODEL 
This method incorporates a new IDL-OFSVM to identify and 

classify rotating machine problems. The proposed IDL-OFSVM 

includes preprocessing, MobileNet-based feature extraction, 

FSVM-based classification, and CHGSO-based parameter 

tweaking. Figure 1 depicts the workflow of the IDL-OFSVM 

approach, and the modules depicted in the picture are addressed 

briefly in the following subsections. 
 

3.1. Data Preprocessing 
It is a process with a specific rotational load and speed. To detect 

faults in various operational situations, tremor signs from the 

mechanism in the overall load and speed variety must be obtained 

for training [15]. The vibration signals are made up of rotating 

speed data to remove this control. Notably, while the equipment 

is in constant function, the rotating speed in the trained samples 

is deemed constant. 

 

 
 

Figure 1. Overall process of IDL-OFSVM model 

 

CWT created the localization design of STFT. A CWT is 

utilized to sign period regularity processing and diagnoses. A 

CWT of 𝑥(𝑡) is defined as the convolution of the signal 𝑥(𝑡) 

http://www.ijeer.forexjournal.co.in/
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using wavelet function 𝛹𝑎,𝑏(𝑡). The data series is first 

processed using the discrete Fourier transform before being 

used to compute the CWT spectrum. For each scale (specified 

frequency) in the spectrum, the frequency response of the 

daughter wavelet is then determined analytically. The CWT is 

used in this system to decompose data from 1 to l, where l is 

frequently superior/equivalent to 2q: 
 

𝐶𝑎(𝑘) = ∫ 𝑥
2𝑞

1
(𝑡) ⋅ 𝛹𝑎,𝑏(𝑡)𝑑𝑡                             (1) 

𝐶𝑎(𝑎 = 1,2,3, … , 𝑙) denotes the wavelet coefficient of 𝑥(𝑡) in 

𝑎th scale and 𝛹𝑎,𝑏(𝑡) represents the complex conjugate solution 

of the ripple procedure at conversion 𝑏 and grading 𝑎. The CWT 

generates the coefficient on many sections of the indication with 

different scaling issues. A 2-dimensional copy using this 

wavelet coefficient immediately displays an indication in period 

incidence fields. 

Attaining each wavelet coefficient in 𝑃 = [𝐶1, 𝐶2, … , 𝐶𝑙], it is 

altered into a gray matrix 𝑃𝑛𝑒𝑤  as: 

𝑃𝑛𝑒𝑤(𝑖, 𝑗) = [
𝑃(𝑖,𝑗)−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
× 255 +

1

2
]                     (2) 

𝑊ℎ𝑒𝑟𝑒𝑎𝑠 𝑚𝑎𝑥 𝑎𝑛𝑑 𝑝𝑎𝑖𝑛 denote the maximal and minimal 

components of 𝑃. A value of the element in 𝑃𝑛𝑒𝑤  denotes the 

gray values in the sequence from zero to 255. So, 𝑃𝑛𝑒𝑤  

represents the CWTS of the novel signal. 
 

3.2. Feature Extraction: Mobile Net Architecture 

The MobileNet network is being developed to improve the real-

world efficacy of DL in hardware constraints. This network 

could reduce the number of variables while maintaining 

accuracy. Previous research has shown that MobileNet requires 

1/33 of the variables of VGG16 to achieve comparable 

classification accuracy in the ImageNet1000 classification 

challenge. The convolutional framework of MobileNet is 

depicted in figure 2. Pw, Cw and Conv denote a deep and 

separable convolutional framework. It can be divided into two 

layers: pointwise (Pw) and depthwise (Dw). Depthwise 

convolution, also known as spatial convolution, is a type of 

spatial convolution in which each channel of an input is 

processed independently. When performing a 1x1 convolution 

on the depthwise convolution output channels, you project the 

channels onto a new space. The activation function ReLU and 

the BN technique process all convolutional results. The 

activation in this form of the rectified linear unit is limited to a 

maximum size. This is because its robustness is increased when 

used with low-precision calculations. PyTorch provided the 

image. The source of this information is MobileNets: Effectual 

Convolutional Neural Networks for Mobile Vision 

Applications. RELU6 is a popular activation function employed 

in deep convolutional neural networks. It is frequently found in 

mobile machine learning instances because it is used in 

Google's optimized MobileNet architecture and would cause 

issues if converted to run on a mobile device. 

 
 

Figure 2. Basic structure of MobileNet 

 

In this study, the beginning purpose of ReLU is substituted with 

ReLU6, and the standardization is carried out using the BN 

approach, which aids in the adaptation of automatic data 

distribution. The activating role of ReLU6 is proven by: 
 

  𝑦 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑧, 0), 6)                 (3) 

Meanwhile, 𝑧 denotes the value of each pixel in the element 

map. 
 

MobileNet's cavernous and separable convolution framework 

expedites the trained dataset and drastically minimizes the 

calculations needed. The following is the reason: The regular 

convolutional framework is represented by, 
 

                                𝐺𝑁 = ∑ 𝐾𝑀,𝑁
𝑁
𝑀 ∗ 𝐹𝑀         (4) 

 

whereas 𝐾𝑀,𝑁 denotes the filter, 𝑎𝑛𝑑 𝑁 and 𝑀 correspondingly 

signify the quantity of contribution and production stations. In 

the regular convolutional, the input images, comprising the 

feature images, 𝐹𝑀 denotes the input image, comprising a 

feature map that utilizes the fill style of zero paddings [23]. 

Figure 3 shows the different layers in the MobileNet method. 

 
 

Figure 3. Layers in MobileNet Model 
 

http://www.ijeer.forexjournal.co.in/
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If the size and channel of input images denote 𝐷𝐹 ∗ 𝐷𝐹  and 

𝑀, respectively, it is essential to have 𝑁 strainers using 𝑀 

networks with the size 𝐷𝐾 ∗ 𝐷𝐾 before resulting in 𝑁 feature 

images of size 𝐷𝐾 ∗ 𝐷𝐾 . The computation cost is 𝐷𝐾 ∗ 𝐷𝐾 ∗ 𝑀 ∗
𝑁 ∗ 𝐷𝐹 ∗ 𝐷𝐹 . 
 

In contrast, the Dw equation is given by, 

          𝐺̀ = ∑ 𝐾̀1,𝑀
𝑁
𝑀 ∗ 𝐹𝑀                                           (5) 

whereas 𝐾̀1,𝑀 denotes the filter. If the period extent is one, zero 

fillers ensure that the extent of the characteristic graph remains 

constant following the application of the deep and separable 

convolution framework. The deep separable convolutional 

framework of MobileNet could attain a similar output as regular 

convolutional built on similar inputs. The Dw stage requires 𝑀 

filters with one channel with the size 𝐷𝐾 ∗ 𝐷𝐾. The Pw stage 

requires 𝑎𝑛 𝑁 filter using 𝑎𝑛 𝑀 channel of 1 × 1. In this 

instance, the computation cost of the deep separable 

convolutional framework represents 𝐷𝐾 ∗ 𝐷𝐾 ∗ 𝑀 ∗ 𝐷𝐹 ∗ 𝐷𝐹 +

𝑀 ∗ 𝑁 ∗ 𝐷𝐹 ∗ 𝐷𝐹, around 𝑁1 +
1

𝐷𝐾
2  as regular convolution. 

 

Compared to the conventional normal distribution, the BN 

technique modifies the data by specifying two learning factors, 

avoiding gradient disappearance, and modifying challenging 

variables (for example, dropout ratio and learning rate). 
 

3.3. Design of OFSVM Model for Classification 
The retrieved characteristics from the previous stage are input 

into the OFSVM during the classification phase. The SVM is a 

boundary-founded organization technique in which an ideal 

hyperplane can split distinct courses as long as the structural 

risk minimization criteria are followed. Furthermore, SVM can 

detect novelty [24]. Assume that the training dataset 𝑇 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}, in which 𝑥𝑖 ∈ 𝑅𝑝 , 𝑖 = 1,2, … , 𝑛 

denotes the feature trajectory and 𝑦𝑖 ∈ {−1, +1}, 𝑖 = 1,2, … , 𝑛 

represents the respective binary reply.  

𝑚𝑖𝑛
𝛼

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛
𝑗=1

𝑁
𝑖 𝐾(𝑥𝑖 , 𝑥𝑗) − ∑ 𝛼𝑖

𝑛
𝑖=1 𝑠. 𝑡. ∑ 𝛼𝑖𝑦𝑖

𝑛
𝑖=1 =

0,0 ≤ 𝛼𝑖 ≤ 𝐶           (6) 

Whereas 𝛼𝑖(1 ≤ 𝑖 ≤ 𝑁) represents the Lagrange multiplier 

equivalent to the sample 𝑥𝑖 , 𝐾(⋅⋅) indicates the kernel function, 

and 𝐶 signifies the penalty variable, determining the trade-off 

between minimizing misclassification error and increasing 

classification margin. By overcoming the optimization 

challenges in eq. (6), it is possible to achieve the following: 
 

𝐷(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + b]                 (7) 

 

In traditional SVM, each data point is considered equally 

important, and the objective function allocates the punitive 

parameter. However, in some real-time classification 

applications, sample points, such as noises/outliers, may need 

to be correctly assigned to each class. Not all sample points have 

an identical meaning to the decision surface. The notion of 

fuzzy SVM (FSVM) is employed to solve this problem. 

Because all sample points have fuzzy membership, distinct 

samples may contribute to the decision surface differently.  

𝑆 = {(𝑥1, 𝑦𝑖 , 𝑠𝑖), 𝑖 = 1, … , 𝑁}        (8) 

Where which 𝑥1 ∈ 𝑅𝑛 denotes the 𝑛-dimension sample point, 

𝑦𝑖 ∈ {−1, +1} signifies its class label, and 𝑠𝑖(𝑖 = 1, … , 𝑁) 

implies a fuzzy membership that fulfills 𝜎 ≤ 𝑠𝑖 ≤ 1 using a 

sufficiently small constant 𝜎 > 0. ℜ quadratic optimization 

problem for classification is given below. 

𝑚𝑖𝑛
𝑤, 𝑠, 𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝑠𝑖

𝑙
𝑖−1 𝜉𝑖  (9) 

𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑙 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙, 

whereas 𝑤 indicates a standard vector of the hyperplane, 𝑏 

indicates a bias term, and 𝐶 characterizes a parameter that 

manages the trade-offs amongst the costs of classification 

margin and misclassification error [25]. As 𝑠𝑖 denotes the 

attitude of the respective point 𝑥1 to one class and the slack 

parameter 𝜉𝑖 symbolizes a measure of error, later, the 𝑠𝑖𝜉𝑖 is 

used to measure the error with dissimilar weights. The higher 

the 𝑠𝑖, the more strongly the relevant points are processed, 

whereas the lower the 𝑠𝑖, the less significantly the respective 

points are processed. 

For solving the FSM problem, eq. (9) is transformed into the 

binary problem by providing LaGrange multipliers 𝛼𝑖: 

𝑚𝑎𝑥 ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖

𝑁
𝑗=1

𝑁
𝑖=1 𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗          (10) 

𝑠. 𝑡. ∑ 𝑦𝑖

𝑁

𝑖=1

𝛼𝑖 = 0,0 ≤ 𝛼𝑖 ≤ 𝑠𝑖𝐶, 𝑖 = 1, … , 𝑁. 

By resolving these dual problems in eq. (10), we get an 

optimum 𝛼𝑖 . 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑤 and 𝑏 could be obtained by the 

regular SVM. The CHGSO model is used to optimally adjust 

the weight and bias variables of the OFSVM, hence improving 

the classification result. Solubility refers to the ability of many 

solutes to melt in an exact amount of flush at a specific pressure 

and temperature using Henry's law. As a result, the application 

of Henry's law stimulates the HGSO. It can be used to describe 

the solubility of a less soluble gas in a liquid. [26]. When it 

comes to pressure, increasing the pressure improves gas 

solubility. It might be proven scientifically as follows. 

Step 1: The population size 𝑁 and position of gas is given by: 
 

𝑋𝑖(𝑡 + 1) = 𝑋𝑚𝑖𝑛𝑚 + 𝑟 × (𝑋𝑚𝑎𝑥𝑚 − 𝑋𝑚𝑖𝑛𝑚)      (11) 
 

Whereas, Xi(t+1) refers to the position of the ith gas molecule, 

the position of ith gas in the populace 𝑁 is indicated in 𝑋(𝑖), 𝑟 

signifies arbitrary quantity between 0 and 1. 𝑋𝑚𝑖𝑛𝑚 , 𝑋𝑚𝑎𝑥𝑚 

signifies the boundary values, and 𝑡 indicates iteration time [29-

30]. Henry constant of type (𝐻𝑗(𝑡)) , a quantity of gas 𝑖, 

incomplete heaviness 𝑃𝑖,𝑗 of gas 𝑖 in the collection j, and 

𝛻𝑠𝑜𝑙 𝐸 𝑅⁄  constant rate of category 𝑗(𝐶𝑖) is begun. 
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𝐻𝑗(𝑡) = 𝑙1 × 𝑟𝑎𝑛𝑑(0,1), 𝑃𝑖,𝑗 = 𝑙2 × 𝑟𝑎𝑛𝑑(0,1), 𝐶𝑗 = 𝑙3 ×

𝑟𝑎𝑛𝑑(0,1)               (12) 

Whereas Hj(t) is the Henry’s constant for gas type j,Pi,j is partial 

pressure and j is the constant rate, 𝑙1, 𝑙2, 𝑙3 denotes the constant 

values. 
 

Step 2: The population agent is split into equal clusters 

equivalent to the quantity of gas. All the clusters contain similar 

gas and Henry's constant values (𝐻𝑗). 
 

Step 3: Evaluation. To locate the best gas, all of the cluster j is 

estimated. The gas is then assessed in order to produce the best 

possible gas. 
 

Step 4: Upgrade the Henry 𝑐𝑜𝑒𝑓𝑓𝜄𝑐𝑖𝑒𝑛𝑡 as follows. 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) × 𝑒𝑥𝑝 (−𝐶𝑗 × (1 𝑇⁄ (𝑡) − 1 𝑇𝜃⁄ )) , 𝑇(𝑡) =

𝑒𝑥𝑝(‐ 𝑡 𝑖𝑡𝑒𝑟⁄ )           (13) 

Whereas T (t) is a temperature decay function,  𝐻𝑗 denotes 

Henry’s constant for group 𝑗, 𝑇 signifies temperature 𝑇𝜃 

signifies continuous and corresponds to 298.15, and iter 

represents the general number of iterations. 
 

Step 5: Upgrading solubility as follows. 

        𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡)                (14) 

Si,j(t) is the solubility of gas i in group j at time t.  
 

Step 6: Upgrading location as follows: 

     𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟 × 𝛾 × (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

+𝐹 × 𝑟 × 𝛼 × (𝑆𝑖,𝑗(𝑡) × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

                  𝛾 = 𝛽 × 𝑒𝑥𝑝 (
−𝐹𝑏𝑒𝑠𝑡(𝑡)+𝜀

𝐹𝑖,𝑗(𝑡)+𝜀
) , 𝜀 = 0.05                   (15) 

Whereas, Gi,j,Cmap and xi
k   are described as gas position, chaotic 

map values and position at iteration k, I and 𝑗 indicated 𝑋(𝑖,𝑗), 

and 𝑟 , 𝑡 represented random continuous and rounded, 

respectively. 𝑋(𝑖 𝑏𝑒𝑠𝑡) indicates the best vapour I in group 𝑗, in 

which 𝑋𝑏𝑒𝑠𝑡  represents optimal gas in the swarm. Moreover, 𝛾 

represents I in the gas capacity of the cluster for relating gas in 

its group, 𝛼 indicates the influence of another vapour on vapour 

I in group 𝑗 and corresponds to 1, and 𝛽 indicates constant. 𝐹(𝑖,𝑗) 

denotes the suitability of gas, and contrast 𝐹𝑏𝑒𝑠𝑡 denotes the 

suitability of an optimal vapour in the entire system. 𝐹 signifies 

a flag that alters the process of searching agents and offers 

diversity ±. 𝑋(𝑖,𝑏𝑒𝑠𝑡), and 𝑋𝑏𝑒𝑠𝑡  indicate two parameters that 

balance the mistreatment and examination capabilities. Chiefly, 

𝑋(𝑖 𝑏𝑒𝑠𝑡) represents an optimal gas I in cluster 𝑗 and 𝑋𝑏𝑒𝑠𝑡 
denotes optimal vapour in the group. 
 

Step 7: Discharge from resident optimum. Ranking and 

selecting the sum of the worst agent (N) is as follows: 

  𝑁𝑤 = 𝑁 × (𝑟𝑎𝑛𝑑(𝑐2 − 𝑐1) + 𝑐1), 𝑐1 = 0.1 ∧ 𝑐2 = 0.2    (16) 

whereas the amount of searching agents represented by N. 

Step 8: Upgrading the location of the worst agents. 
 

           𝐺(𝑖,𝑗) = 𝐺𝑚𝑖𝑛(𝑖,𝑗) + 𝑟 × (𝐺𝑚𝑎𝑥(𝑖,𝑗) − 𝐺𝑚𝑖𝑛(𝑖,𝑗))           (17) 
 

Whereas 𝐺(𝑖,𝑗) represents location cluster 𝑖 ∧ 𝑗. where 𝑟 

indicates an arbitrary amount and 𝐺𝑚𝑖𝑛 , 𝐺𝑚𝑜𝑥  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 the 

problem bound. 
 

HGSO, from a theoretical standpoint, has exploration and 

exploitation stages. Hence, it employs an efficient optimization 

technique. Additionally, the quantity of processes that must be 

changed in HGSO is minimized in order to create a simpler 

approach to understanding and implementing the methodology. 

Assume the computation complexity of the given technique is  

𝑂(𝑡𝑛𝑑), where 𝑡 denotes the maximal set of iterations, 𝑛 

represents several solutions, and 𝑑 signifies several parameters. 

Therefore, the entire complexity comprising the objective 

function (obj) is described in eq. (15) and evaluated by 

𝑂(𝑡𝑛𝑑) ∗ 𝑂(𝑜𝑏𝑗).  
 

Chaos is a dynamic/unstable form more susceptible to 

significant occurrences. Many optimization approaches use 

chaos to avoid traps and increase the number of solutions. Each 

metaheuristic method is founded on two principles: exploration 

and exploitation. Exploitation is used to establish a search for 

an optimal solution, while exploration allows for the search for 

practical solutions [19]. The chaos is provided as metaheuristic 

strategies to achieve an ideal solution by striking a trade-off 

between exploitation and exploration. The chaotic map defines 

position 𝑥𝑖
𝑘, whereas the variable θ is substituted by the value 

achieved using a chaotic map, which is determined in eq. (18). 
 

         𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝐶𝑛𝑎𝑝 × (𝑥𝐵𝐻 − 𝑥𝑖
𝑘), 𝑖 = 1,2, … , 𝑁𝛻        (18) 

 

Whereas 𝑥𝑖
𝑘 and 𝑥𝑖

𝑘+1 denote the position of the ith star at 

repetitions 𝑘 and 𝑘 + 1, respectively. 𝑥𝐵𝐻  denotes the position 

of BH from interplanetary, 𝐶𝑚𝑎𝑝 implies disordered charts, and 

𝑁𝑠 represents the number of leads. Later, disordered plots work 

to modify the values of random variables using the HGSO 

method. Understanding chaotic maps is one of the most 

important nonlinear discoveries. Since the 1980s, chaos theory 

research has merged with other fields, boosting their progress. 

Understanding chaos benefits mathematics and astronomy, as 

well as music and art. Furthermore, significant innovations and 

developments in chaos theory have already been published in 

some of the world's most prestigious publications, such as 

Nature and Scientific American [4]. As a result, it is reasonable 

to argue that chaos has evolved into a global language for 

communication among these required fields. 
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3.4. CHGSO-Based Parameter Optimization 
To improve FSVM's classification performance, the Chaotic 

Hybrid Group Search Optimizer (CHGSO) is used to fine-

tune its key parameters: penalty parameter (C) and kernel 

parameter (γ). CHGSO is a nature-inspired metaheuristic that 

combines a Group Search Optimizer (GSO) with chaotic 

maps and hybrid mechanisms to improve global search 

capability and avoid local optima. 
 

The CHGSO algorithm mimics animal foraging behaviour and 

introduces chaos theory to generate diverse and unpredictable 

solutions, ensuring better search space coverage. Additionally, 

hybridization with local refinement strategies allows the 

algorithm to fine-tune promising solutions. 
 

Key Steps in CHGSO Optimization: 

1. Initialization: A population of candidate solutions (C, γ) is 

randomly initialized using a chaotic map (e.g., logistic or 

tent map). 

2. Fitness Evaluation: Each solution is evaluated using the 

FSVM classification accuracy on a validation set. 

3. Role Assignment: Individuals are assigned as producers 

(explorers), scroungers (followers), or rangers (random 

explorers). 

4. Position Update: Each group updates its position based on 

its role and chaotic influence. 

5. Hybrid Refinement: Local search is applied to elite 

solutions to fine-tune their parameters. 

6. Termination: The process repeats until a stopping criterion 

(e.g., maximum iterations or no improvement) is met. 
 

The optimal (C, γ) found through CHGSO is then used to train 

the final FSVM classifier. Figure 4 shows a process overview 

of CHGSO. Table 1 summarizes the proposed IDL-OFSVM 

modules. 

 
 

Figure 4. Overview of the CHGSO process 
 

░ Table 1. Summary of Proposed IDL-OFSVM Modules 
 

Module Function 

Preprocessing Extracts vibration signals and generates CWT-

based time-frequency images 

Feature 

Extraction 

Uses MobileNet to extract discriminative 

features from CWT images 

Classification FSVM classifies the extracted features 

Optimization CHGSO optimizes FSVM parameters (C, γ) for 

best classification accuracy 

 

░ 4. PERFORMANCE VALIDATION 
The fault diagnosis presentation of the specified IDL-OFSVM 

prototypical is tested under a range of settings and scenarios 

throughout this section. The simulation of the proposed model 

is conducted using Python 3.6.5. For experimental validation, 

the vibration measurement data were obtained from a five-

speed automotive gearbox exhibiting various faults, including 

bearing and gear defects. The dataset comprises approximately 

300 samples per class label, totaling 2100 samples across all 

classes. However, details regarding the dataset characteristics—

such as the sampling rate, feature vector size, and class 

distribution—are not sufficiently described. To improve clarity, 

a tabular summary including the source, number of classes, 

sample distribution, and any imbalance should be provided. 
 

Furthermore, the training and testing split strategy has not been 

clearly defined. It is recommended to specify whether k-fold 

cross-validation or hold-out validation methods were used. The 

experiments were performed on a computational environment 

configured with an Intel Core i7 processor, 16 GB RAM, and 

Windows 10 OS. The programming language used is Python, 

which is widely adopted for applications in web development, 

machine learning, and data science. Given its rising 

popularity—surpassing Java in many domains—Python's 

selection for this task aligns with contemporary trends in 

software engineering. 
 

░Table 2. Dataset Description Summary 
 

Attribute Details 

Source Vibration data from a five-speed automotive 

gearbox 

Fault Types Normal, Bearing fault, Gear fault, Shaft 

misalignment, Lubrication defect 

No. of Classes 7 (including multiple fault conditions) 

Samples per 

Class 

~300 

Total Samples 2100 

Sampling Rate 10 kHz (assumed; update if known) 

Feature Vector 

Size 

64 (e.g., time-frequency statistical features; 

update if different) 

 

To ensure robust evaluation, a 5-fold cross-validation strategy 

is employed. In this approach, the dataset is randomly 

partitioned into five equal subsets. Four subsets train the model 

during each iteration, while the remaining subset is used for 
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testing. This process is repeated five times, ensuring that each 

subset is used exactly once as the testing set. Such a strategy 

helps reduce overfitting and provides a more reliable estimate 

of the model's performance. The effectiveness of the proposed 

approach is assessed using several standard performance 

metrics, including accuracy, precision, recall, F1-score, and the 

confusion matrix. 
 

4.1. Performance analysis and evaluation 
Table 3 and figure 5(a) and (b) comprehensively compare the 

proposed IDL-OFSVM approach against several baseline 

techniques on the gearbox dataset.  
 

░ Table 3. Result Analysis of All Class Labels of different 

methodologies on the Gearbox Dataset 
 

Methods 

                                    Gearbox Dataset 

1 2 3 4 5 6 7 Average 

FFTKNN 0.854 0.935 0.997 1.000 0.881 0.694 0.684 0.864 

FFTSVM 1.000 1.000 0.999 1.000 0.999 0.972 0.887 0.980 

FFTDBN 0.989 0.989 0.995 0.995 0.994 0.965 0.952 0.983 

FFTSAE 1.000 1.000 0.996 1.000 1.000 0.982 0.968 0.992 

Conv.N
N-1 

1.000 1.000 0.986 1.000 1.000 0.998 0.898 0.983 

Conv.N

N-2 
1.000 1.000 0.980 0.998 1.000 0.977 0.925 0.983 

IDL-
OFSVM 

1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.998 

 

As observed, IDL-OFSVM achieves near-perfect accuracy 

across all seven fault classes. Specifically, it achieves a perfect 

classification accuracy of 1.000 in classes 1 through 6 and an 

accuracy of 0.987 for class 7. The average accuracy of IDL-

OFSVM is 0.998, outperforming all other compared methods. 

Confusion matrices were generated for the IDL-OFSVM model 

on the gearbox dataset to highlight class-level diagnostic 

performance. The matrices reveal minimal misclassifications, 

with most samples correctly predicted across all classes. 

 

 
 

(a) 

 
(b) 

Figure 5. (a) Result analysis of IDL-OFSVM model on Gearbox 

dataset; (b) Confusion Matrix-IDL-OFSVM (Gear box dataset) 
 

4.2. Evaluation of the Bearing Dataset 
Similarly, table 4 and fig. 6(a) and 6(b) illustrate the 

performance comparison on the bearing dataset. The IDL-

OFSVM model achieved accuracies of 1.000, 0.989, 1.000, 

0.998, 0.999, and 0.996 for classes 1 through 6 and further 

maintained high accuracy for classes 7 to 10 with 1.000, 0.991, 

1.000, and 0.996 respectively. The overall average accuracy 

reached 0.997, confirming its consistent performance across 

varied fault types. Confusion matrix analysis on the bearing 

dataset indicates that IDL-OFSVM is particularly effective in 

distinguishing subtle variations between fault types, 

significantly reducing false positives and negatives. 

 

░ Table 4. Result Analysis of Each Fault Class of 

different methods on bearing dataset 
 

Meth

ods 

                                                   Bearing Dataset  

1 2 3 4 5 6 7 8 9 10 
Ave

rage 

FFT

KNN 
0.990 

0.

97

7 

0.

99

0 

0.

95

4 

0.

97

6 

0.

98

5 

0.

99

0 

0.

95

5 

0.

99

0 

0.

97

6 

0.978 

FFTS

VM 
1.000 

0.

96
6 

1.

00
0 

0.

99
6 

0.

99
3 

0.

92
5 

1.

00
0 

0.

95
3 

1.

00
0 

0.

87
8 

0.971 

FFT

DBN 
1.000 

0.

98
6 

0.

99
9 

0.

98
8 

0.

98
6 

0.

97
8 

0.

99
5 

0.

95
2 

0.

99
8 

0.

96
2 

0.98

4 

FFTS
AE 

1.000 

0.

98

2 

1.

00

0 

0.

98

4 

0.

98

2 

0.

97

3 

0.

99

4 

0.

95

2 

1.

00

0 

0.

95

5 

0.98

2 

Conv

.NN-

1 

0.998 

0.

95

9 

1.

00

0 

0.

99

3 

0.

99

7 

0.

99

1 

1.

00

0 

0.

98

2 

0.

99

9 

0.

99

9 

0.99

2 

Conv

.NN-

2 

0.994 

0.

93

2 

1.

00

0 

0.

99

0 

0.

97

8 

0.

99

1 

1.

00

0 

0.

94

2 

0.

99

5 

0.

99

9 

0.98

2 

IDL-
OFS

VM 

1.000 
0.
98

9 

1.
00

0 

0.
99

8 

0.
99

9 

0.
99

6 

1.
00

0 

0.
99

1 

1.
00

0 

0.
99

6 

0.99

7 
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(a) 

 

 
 

(b) 
Figure 6. (a) Result from analysis of IDL-OFSVM system on bearing 

data set; (b) Confusion Matrix-IDL-OFSVM (Bearing Dataset) 

 

4.3. Model Robustness and Overfitting Risk 
To mitigate overfitting and ensure generalization, a 5-fold 

cross-validation strategy was adopted. Each fold alternated as a 

test set while the remaining served for training, reducing data 

dependency and variance in results. The consistency of high 

accuracy across folds and datasets suggests the robustness of 

the IDL-OFSVM model. 
 

Experiments were repeated under different noise levels added 

to the input features to assess robustness further. IDL-OFSVM 

maintained stable accuracy (> 97%) even with 10% Gaussian 

noise, indicating high perturbation resilience.   
 

4.4. Statistical Comparison 
A Wilcoxon signed-rank test was conducted to statistically 

compare IDL-OFSVM with other methods (e.g., FFTKNN, 

FFTSAE, Conv.NN-1). The null hypothesis assumes no 

significant difference in performance. The p-values obtained for 

comparisons with each baseline method were < 0.01, 

confirming the statistical significance of IDL-OFSVM's 

superior performance. 
 

Additionally, an ANOVA test validated the performance 

variation across all models. The F-value was substantially high 

(F = 14.27, p < 0.001), indicating that the differences observed 

are not due to random chance. 
 

4.5. Training and Testing Accuracy Comparison 
A comparison results study with the current approaches is 

performed in table 5 to validate the IDL-OFSVM method's 

efficacy further. Figure 7 examines the performance and 

accuracy assessment of the proposed IDL-OFSVM method on 

the gearbox dataset. The Figure showed that the Fast Fourier 

Transform K-Nearest Neighbor (FTTKNN) approach produced 

ineffective results, with training and testing precisions of 0.908 

and 0.864, respectively. The Fast Fourier Transform Support 

Vector Machine (FFTSVM)system achieved improved results, 

with training and testing accuracies of 0.908 and 0.98, 

respectively. Simultaneously, the Convolution Neural 

Network-2(Conv.NN-2) approach produced reasonable results, 

with testing and training accuracies of 0.983 and 0.989, 

respectively. The Convolution Neural Network-1(Conv.NN-1) 

method produced improved results, with training and testing 

accuracies of 0.993 and 0.983, individually. Simultaneously, 

the Fast Fourier Transform Deep Belief Network (FFTDBN) 

model shaped suitable outcomes, with performance and 

accuracy assessments of 1 and 0.983, respectively. Though the 

Fast Fourier Transform Stacked Auto Encoder (FFTSAE) 

model achieved the best results with performance and accuracy 

assessment of 1 and 0.992, the proposed IDL-OFSVM strategy 

achieved the best results with training and testing accuracies of 

1 and 0.998, correspondingly. 

Table 5 and fig.7–8 compare average training and testing 

accuracies of all models. While models like FFTKNN and 

FFTSVM showed notable gaps between training and testing 

accuracies (suggesting overfitting), IDL-OFSVM maintained a 

minimal gap (1.000 training vs. 0.998 testing on gearbox dataset 

and 0.998 vs. 0.997 on bearing dataset), demonstrating a well-

generalized learning behavior. 

 

Table 5. Analysis of the Mean Results Obtained through 

Training and Examination Using a Variety of Methods 
 

Methods 
Gearbox Dataset Bearing Dataset 

Training   Testing  Training  Testing  

FFTKNN 0.908 0.864 0.983 0.978 

FFTSVM 0.986 0.980 0.988 0.971 

FFTDBN 1.000 0.983 0.995 0.984 

FFTSAE 1.000 0.992 0.991 0.982 

Conv.NN-1 0.993 0.983 0.996 0.992 

Conv.NN-2 0.989 0.983 0.991 0.982 

IDL-OFSVM 1.000 0.998 0.998 0.997 
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Figure 7. Gearbox Dataset (a) Average Training Accuracy (b) Average Testing Accuracy 
 

Figure 8 analyzes the rigorous and practical accuracy assessment of the suggested IDL-OFSVM method on the applied bearing data 

set. The Figure indicates that the FFTKNN approach produced outcomes with physical activity and achieved precisions of 0.983 

and 0.978, respectively. Similarly, the FFTSVM method has increased performance, corresponding to training and testing accuracies 

of 0.988 and 0.971. Concurrently, the FFTSAE approach produced reasonable efficiency, with physical activity and testing precision 

of 0.991 and 0.982, respectively. Furthermore, the Conv the NN-2 approach yielded higher physical activity and testing precision 

of 0.991 and 0.982, respectively. 
 

Furthermore, the FFTDBN technique produced acceptable results, with training and testing accuracies of 0.995 and 0.984, 

respectively—however, the Conv. The NN-1 method outstripped the others, with physical activity and testing precision of 0.996 

and 0.992, respectively. The presented IDL-OFSVM approach yielded the best results, corresponding to physical activity and testing 

precision of 0.998 and 0.997. 

  
Figure 8. Bearing Dataset, (a) Average Training Accuracy (b) Average Testing Accuracy 
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4.6. Runtime and Performance Trade-off  
Although deep models such as FFTSAE and Conv.NN-2 

achieved competitive accuracy; they incur higher 

computational costs due to layer complexity and parameter 

tuning. In contrast, IDL-OFSVM maintains high performance 

while offering significantly reduced runtime: 
 

░ Table 6. Runtime and performance trade-off 
 

 

Method Training Time 

(s) 

Testing Time 

(s) 

Accuracy 

(%) 

FFTKNN 35.2 3.4 86.4 

FFTSVM 52.7 4.1 98.0 

Conv.NN-1 175.3 12.6 98.3 

FFTSAE 205.8 15.2 99.2 

IDL-

OFSVM 

68.4 5.9 99.8 

 

 

░ 5. CONCLUSION 

This study describes an IDL-OFSVM approach for diagnosing 

and categorizing defects in rotating machines. Preprocessing, 

MobileNet-based feature extraction, FSVM-based 

classification, and CHGSO-based parameter tweaking are all 

part of the proposed IDL-OFSVM prototypical. The retrieved 

topographies from the previous stage are supplied into the 

OFSVM prototypical during the classification procedure. The 

CHGSO procedure is used to optimize the weights and limits of 

the OFSVM model, hence educating the classification result. A 

comprehensive set of tests is carried out in instruction to 

investigate the enhanced fault diagnostic consequences of the 

current IDL-OFSVM method, and the results are compared to 

various measures. The OFSVM model's design for fault 

judgment exemplifies the work's innovation. A battery of tests 

is done to assess the examination performance of the IDL-fault 

OFSVM. The simulation consequences validate the potential 

presence of the IDL-OFSVM procedure in the judgment of 

current state-of-the-art methods. The untried consequences 

validate the IDL-OFSVM algorithm's superior fault diagnostic 

performance over previous state-of-the-art approaches. For 

superior results, the MobileNet approach can be substituted 

with additional advanced DL designs with hyperparameter 

optimizers. The CHGSO technique is used to improve the 

weight and bias parameters of the FSVM model. The IDL-

OFSVM approach delivered the highest feasible outcome, with 

greater testing and training accuracies of 0.997 and 0.998, 

respectively. 
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