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░ ABSTRACT- Early detection of oil spills is crucial and essential for marine environments to minimize environmental harm 

and enable quick responsive measures. Oil spills can cause significant ecological and financial losses, which emphasizes the need 

for an efficient monitoring system. This paper presents the use of YOLO deep learning algorithms to enhance the oil spill detection 

speed and accuracy. A robust and high-quality dataset is taken, consisting of images extracted from Roboflow. To maximize the 

data quality, preprocessing techniques such as label normalization, contrast enhancement and noise reduction were used. The 

proposed YOLO algorithms were trained using Adam and SGDM optimizers with an initial learning rate of 0.01, 0.001 and 0.0001. 

Among the adopted YOLO models, YOLOv9 yielded impressive results with an mAP@0.5 of 94.45%, precision of 95.6%, recall 

of 93.3% and F1 Score of 94.44%. The recommended system, which incorporates deep learning technologies into marine 

environment monitoring, greatly improves the marine surveillance systems for oil spill detection and emergency response 

capabilities by enabling real-time monitoring. 
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░ 1. INTRODUCTION   
Oil spills release petroleum hydrocarbons into the ecosystem, 

particularly affecting marine environments. Oil spills may lead 

to environmentally disastrous incidents [1]. In most cases, these 

oil spills may occur in water, ice, and soil during various stages 

of oil drilling, extraction, shipping, purification, refining, 

storing, and supply [2]. These spills lead to substantial impacts 

on marine environments, and in some cases, disruption of vital 

processes of ecosystems. Moreover, the effects of oil spillage  

 

not only reach out to the environment, but they can spread their 

influence beyond those walls into the economic sector and even 

up to the health sectors of the public. These environmental and 

socioeconomic problems need immediate action to mitigate the 

effects and prevent them from having severe repercussions [3].  

Oil leak incidents have become more common due to the 

increasing use of marine transportation. These leaks endanger 

marine ecosystems as well as human livelihood. Several oil spill  

exploits were reported in 2023, including a significant spill 

involving over 700 tons of oil, as well as nine minor exploits 

ranging from 7 to 700 tons. These nine incidents encompass 

low-sulfur fuel, gasoline and oil, among other substances. 

Geographically, there were four incidents recorded in Asia, two 

in Africa and Europe, and one in America. This trend is very 

different compared to those recorded in the 2010s [4]. The 

intensity of such an oil spill into the environment depends on 

numerous factors, including the chemical composition of the 

oil, volume spilt, temperature, and wind conditions. An oil 

slick, which appears as a thin layer on the water’s surface after 

the spill occurs, may expand rapidly and cause environmental 

damage. To resolve these issues, researchers have investigated 

advanced technologies, including Artificial Intelligence (AI), 
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Machine Learning (ML) and Deep Learning (DL), to build 

systems that are capable of accurately detecting, categorizing, 

and tracking oil spills on ocean surfaces [5]. The investigation 

results proved that the developed systems based on computer 

vision and DL-based approaches greatly improve the 

performance of the oil spill detection models.   
 

The method applied at present for operational oil spill detection 

is satellite-based observations supplemented by aerial 

surveillance. The integration of Synthetic Aperture Radar 

(SAR) imagery and aerial surveillance can facilitate the 

achievement of effective monitoring in marine regions. This 

synergistic approach has proven to be effective in identifying 

oil spills. Recent studies have clearly shown that polarimetric 

SAR is capable of distinguishing between oil slicks and 

biogenic layers. Moreover, polarimetric SAR data can be used 

to distinguish between genuine oil spills and those that look like 

oil spills. This poses a huge challenge in oil spill detection [6]. 

Such advanced technologies increase the precision and 

reliability of the oil spill monitoring system to a great extent. 

 

░ 2. RELATED WORKS 
Oil spillage in marine ecosystems must be monitored and 

identified efficiently through advanced technologies that offer 

high precision, flexibility, full automation, and reliable 

methods. In the past few years, various technologies have been 

presented, from traditional image processing techniques to 

advanced machine learning & deep learning technologies. 

Conventionally, typical image processing methods such as 

segmentation, edge detection, and thresholding are used for oil 

spill detection. The utilization of optical and radar satellite 

imagery has been employed for this purpose. Although these 

traditional technologies performed well in a controlled 

environment, they often failed in real-world conditions like sea 

state, cloud cover, and other environmental changes that 

degraded the image quality.  Since SAR can identify oil spills 

even in the presence of clouds, it has gained wide usage lately. 

Still, much scope is left for advanced technologies that may be 

capable of overcoming the limitations mentioned for detecting 

thin oil slicks [7]. This section covers a recent overview of the 

research development made for the identification of oil spills in 

marine environments. 
 

Tayná et al. [8] aimed to improve the detection and 

classification accuracy of YOLOv8 algorithm for oil spills in 

oceans. Authors compared the performance of nano, small and 

medium versions of YOLOv8. Among them medium version of 

YOLOv8 achieved better validation results with an accuracy of 

0.891, mAP-50 of 0.85 and mAP50-95 of 0.716. A confidence 

level for detecting objects in the testing phase was more than 

70%, indicating the model’s efficiency. By addressing the issue 

of limited availability of real-world oil spill data, Yuepeng Cai 

et al. [9] developed a novel detection algorithm for small 

datasets. Landsat-8 satellite oil spill imagery data was utilized 

to train the model. The original dataset was augmented using a 

single image generative adversarial network (SiGAN). SiGAN 

will generate multi-shaped oil spill samples from a single image 

by gaining texture information from multiple scales. The 

YOLOv8 model was trained using transfer learning on both 

original and augmented datasets. The experimental results 

showed that the augmented dataset improves recall by 12.3%, 

precision by 6.3% and average precision by 11.3%.  
 

Shanmukh et al. [10] evaluated the three semantic segmentation 

algorithms: PSPNet, DeepLabV3 and FCN with U-Net for 

segmenting oil spill regions. SAR images were used for the 

work. Performance metrics such as pixel-wise accuracy and 

Intersection over Union (IoU) were calculated to assess the 

model’s performance. U-Net achieved better IoU with a 

segmentation accuracy of 95%, yet FCN and U-Net performed 

well in identifying oil spills. Overcoming the limitations of 

conventional imaging techniques, such as visual, hyperspectral 

and microwave, sensing techniques like polarimetric and 

thermal imaging offer improved detection accuracy.  
 

The purpose of the research conducted by Trongtirakul et al. 

[11] is to examine the potential of using thermal and 

polarimetric imaging to monitor oil spills in 3-D dimensions. 

This proposed system suggests an unsupervised learning 

algorithm to improve detection capability. The proposed 

framework consists of a segmentation network for spills 

specifically designed for thermal and polarimetric imaging, 3D 

visualization of oil thickness and a multi-density oil spill region 

extraction algorithm, and an approach that analyses oil spills 

quantitatively and qualitatively. The developed system has been 

validated through comparisons with the current approaches, 

leading to the development of more effective and reliable 

systems for detecting and monitoring oil spills. Improving the 

SAR image processing methods for environmental monitoring 

and protecting the marine ecosystem, Patel et al. [12] developed 

a deep learning algorithm using EMAS dataset. The designed 

system uses a 23-layer CNN network to classify oil spill patches 

into less than 0.5% and more than 0.5% oil spill pixels, followed 

by a U-Net network to segment those patches. Hasimoto-

Beltran et al. [13] presented a novel oil spill segmentation 

network named Multichannel Deep Neural Network (M-DNN). 

This network was trained and tested on SAR imagery. The 

proposed M-DNN outperforms the Single Channel DNN with 

pixel accuracy of 98.56% and 14-times faster convergence than 

earlier approaches. Sun et al. [14] examine the effectiveness of 

three CNN architectures: U-Net, BiSeNetV2, and DeepLabV3+ 

for identification of oil spills using medium-resolution optical 

satellite images. These images are captured from Sentinel-2 

MSI, Landsat-8 OLI, and Landsat-9 OLI2. The adopted CNNs' 

performance was increased using SE, CBAM and SimAM 

modules. The U-Net with CABM module achieved greater 

performance than the others.  
 

In this study, we introduced YOLOv9 deep learning model for 

an oil spill detection system. The YOLOv9 model was chosen 

since it analyzes the data quickly and more accurately than 

earlier YOLO versions for the task.  The model was trained on 

high-resolution ocean images consisting of oil spills. RGB 

images were utilized for the work to extract features for 

detection, unlike SAR-based detection methods that utilize 

backscatter coefficients. Preprocessing techniques such as 

contrast enhancement, noise reduction and optimization were 

applied for increased accessibility of the data to maximize the 
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detection performance.  The proposed model can effectively 

identify oil spills even under various environmental conditions. 

 

░ 3. PROPOSED METHODOLOGY 
The main aim of this research is to create a deep-learning model 

for identifying oil spills in marine environments. This was 

accomplished by exploring advanced object-detection 

frameworks, which also apply a deep learning model that excels 

in recognizing patterns and making predictions from complex, 

high-dimensional data such as images, audio, and text. The 

YOLO (You Only Look Once) object detection algorithm is 

capable of detecting many objects in one single image and also 

maintains real-time efficiency with high precision; hence, it is 

highly preferred for detection purposes. Due to its competency 

in detecting many objects within a single image, this algorithm 

is most suitable for environmental monitoring and 

conservation-based tasks. Thus, the selected dataset was used 

for training several versions of YOLO, enabling highly accurate 

and precise detection of oil spills, making them ideal models for 

environmental safety concerns. 
  
The workflow for training the adopted object detection models 

for oil spills in marine environments is shown in figure 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Workflow of the proposed oil spill detection system 

 

3.1. Data Collection  
The images in the dataset were sourced from Roboflow and 

grouped into two categories such as oil and no oil. This dataset 

contains a total of 1564 images, which were further divided into 

training, validation and testing sets [15]. The resolution of the 

images in the dataset are resized to 640×640 for further analysis. 

An 80:10:10 split ratio was utilized to train the model. So, 1252 

images allotted for training, 156 for validation and 156 for 

testing. All the images in the dataset were annotated manually 

to mark the affected oil spill areas by drawing bounding boxes 

around the polluted regions. This process enables the trained 

model to distinguish the oil spill regions and normal ocean 

surfaces more effectively. 
 

The sample original images and annotated images are shown in 

figure 2. After annotation, a few augmentation techniques are 

applied, including adjusting the saturation ranging from -25% 

to 25% to replicate variable color intensities and exposure shift 

ranging from -10% to +10% to approximate various lighting 

conditions. A Gaussian blur of up to 1px is also used to imitate 

camera defocus or motion blur. Two augmented output samples 

are created from each training sample to enhance the dataset and 

prevent overfitting.  
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3.2. YOLO 
YOLO operates as a unified approach, processing an entire 

image in a single forward pass through the network [16]. This 

“one-step” approach enables YOLO to detect multiple objects 

in a single image with exceptional speed and accuracy. YOLO 

models are pre-trained on huge datasets such as COCO, which 

is particularly collected with the intention of including a wide 

range of objects for real-world identification and classification. 

With more than 80 divergent categories of objects, the COCO 

dataset provides a robust foundation for the deployment of 

YOLO architecture in complex and diverse scenarios. Pre-

training on large datasets like COCO helps YOLO perform 

generalization better across a number of tasks, thus increasing 

its applicability for customizable object detection by finetuning 

on specific datasets. The YOLO model typically segments the 

image into a grid comprising 𝑆 × 𝑆 cells. Each cell predicts a 

constant number of bounding boxes with their scores. The 

scores denote the probability that a bounding box contains an 

object. Moreover, YOLO predicts class probabilities for every 

detected bounding box so that it can predict the object 

accurately.      
 

The key formula used in YOLO to calculate the confidence 

score for each bounding box is: 

𝐶𝑖 = 𝑃(𝑜𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑜𝑈𝑝𝑟𝑒𝑑,𝑡𝑟𝑢𝑡ℎ  (1) 

Where, 𝑃(𝑜𝑏𝑗𝑒𝑐𝑡) represents the probability that an object 

exists within the bounding box and 𝐼𝑜𝑈𝑝𝑟𝑒𝑑,𝑡𝑟𝑢𝑡ℎ represents 

Intersection over Union (IoU) between the predicted bounding 

box and the ground truth bounding box.  

 
(a) 

 
(b) 

 
(e) 

 
(f) 

 
(c) 

 
(d) 

 
(g) 

 
(h) 

Figure 2. Sample images in the dataset: (a-b) – Oil Spills, (c-d) – No Spill, (e-f) annotated samples 

 

#Algorithm: Real-time Oil Spill detection using 

YOLOv9 model 
 

Begin 

Dataset Collection: dataset ← Collect oil spill 

images and annotations 

Preprocessing: preprocessed_data ← 

PreprocessData(dataset) 

Labeling: labeled_data ←  

LabelImages(preprocessed_data) 

Augmentation:                                                     

augmented_data ← AugmentData (labeled_data) 

Data Splitting: training_data, validation_data, 

testing_data ← SplitData(augmented_data, 80%, 

10%, 10%) 

Model Selection and Training:                                                         

model ← InitializeYOLOv9() 

trained_model ← TrainModel(model, 

training_data, validation_data) 

Model Evaluation: Performance Metrics ← 

EvaluateModel(oil_spill_model, testing_data) 

Comparision with other models: 

CompareWithOtherModels(YOLOv9, YOLOv8, 

YOLOv5) 

End 

  

http://www.ijeer.forexjournal.co.in/


                                                     International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 3 | Pages 463-470 | e-ISSN: 2347-470X 

 

Website: www.ijeer.forexjournal.co.in                                                         Real-Time Oil Spill Detection with YOLO Framework 467 

During training, YOLO minimizes the Mean Square Error 

(MSE) between the predicted bounding box coordinates, 

confidence scores, class probabilities, and ground truth values. 

The total loss function, denoted as L, combines errors from three 

key sources. First, the localization loss captures the error in the 

bounding box coordinates. Second, the confidence loss reflects 

the error in estimating the probability that an object exists 

within the bounding box. Finally, the classification loss 

accounts for the error in predicting the correct class of the 

detected object. The total loss is defined as: 

𝐿 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

[(𝑥 − 𝑥̂)2 + (𝑦 − 𝑦̂)2 + (𝑤 −𝐵
𝑗=0

𝑆2

𝑖=0

𝑤̂)2 + (ℎ − ℎ̂)2] + ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

[(𝐶 − 𝐶̂)2]      𝐵
𝑗=0

𝑆2

𝑖=0       (2) 

     

Where, 𝜆𝑐𝑜𝑜𝑟𝑑  is a parameter that emphasizes the localization 

loss. The variables 𝑥, 𝑦, 𝑤, 𝑎𝑛𝑑 ℎ represents the bounding box, 

where 𝑥, 𝑦 are the center of the box and 𝑤, ℎ are width and 

height of the box. 𝑥̂, 𝑦̂, 𝑤̂, ℎ̂ are predicted bounding box 

coordinates. C is the confidence score and 𝐶̂ is the predicted 

confidence score. The indicator function 1𝑖𝑗
𝑜𝑏𝑗

 is equal to 1 if an 

object appears in cell i with box j, and 0 if it does not. 

3.3. YOLOv9 
YOLOv9 [17] was chosen for this work due to its superior 

performance in terms of accuracy and speed among the previous 

versions like YOLOv5, YOLOv8, etc., and other object 

detection models like SSD and Faster R-CNN. The deciding 

factor for YOLOv9 for this work is its capability to detect small 

objects when dealing with the scattering areas in large satellite 

images, particularly for oil spills in marine environments. 

YOLOv9 introduces Generalized Efficient Layer Aggregation 

Network (GELAN) as the backbone to improve gradient 

propagation and feature aggregation by sustaining the 

computation efficiency, compared to its earlier versions. The 

optimized structure for its backbone improves and strengthens 

the feature extraction ability, making differences between 

different types of oil spills.  To make the training process more 

stable and enhance the model’s generalizability, YOLOv9 

incorporated a Programmable Gradient Information (PGI) 

strategy and drop-path regularization. Unlike YOLOv8, 

YOLOv9 uses task-aligned assignment strategies for detection 

to boost the precision for small and complex objects. Moreover, 

the improved loss functions covering localization, 

classification, and confidence significantly increased the 

accuracy of bounding box predictions, thus reducing both false 

positives and false negatives, ensuring reliable detection in 

challenging environments. 

 

░ 4. RESULTS AND DISCUSSION 
Three YOLO versions: YOLOv5, YOLOv8 and YOLOv9 were 

used and finetuned for the task of detecting oil spills in marine 

environments. All the models were trained using different initial 

learning rates and optimizers to obtain the best model for 

detection. The trained models were assessed using performance 

Metrics: mean average precision, precision, recall and F1 score. 

A comprehensive comparison between the adopted YOLO 

model’s performance is provided in this section. 
 

4.1. Hyperparameter Setting 
The adopted model was fine-tuned using pre-trained weights 

and trained on a custom dataset for oil spill detection. The key 

hyperparameters set during the model training are optimizer, 

batch size, learning rate, and number of epochs. For this work, 

the batch size, which defines the number of images processed 

at a time during the training, was set to 16. The learning rate, 

which determines the speed of weight updates during 

optimization, was set to the values 0.01, 0.001 and 0.001.  

Optimizers such as SGDM and Adam were employed and 

trained the models for 60 epochs. GPU accelerated environment 

in Google Colab was used for the training process to facilitate 

quick training. 
 

4.2. Performance Metrics 
To compute the performance metrics, four key computations are 

required. Those are TP, TN, FP, and FN.  TP is the number of 

true positives (correctly predicted oil spills), TN is the number 

of true negatives (correctly predicted non-oil regions), FP is the 

number of false positives (non-oil regions incorrectly predicted 

as oil spills), FN is the number of false negatives (oil spills 

incorrectly predicted as non-oil regions). 
 

mAP@0.5: It is a measure that gives the accuracy of the model 

in locating and correctly identifying oil spills in images. Also 

defined as the mean of area under the precision and recall curve 

for all classes at IoU threshold 0.5.  
 

Precision: The ratio of true positives, i.e., oil spills correctly 

identified as oil spills by the model to the sum of true positives 

and false positives, i.e., the total number of instances identified 

as oil spills. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall: The ratio of true positives, i.e., oil spills correctly 

identified as oil spills by the model to the sum of true positives 

and false negatives, i.e., oil spills correctly identified as oil spills 

and oil spills incorrectly identified as non-oil spills by the 

model. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 Score: The harmonic mean of precision and recall, which 

provides a balance between these two metrics. 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

4.3. Experimental Results 
The performance of YOLOv5 for oil spill detection was 

assessed using two optimizers and three initial learning rates, 

achieving the best performance when model was trained on 

Adam optimizer at a learning rate of 0.001. Under these 

conditions, YOLOv5 achieved an mAP@0.5 of 92.7%, 

precision of 96.6%, recall of 88.8% and F1 score of 92.63%. 

http://www.ijeer.forexjournal.co.in/
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Conversely, results obtained by using the SGDM optimizer 

were significantly lower than Adam optimizer across all the 

initial learning rates. The evaluation results of YOLOv5 across 

various hyperparameter combinations are represented in fig. 3.  

 

Figure 3. Comparison of YOLOv5 Performance at Various 

Hyperparameter Combinations 
 

For YOLOv8, the evaluation results showed that Adam 

optimizer attained optimal performance when initial learning 

rate was set to 0.001. This combination achieved mAP@0.5 of 

94.28%, precision of 95.1%, recall of 93.3% and F1 score of 

94.18%. On the other hand, SGDM achieved slightly lower 

performance compared to Adam when initial learning rate was 

set to 0.01, and achieved an mAP@0.5 of 93.25%. The 

evaluation results of YOLOv8 across various hyperparameter 

combinations are represented in fig. 4.  

 

Figure 4. Comparison of YOLOv8 Performance at Various 

Hyperparameter Combinations 

YOLOv9 exhibited better and almost equal performance using 

both Adam and SGDM when fine-tuning at intial learning rate 

of 0.001. The Adam optimizer achieved an mAP@0.5 of 

94.45%, precision of 95.6%, recall of 93.3% and F1 score of 

94.44%, whereas sgdm optimizer achieved the same accuracy, 

precision and recall but F1 score of 94.31%, demonstrating its 

robust performance and highlighting its capability as an 

alternative option. The evaluation results of YOLOv9 across 

various hyperparameter combinations are represented in fig. 5.  
 

The normalized confusion matrix shown in fig. 6 highlights the 

performance of YOLOv9 model for oil spill detection. The 

model accurately identified 91% of no-oil spills and 97% of oil 

spills, exhibiting minimal misclassification of 3% false 

positives and 3% false negatives. Higher accuracy in detecting 

and a minimal error rate indicate the proposed model is a 

reliable choice for real-time environmental monitoring, 

providing efficient detection of oil spills in oceans. 

 

Figure 5. Comparison of YOLOv8 Performance at Various 

Hyperparameter Combinations 
 

 
Figure 6. Confusion matrix of YOLOv9 on the test set  

Moreover, using YOLOv9 achieved an average performance of 

88.44%, which shows the consistency of the model’s 

performance across multiple runs. And also, to understand the 

variability, computed the standard deviation, which was 0.0677, 

indicating very slight variations in performance between the 

runs. The confidence interval obtained, ranging from 0.8134 to 

0.9554, indicates that the model's average performance lies 

within this range across multiple runs.  
  
The strengths and limitations of oil spill detection using YOLO 

algorithms, particularly using YOLOv5, YOLOv8 and 

YOLOv9 were comprehended by assessing their performance 

at various hyperparameter combinations. YOLOv5 version with 

Adam outperformed against SGDM. YOLOv8 showed a 

significant increase in performance over YOLOv5 in all the 

combinations. The findings of YOLOv8 highlight its ability to 

handle more complex tasks. YOLOv9 is the most advanced 

version, achieved a greater performance and demonstrated its 

superiority in accuracy, precision, recall and F1 score. 

YOLOv9’s enhanced feature extraction capability and 

optimized loss function enable it to be adopted for detecting oil 

spills more effectively in large and complex satellite images. 

The comparison of the performance of three adopted YOLO 

models is presented in table 1. 

 

http://www.ijeer.forexjournal.co.in/
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░ Table 1. Performance comparison of the trained models 
 

Model 
mAP@0.

5 
Precision Recall F1 Score 

YOLOv5 0.927 0.966 0.888 0.9263 

YOLOv8 0.9428 0.951 0.933 0.9418 

YOLOv9 0.9445 0.956 0.933 0.9444 
 

By keeping the challenges in mind that can make it difficult to 

spot actual oil spills, such as waves, sunlight reflections, and sea 

clutter, the proposed model uses a real-time dataset. As the 

dataset has a wide variety of ocean images, the suggested 

YOLOv9 model effectively recognizes the difference between 

normal sea patterns and oil spills. In many cases, spills may be 

partially hidden by boats, ships, oil rigs, etc. The presented 

object detection algorithm is well-suited to localizing the oil 

spills even when only the parts of the oil spills are visible. 
 

Oceans look totally different in bright sunlight and under 

clouds. Our model has been trained to recognize spills using 

data augmentation techniques like brightness and saturation 

changes, making it more adaptable to different lighting changes. 

Finally, our developed YOLOv9 model is robust and reliable 

for oil spill detection in real-time marine environments.  
 

Even though the results obtained in this work are optimal, there 

are still some limitations that can be optimized in the future.  

The data set utilized in this work has a limited number of 

images, i.e., 1564 images, which may affect real-time 

performance. Additionally, most of the images in the dataset are 

collected from publicly available sources where real-world 

variability is absent. Including satellite or Synthetic Aperture 

Radar images in the current dataset in the future may enhance 

the generalization of the model. This facilitates the model to 

detect oil spills under various challenging conditions.    

 

░ 5. CONCLUSION 
This study explored the use of YOLO deep learning models for 

the detection of oil spills in aquatic environments. Efficient oil 

spill detection necessitates quick and accurate systems to ensure 

timely environmental monitoring and catastrophe control. 

Experimental findings indicate that YOLOv9 model with 

optimized hyperparameters significantly improves the detection 

performance. Utilizing a comprehensive dataset of oil spill 

images, the model accurately identifies oil spills, surpassing the 

traditional approaches. The mean average precision of 

YOLOv9, which is 94.45%, indicates that it is a reliable and 

efficient choice for real-time oil spill monitoring. As future 

work, we will focus on increasing the dataset size to include 

images under varied environmental conditions and optimizing 

the algorithms to enhance usability for the users. Furthermore, 

using alternative deep learning technologies may enhance this 

methodology, enabling the further use of automation methods 

in environmental research to safeguard natural resources. 
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