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░ ABSTRACT- Predictive maintenance is essential to industrial operations, especially in lithium-ion battery systems.  

Remaining Useful Lifetime (RUL) prediction is the most accurate means of maintaining optimal performance and avoiding 

unexpected failure in these systems. Noisy sensor data and complex degradation patterns, however, make the task complex and 

require sophisticated techniques for proper analysis and forecasting. Hence, this manuscript proposes an optimized Electric Vehicle 

(EV) lithium-ion battery RUL prediction using a multi-time scale bidirectional Long Short-Term Memory (MTS-BiLSTM) 

Network. Initially, input data is taken from the Remaining Useful Lifetime Prediction Dataset available on Kaggle, containing sensor 

readings and operational parameters for systems under degradation. It uses the trimmed global adaptive mean filter approach (TG-

AMF), which enhances input data quality by removing general noise and preserving the essential feature points related to 

degradation patterns. A novel MTS-BiLSTM network approach is proposed for predicting RUL by capturing both Proximal 

correlations and Delayed dependencies in data to model trends accurately. Hyperparameters of the proposed model are optimized 

via the Walrus Optimizer (WO), which improves prediction and computation overhead. The robustness of the proposed framework 

is analyzed through benchmarking with performance metrics coefficient of determination (R2), root mean square error (RMSE), 

mean absolute error (MAE), mean absolute percentage error (MAPE), prediction horizon accuracy (PHA), and computation time 

(CT). The overall PHA of 98%, MAE of 17.04, MAPE of 8.63, CT of 7.57s, and RMSE of 5.83 are obtained by the proposed method 

of forecasting the battery RUL for EVs. 
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░ 1. INTRODUCTION   
Predictive maintenance has emerged as a critical strategy in 

industrial operations, especially for systems that rely on complex 

machinery and components such as lithium-ion batteries [1]. As 

industries continue to integrate advanced technologies into their 

infrastructure, ensuring the reliability and longevity of these 

systems has become highly important [2]. Predictions on the 

Remaining Useful Lifetime (RUL) of components enable timely 

proactive maintenance, reducing unnecessary downtime and 

optimizing operational expenses [3]. This is particularly 

applicable to applications like electric vehicles (EVs), for which  

 

battery performance is important in enabling the effective 

functioning of the system and user satisfaction [4]. This task is 

not simple: it predicts the RUL of the lithium-ion battery [5]. 

Different dilapidation mechanisms are inherent in the Li battery 

and may significantly vary based on usage patterns, 

environmental conditions, and other factors [6]. Data obtained 

from the battery system is usually noisy and complex, and may 

include informative signals and unwanted disturbances [7]. This 

complexity makes it challenging to model the degradation 

process accurately and make reliable predictions about when the 

system will fail or require maintenance [8]. 
 

For effective RUL prediction, capturing the Proximal correlations 

and Delayed dependencies trends in the data that reflect the 

degradation process [9] [10]. Battery data typically includes time-

series measurements such as electrical energy, current, 

temperature, and state of charge (SoC), which change over time 

as the battery degrades [11]. In particular, traditional models have 

difficulty with such data complexities and their inherent noise, 

nonlinearity, and long-term dependencies in battery behavior [12] 

[13]. In addition, for many real-time applications, processing a 

large amount of data must be performed efficiently, which 

requires computational overhead to be paramount in developing 

predictive models [14]. With the cumulative demand for reliable 
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and precise RUL forecast systems, there is an increasing trend 

toward new methodologies that enhance prediction accuracy 

without increasing computational costs [15] [16]. All these are 

developed to be able to overcome noisy and complex data 

challenges with scalability to real-world applications [17]. This 

balance is critical for industries such as EVs, renewable energy 

storage, and consumer microchip technology, where battery 

failure can cause significant operational disruptions and safety 

risks [18]. Therefore, the development of robust and efficient 

prediction frameworks is essential for the future of predictive 

maintenance in these critical sectors [19] [20]. 
 

Motivation: Existing works on RUL prediction for EV lithium-

ion batteries have made significant strides, but several challenges 

persist. One key issue is the noisy and incomplete sensor data, 

which can negatively impact the accuracy of predictions. This 

problem arises due to sensor malfunctions, communication 

errors, or environmental factors leading to data corruption or 

missing values. Additionally, many existing methods rely on 

simplistic models that fail to capture the complex, nonlinear 

relationships inherent in the dilapidation process of Li batteries. 

These models often do not consider the influence of various 

operational factors such as temperature fluctuations, 

charging/discharging cycles, and driving conditions, leading to 

inaccurate or overly generalized predictions. Another common 

limitation is the lack of accurate prediction capabilities. 

Furthermore, most of the existing approaches struggle to 

generalize across different battery types or operational 

environments, limiting their applicability in real-world scenarios. 

Hyperparameter optimization in many methods is either not 

performed or is done inadequately, resulting in suboptimal 

performance. Moreover, the lack of effective feature engineering 

and the reliance on raw data without significant preprocessing 

often leads to models that cannot effectively capture the 

underlying degradation patterns. Despite these efforts, few 

approaches focus on integrating deep learning models with 

optimization algorithms to enhance prediction accuracy and 

computational efficiency. Motivated by these challenges, the 

proposed work proposes a more accurate, efficient, and adaptable 

RUL prediction model that leverages advanced preprocessing, 

deep learning techniques, and accurate prediction capabilities for 

improved battery management in EVs. 
 

The foremost contributions of the proposed framework are as 

follows: 

• To introduce a novel multi-time scale bidirectional Long 

Short-Term Memory (MTS-BiLSTM) Network for accurate 

RUL prediction. This network effectively captures both 

Proximal correlations and Delayed dependencies in sensor 

data, enabling precise modeling of degradation patterns. 

• To enhance input data quality using the Trimmed Global 

Adaptive Mean Filter (TG-AMF) approach, which 

effectively removes noise while preserving critical feature 

points related to degradation trends, improving the reliability 

of the predictions.  

• To optimize the hyperparameters of the MTS-BiLSTM 

network using the Walrus Optimization Algorithm (WOA), 

achieving improved prediction accuracy and reduced 

computational overhead compared to conventional 

optimization methods. 

• To validate the robustness of the developed framework 

through benchmarking against traditional methods using 

multiple performance metrics, including R², RMSE, MAE, 

MAPE, PHA, and computation time, demonstrating superior 

performance in all aspects. 

• To utilize the RUL Prediction Dataset from Kaggle as a 

freely accessible dataset for evaluating the proposed 

framework, ensuring its practical applicability for 

forecasting the RUL of EV Li batteries. 
 

The forthcoming sections are prearranged as follows: section 2 

emphasizes the related work, section 3 deliberates over the 

suggested approaches, section 4 presents the results and 

discussion, and section 5 represents the conclusion of the 

developed framework. 

 

░ 2. RECENT RESEARCH WORK: A 

BRIEF REVIEW   
This section highlights recent efforts in predicting the RUL of Li 

batteries using DL techniques for accurate performance 

forecasting. 
 

In 2024, Swain et.al., [21] have presented an ML-based forecaster 

for EV batteries' remaining usable life. The purpose of the utilized 

approach was the prognosis of Lithium-ion Batteries' Remaining 

Useful Life through advanced ML techniques, more specifically 

RF and SVM, while applied to the most recent dataset from the 

NASA Ames Prognostics Center of Excellence. Features are 

optimized by applying One-way ANOVA, followed by a rich 

hyperparameter tuning to enhance the precision of a model. Real-

time factors like temperature fluctuations and usage cycles were 

also integrated into the research to study their effects on the 

performance of the battery. The R2 score and MSE were used to 

evaluate the introduced models. However, the approach faced 

limitations in generalizing transversely varied battery types and 

operative situations. 
 

In 2023, Gao et.al., [22] have suggested a hybrid CNN-BiLSTM 

method for predicting the EV Li battery's remaining usable life. 

This uses a 1D CNN-BiLSTM for predicting the RUL of Li-ion 

batteries in EVs. Using a 1D CNN, it was combined with a 

BiLSTM and also employs ELU activation functions in the 

convolutional layer. Thus, the hybrid model would have a better 

ability to achieve more precise and stable RUL forecasts. The 1D 

CNN picks deep features from the State of Health (SOH), and the 

BiLSTM captures patterns in both ways, with the final estimation 

of RUL through dense layers. For verification and validation of 

the approach, several comparisons were made using NASA 

battery data and estimation of performance by the introduced 

architecture against traditional RNN models, LSTM models, 

hybrid models, and Bi-LSTM models. 
 

In 2024, Mishra et.al., [23] have developed an automated ML for 

premature RUL using novel holistic health indicators to improve 

EV lithium-ion battery management. It introduces new indicators 

for battery aging characterization using correlation analysis, such 

as CC incriminating location values, CV incriminating peaks, and 

http://www.ijeer.forexjournal.co.in/
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CC discharging. In addition to these new indicators, this study 

combines them with the traditional health metrics, namely 

capacity, cycle, cluster, and checkpoint data, for better RUL 

prediction accuracy. K-means clustering was used for grouping 

similar data, while the ruptures library was used to detect the 

change points in the data of the battery. In terms of experimental 

results on NASA's AMES LIB cycle life dataset, improvements 

over existing methods were exhibited. However, the proposed 

approach still had issues handling variability in data across 

different types of batteries and operational conditions. 
 

In 2023, Zhao et.al., [24] have suggested an ML approach to 

forecast electric vehicle battery capacity. Here presented feature-

based ML methods were presented for the estimation of capacity 

on Macro-scale LiFePO4 batteries for EV deployment and 

predicting capacity fade trajectories. There was a massive dataset 

formed from 420 cells and 9 battery packs, yielding over 10,000 

validation data points through a cloud platform. There was then a 

Bi-level noise reduction technique applied to filter these data, 

while 39 domain-specific features were engineered using battery 

charging data. The utilized stacking ensemble learning approach 

was a combination of four base models and a meta-learner to 

improve prediction accuracy and generalization. Still, the 

approach was very limited in scalability when dealing with larger, 

more diverse datasets. 
 

In 2022, Cai et.al., [25] have developed an EV power battery's 

remaining practical life forecast technique for DC rapid charging 

conditions. This paper presented an adaptive approach to 

predicting the RUL of EV power batteries under direct 

contemporary dissolute charging circumstances. The method was 

considered a way to diminish the impact of multifaceted health 

indicators (HI) on the exactness of predictions. It applied a WSA-

LSTM approach that integrates real-time condition monitoring 

and simulation data through the DDDAS. Pearson and Spearman 

correlation coefficients combined with the entropy weight 

process were applied for key feature selection that interferes least 

with secondary HIs. The effectiveness of both the techniques, 

feature selection and RUL prediction methods, was proven in the 

simulation experiments done based on real-time data. However, 

the approach experienced some difficulty in dealing with large 

datasets and varying operational conditions. 
 

In 2022, Jafari et.al., [26] have developed a forecast for the health 

of Li-ion batteries in hybrid vehicles with machine learning. A 

hybrid framework for the forecast of the SOH of Li-ion batteries 

was presented in EVs. With increasing concerns about 

environmental and sustainability issues, the optimal performance 

and safety of Li-ion batteries require special attention. The 

research used an XGBoost algorithm to estimate the SOH with 

error breakdown to enhance the performance parameters. The 

model was further improved by accuracy correction for SOH 

estimation by considering key features, such as voltage, current, 

and temperature differences. However, the approach posed 

challenges to real-time adaptability in dynamic charging 

conditions and larger datasets. 
 

In 2025, Ma et.al., [27] have introduced a semi-supervised 

representation learning method to enhance prediction accuracy 

by leveraging data without RUL labels. The framework was built 

upon a sophisticated deep neural network architecture consisting 

of an encoder and three decoder heads, designed to extract time-

dependent representation features from short-term battery 

operating data, irrespective of the presence of RUL labels. The 

effectiveness of the approach was validated using three datasets 

obtained from 34 batteries operating under diverse conditions, 

covering more than 19,900 charge and discharge cycles. Despite 

its promising performance, the method exhibited certain 

limitations. Specifically, its effectiveness was influenced by the 

quality and diversity of the unlabeled data, and the generalization 

capability across unseen battery chemistries and extreme 

operating scenarios remained constrained. Additionally, the 

model’s interpretability was limited, making it challenging to 

gain clear insights into the learned representations and decision 

processes. 

  

░ 3. PROPOSED METHODOLOGY 

This manuscript proposes an optimized EV's lithium-ion battery 

RUL prediction using an MTS-BiLSTM Network. Figure 1 

indicates the workflow of the proposed framework. 
 

 
Figure 1. Workflow of the Proposed Framework 

 

Initially, input data is taken from the Remaining Useful 

Lifetime Prediction Dataset available on Kaggle, containing 

sensor readings and operational parameters for systems under 

degradation. It uses the TG-AMF, which enhances the quality 

of input data by removing noise in general and preserving the 

essential feature points related to degradation patterns. A novel 

MTS-BiLSTM network approach is proposed for predicting 

RUL by capturing both Proximal correlations and Delayed 

dependencies in data to accurately model trends. 

Hyperparameters of the proposed model are optimized via the 

WOA, which brings improvement in prediction and 

computation overhead. 
 

3.1. Data Acquisition 

The RUL dataset [28] consists of 15,064 samples with 9 

features, primarily focusing on the performance characteristics 

http://www.ijeer.forexjournal.co.in/
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of batteries and their Remaining Useful Life (RUL). The 

features include Cycle-Index, which represents the battery's 

cycle count, and Discharge Time (DT) (s), indicating the time 

taken during the discharge phase in seconds. Another feature, 

Decrement 3.6-3.4V (s), measures the duration spent within the 

voltage range of 3.6V to 3.4V during discharge. Voltage-related 

features include Max. Voltage Discharge. (V), capturing the 

maximum voltage during discharge and the minimum. Voltage 

Charge (V), which notes the minimum voltage during charging. 

Additional charging-related parameters include Time at 4.15V 

(s), denoting the duration at 4.15V during charging, Time 

constant current (s), representing the time at constant current, 

and Charging time (s), the total charging time in seconds. 

Finally, the RUL feature provides the battery with an RUL in 

cycles. This dataset is structured to enable comprehensive 

analysis and prediction of battery health and performance over 

its lifecycle.  
 

3.2. Preprocessing Stage 
The raw samples collected from the freely accessible source 

contain a high level of irrelevant noises that minimize the 

model’s prediction performance. Nowadays, the mean filter 

(MF) [29] approach effectively eliminates unwanted feature 

points from the data instances. However, the traditional MF 

technique requires sorting the values in a sliding window, which 

can be processor-intensive for huge datasets or real-time 

applications. To overcome this issue, a trimmed global adaptive 

mean filter approach (TG-AMF) is introduced to avoid over-

smoothing and helps in retaining critical features such as edges 

in images or sharp transitions in time-series data.  

 

The proposed filtering technique is specifically applied to noisy 

samples. This filtering method identifies the irrelevant data 

using the rank-ordered absolute difference (ROAD), and a 

standardized threshold value is set in the initial stage. ROAD 

determines the noisy instances by contemplating the variance 

between the data considered and the adjacent data subsequently. 

The data is considered to be noise-free only when the ROAD 

value is less than the defined threshold value, or otherwise 

considered to be irrelevant data. The binary data is determined 

after the identification of noisy samples; 1 represents the 

cleaned data, and 0 represents the noisy data. Element-wise 

product of noisy and binary data determines the outcome 

samples. The pixel distance was analyzed using the ROAD 

statistics using the adjacent feature values. Assume the data 

location as 𝑖(𝑖1, 𝑖2) and (2𝑀 + 1) × (2𝑀 + 1) indicates the 

window size that is generated and centered at 𝑖, whereas 

𝑀indicates a positive integer. Detection window size 𝑤 × 𝑤is 

indicated as, 𝑊. The set 𝛽𝑖(𝑀) can be mathematically 

formulated as,  

𝛽𝑧(𝑀) = {𝑧 + (𝑥, 𝑦); −𝑀 ≤ 𝑥, 𝑦 ≤ 𝑀}                    (1) 

Assume 𝑀 = 1, and 𝛽𝑖
0(𝑀) indicates the set of points in a 

3 × 3 identified the adjacent of 𝑖can be mathematically 

formulated as,  

𝛽𝑧(𝑀) = 𝛽𝑧(1)/{𝑧}                                                            (2) 

Here, 𝑛 represents the predefined threshold value, and 

𝑐𝑥(𝑧)indicates the minimal distance 𝑑𝑖,𝑗for 𝑗 ∈ 𝛽𝑖
0, 𝑀 = 1 and 

𝑛 = 4. The data intensity with the absolute difference can be 

mathematically formulated as, 

𝑑𝑖,𝑗 = |𝑣𝑖 − 𝑣𝑗|                                                                     (3) 

Arrange 𝑑𝑖,𝑗values in cumulative order and determine the 

ROAD using the equation below:  

𝑅𝑂𝐴𝐷𝑛(𝑖) = ∑ 𝑐𝑥(𝑖)
𝑛
𝑥=1                                                         (4) 

After arranging, the value of 𝑛is initialized. If the ROAD value 

surpasses the threshold value, it is determined as noisy data; 

otherwise, it is considered noiseless. The noisy and noise-free 

data are separated at this stage using binary samples. Generated 

binary samples 𝑏 can be formulated as,  

𝑏(𝑥, 𝑦) = {
0𝑓𝑜𝑟𝑅𝑂𝐴𝐷(𝑥, 𝑦) < 𝑅

1𝑓𝑜𝑟𝑅𝑂𝐴𝐷(𝑥, 𝑦) > 𝑅
                                    (5) 

The outcome data obtained for upcoming processing is 

determined using element-wise multiplication if input samples 

and actual data, which can be formulated as,  

𝑃(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) × 𝑏(𝑥, 𝑦)                                                 (6) 

Here, 𝑃(𝑥, 𝑦) indicates the outcome samples, 𝐼(𝑥, 𝑦) represents 

the actual data, and 𝑏(𝑥, 𝑦)symbolizes the binary samples. The 

binary samples are generated by evaluating the distance 

between data features and distinguishing them with the 

threshold value. The detected irrelevant information identified 

in the earlier phase is then considered and replaced using the 

proposed TG-AMF technique. Here, the filtered window size is 

maximized using the irrelevancy in the adjacent samples. The 

TG-AMF 𝑀can be formulated using equation (7),  
 

𝑁 =
1

𝑀
∑ 𝑓̑(𝑥)𝑥∈𝑀                                                               (7) 

Here, 𝑀indicates the noise-free data, and 𝑓̑signifies the noise-

free features in the samples. After the filtering process, data 

normalization is performed using the min-max normalization 

technique. This process can improve the efficacy and robustness 

of the developed scheme. Here, the min-max normalization 

(MMN) technique is introduced and can be mathematically 

formulated in equation (6),  

𝑍𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑎, 𝑏) =
𝑍𝑎,𝑏 − 𝑍𝑚𝑖𝑛

𝑍𝑚𝑖𝑛𝑚𝑎𝑥

 

Here, 𝑍𝑎,𝑏indicates the 𝑍𝑚𝑖𝑛indicates the minimum value, and 

𝑍𝑚𝑎𝑥represents the minimum value. Algorithm 1 depicts the 

pseudocode for the TG-AMF technique 

#Algorithm 1: Pseudocode for TG-AMF technique 

Input: 

    𝐷 ← Raw input dataset with noisy samples 

    𝑊 ← Window size (odd integer) 

    𝑇 ← Predefined threshold for ROAD (e.g., 10% of max 

variation) 

http://www.ijeer.forexjournal.co.in/
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Output: 

    𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ← Preprocessed data with reduced noise 

1: For each data point 𝑥𝑖 in 𝐷 do 

2:     Extract a local window 𝑊𝑖 centered around xi  

3:     Compute 𝑅𝑂𝐴𝐷(𝑖) ← mean of absolute differences 

between xi and its neighbors in Wi 

4:     If 𝑅𝑂𝐴𝐷(𝑖) > 𝑇 then 

5:         Mark 𝑥𝑖 as noisy (𝑛𝑖 = 0) 

6:     Else 

7:         Mark 𝑥𝑖 as clean (𝑛𝑖 = 1) 

8:     End If 

9: End For 

10: Create binary mask 𝑁 = {𝑛1, 𝑛2, . . . . , 𝑛𝑁} 

11: Compute filtered data: 

        𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐷 × 𝑁 + 𝑇𝐺 − 𝐴𝑀𝐹(𝐷,𝑊) 

        // Replace noisy values with adaptive mean from trimmed 

neighbors 

12: Normalize 𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑using Min-Max normalization 

Return 𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  

 

3.3. RUL Prediction using MTS-BiLSTM 

Network  
The preprocessed data is then fed into the proposed multi-time 

scale bidirectional Long Short-Term Memory (MTS-BiLSTM) 

model to extract the spatiotemporal patterns and accurately 

predict the RUL of the Li-ion battery. Since the traditional 

LSTM model [30] suffers due to the gradient exploitation 

problem, a novel multi-time scale function is proposed that 

prevents over-fitting issues during the training process.  Various 

temporal features like Cycle-Index, (DT), Decrement voltage, 

maximum and minimum VD, time constant current, charging 

time, etc. The detailed analysis of the proposed framework is 

discussed below: The LSTM is a diverse subtype of RNNs 

utilized for progressive data processing. The LSTM consists of 

two essential components: the gating unit (GU) and memory 

unit (MU). The MU helps to store and transfer data, whereas the 

GU maintains the data flow regulation. The input gates (IG) 

deliberate on the concern over transmitting new input into the 

MU. Simultaneously, the 𝑡𝑎𝑛ℎ function is computed to obtain 

vectors, thereby upgrading the parameters within the MU. By 

utilizing the sigmoid function and previous memory states, this 

gate produces a value between the range 0 and 1. The outcome 

gate is assigned to discriminate the memory cell segments to 

send the corresponding hidden state. The mathematical 

expressions for the LSTM training process are deliberated in 

equations (8-12),  

𝑥𝑘 = 𝜎(𝑊𝑖𝑥𝑖𝑘 + 𝑊𝑖ℎℎ𝑘−1 + 𝑊𝑖𝑑𝑑𝑘−1 + 𝐵𝑖𝑎𝑠𝑥),            (8) 

𝑓𝑘 = 𝜎(𝑊𝑖𝑓𝑖𝑘 + 𝑊ℎ𝑓ℎ𝑘−1 + 𝑊𝑓𝑑𝑑𝑘−1 + 𝐵𝑖𝑎𝑠𝑓),          (9) 

      𝑑𝑘 = 𝑓𝑘𝑑𝑘−1 + 𝑥𝑘 𝑡𝑎𝑛ℎ(𝑊𝑖𝑑𝑖𝑘 + 𝑊ℎ𝑑ℎ𝑘−1 + 𝐵𝑖𝑎𝑠𝑑), (10)          

𝑦𝑘 = 𝜎(𝑊𝑦𝑥𝑖𝑘 + 𝑊𝑦ℎℎ𝑘−1 + 𝑊𝑦𝑑𝑑𝑘 + 𝐵𝑖𝑎𝑠𝑦),          (11) 

ℎ𝑘 = 𝑦𝑘 𝑡𝑎𝑛ℎ(𝑑𝑘)                                                         (12) 

Here, 𝜎 indicates the sigmoid function, 𝑥, 𝑓, 𝑑, and 𝑦represents 

the IG, forget gate, activated cell vector, and output gate, 

respectively. Moreover, ℎ and 𝑊represents the hidden 

trajectory, and the weights between two units. However, there 

arises some complexity in accessing previous state information 

using the LSTM model. To tackle this issue, the MST-LSTM 

model utilizes both forward and backward LSTMs to process 

the incoming features in opposite directions. This duo-directed 

technique optimally controls the signals based on the current 

time step. This wide-ranging perception assists in determining 

active patterns and bears the long-term dependencies over fault 

samples. Initializing the training process, the sequential feature 

subsets are encompassed in the MTS-BiLSTM model. The 

sequence lengths are coordinated at the input layer to ensure 

uniformity.  This process aids the sequential inputs with similar 

time steps, resulting in 𝑦1,𝑦2, . . . . . 𝑦𝑛 have similar time steps 

after being utilized as the input. The flow of samples regulates 

the memory updates via the LSTM layer, deliberating MTS-

BiLSTM to integrate both backward and forward directions. 

Figure 2 indicates the architecture of the MTS-BiLSTM 

Technique. 

 

 
Figure 2. Architecture of MTS-BiLSTM Technique 

 

To account for the varying characteristics of battery degradation 

data across different time scales, tailored BiLSTM models are 
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applied to the battery RUL dataset. To capture the varying 

characteristics of battery degradation trends across multiple 

temporal depths, the proposed MTS-BiLSTM model utilizes a 

multi-branch architecture, where each branch processes data 

over different cycle-based lookback windows. Specifically, 

three BiLSTM models are applied independently using short-

term, medium-term, and long-term historical sequences—for 

instance, over the last 10, 25, and 50 charge-discharge cycles. 

Each model takes input features such as discharge time 
(𝑡k-1, 𝑡𝑘−2, . . . , 𝑡𝑘−𝑚), voltage decrements 

(𝑣k-1, 𝑣𝑘−2, . . . , 𝑣𝑘−𝑚), time spent at 4.15V 

(𝑡4.15V,k-1, 𝑡4.15𝑉,𝑘−2, . . . , 𝑡4.15𝑉,𝑘−𝑚), maximum voltage during 

discharge 𝑣𝑚𝑎𝑥,𝑘, and minimum charge voltage 

(𝑣𝑚𝑖𝑛, 𝑘−1, . . . . , 𝑣𝑚𝑖𝑛, 𝑘−𝑚). Here, 𝑚 denotes the lookback 

window size corresponding to each BiLSTM branch. All 

sequences are derived solely from cycle-level observations. 

Each branch independently learns degradation patterns relevant 

to its respective window size, and the outputs are later combined 

to form a more robust and accurate RUL prediction. A stacking 

approach enhances prediction stability and practical application 

during the ensemble stage. Combining outputs from the three 

LSTM sub-models achieves this by using a multilayer 

perceptron (MLP). The MLP synthesizes predictions, with its 

hidden layer output ℎ𝑘reflecting the estimated RUL 𝑟𝑡for each 

sub-model. Hyperparameters like learning rate, activation 

function, number of layers, and neurons per layer are optimized 

based on MLP validation performance. The MLP's input 

dimension is set to 3, corresponding to regression outputs from 

the three BiLSTM sub-models. Its output dimension is 1, which 

represents the final RUL prediction. This combined output 

forms the MTS-BiLSTM model's prediction result, integrating 

the three sub-models for accurate RUL forecasting in EV 

battery systems. 
 

3.4. Parameter Tuning using WOA Technique 
The proposed MTS-BiLSTM technique causes high complexity 

while training with larger data. This may lead to the loss of 

essential features and subject to increased error. To overcome 

this issue, parameters like batch size, learning rate, epochs, and 

dropout rates are tuned before providing the data to the 

proposed network model. Metaheuristic optimizers update the 

model parameters with a globally optimal solution to perform 

this. The proposed framework introduced a Walrus 

Optimization Algorithm (WOA) [31] to tune the weight 

parameters of the network model. The WOA takes a holistic 

approach to solving optimization problems, drawing inspiration 

from walrus behaviors during feeding, migration, and predator 

avoidance. WOA improves global search capabilities by 

exhaustively searching the solution space and mimicking 

walrus migration behaviors toward more favorable settings. 

WOA simulates the intelligent foraging, migration, and 

predator avoidance behaviors of walruses. Each walrus 

represents a candidate solution in the search space, with its 

position encoding a possible set of hyperparameters. In order to 

ensure convergence to the best results, it fine-tunes solutions 

locally during the exploitation phase, mimicking how walruses 

modify their movements to obtain food or avoid danger.  

Large marine mammals that are mostly found in the cold waters 

of the Northern Hemisphere, walruses are easily recognized by 

their characteristic whiskers and tusks. Both males and females 

have these extended canine teeth, or tusks, which can reach a 

length of one meter and weigh about 5.4 kg. Typically, walruses 

graze on benthic bivalve mollusks found on ocean ice. Walruses 

frequently move toward rocky beaches or remote locations 

when temperatures rise and sea ice starts to melt. Large crowds 

and a lot of activity are characteristics of these movements. 

Because of their size and power, killer whales and polar bears 

are walruses' main natural predators. Nevertheless, walruses 

demonstrate remarkable intellect in their daily routines and 

social relationships. Using their tusks to guide others to food 

sites, moving onto rocky coasts during warmer seasons, and 

protecting themselves against predators through flight or 

combat are the three main tasks that best demonstrate their 

cunning behavior. 
 

Step 1: Initialization Phase 

One of the most important steps in this phase is initializing the 

walrus population within the search space. In order to avoid 

convergence to local optima, this procedure guarantees a varied 

distribution throughout the search space. The search area is 

made more varied by this stage, where each walrus represents a 

possible solution. The walruses serve as the search agents in the 

WOA, and each one represents a potential fix for the 

optimization issue. Each walrus's location in the search space 

correlates to certain values of the variables related to the 

answer. When the WOA procedure begins, the walrus 

population is dispersed at random. The population matrix for 

WOA is obtained using equation (13). 
 

     𝑌 =

[
 
 
 
 
𝑌1

. .
𝑌𝑢

. .
𝑌𝑀]

 
 
 
 

=

[
 
 
 
 
𝑦1,1. . . . 𝑦1,𝑣 . . . . 𝑦1,𝑛

. . . . . . . . . . . . . . . . . .
𝑦𝑢,1. . . . 𝑦𝑢,𝑣 . . . . 𝑦𝑢,𝑛

. . . . . . . . . . . . . . .
𝑦𝑀,1. . . . 𝑦𝑀,𝑣. . . . 𝑦𝑀,𝑛]

 
 
 
 

       (13) 

 

Here, 𝑌 indicates the walrus population, 𝑛represents the number 

of chosen variables, 𝑀indicates the total walruses, 𝑦𝑢,𝑣indicates 

the 𝑣𝑡ℎdimension presented by 𝑢𝑡ℎwalrus, and 𝑌𝑢represents the 

𝑢𝑡ℎwalrus.  
 

Step 2: Random Generation 

After the initialization, randomly choose the most appropriate 

solution from the set of input parameters. 
 

Step 3: Fitness Function 

The WOA utilized fitness function (FF) for analyzing the 

optimality of the proposed classifier model, and it is 

mathematically formulated in equation (14),  
 

𝑓 = 𝑚𝑖𝑛(𝑒𝑟𝑟𝑜𝑟𝑟𝑎𝑡𝑒)                                          (14) 
 

Step 4: Exploration Phase 

To concentrate their search inside a small area, walruses 

naturally shift positions somewhat during this phase, simulating 

their method of avoiding predators. Similarly, this stage of the 
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algorithm refines the solution to get closer and closer to the 

global optimal solution. Walruses make exploratory moves to 

diversify the population, avoiding local optima. Position 

updates simulate foraging and group-guided movement. 

Numerous kinds of marine life are among the many marine 

species that walruses consume. They forage along the ocean 

floor to find the benthic bivalve mollusks, mostly shellfish, that 

make up their preferred diet. They find food by using their 

sensitive touch senses and nimble flipper motions. The group's 

leading walrus, identified by its massive tusks, guides the others 

in their hunt for food. The placements of the walruses are 

changed according to their grazing behavior using equations 

(15) and (16). 
 

𝑦𝑢,𝑣
𝐿1 = 𝑦𝑢,𝑣 + 𝑟𝑎𝑛𝑑𝑢,𝑣(𝑠𝑤𝑣 − 𝑍𝑢,𝑣 . 𝑦𝑢,𝑣)              (15) 

       

         𝑌𝑢 = {
𝑌𝑢

𝐿1 , 𝑓𝑢
𝐿1 < 𝑓𝑢

𝑌𝑢 , 𝑒𝑙𝑠𝑒
                                                 (16) 

 

Here, 𝑦𝑢,𝑣
𝐿1 indicates the upgraded position for 𝑢𝑡ℎwalrus based 

on feeding, 𝑦𝑢,𝑣
𝐿1 indicates the 𝑣𝑡ℎdimension, 𝑓𝑢

𝐿1represents the 

fitness value, 𝑟𝑎𝑛𝑑𝑢,𝑣indicates the arbitrarily generated 

number, which ranges from 0 to 1. 𝑠𝑤 indicates the likelihood 

solution is connected to the magnificent walrus, and 

𝑍𝑢,𝑣indicates the number designated randomly between 1 and 2. 

𝑍𝑢,𝑣is implemented to enhance the method’s search capability, 

hence it is represented as 2. It creates more enhancements and 

complex dissimilarities in the individual’s location. The value 

is chosen as 1, which comprises a regular phase of this 

movement.  
 

Step 5: Migration Phase 

The walrus' behavior contemplates migrating based on the 

temperature variations determines the inspiration for this stage, 

which excites the different exploration points within the search 

space. Inspired by seasonal relocation, walruses shift toward 

optimal areas in the search space to refine candidate solutions. 

For this case, the objective contemplates the search for secluded 

positions to prevent the optimizer from facing the local optima 

solution. At the summer search in increasing temperature, the 

likelihood behavior of walruses defines the process of 

propagating adjacent to the outcrops. The WOA performs the 

migration behavior to linear the walrus to identify a suitable 

location within the search space. Based on the below equations 

(17) and (18), the most present position will thrive the existing 

walrus if enhances the fitness value.  
 

𝑦𝑢,𝑣
𝐿2 = {

𝑦𝑢,𝑣 + 𝑟𝑎𝑛𝑑𝑢,𝑣 . (𝑦𝑝,𝑣 − 𝑍𝑢,𝑣 . 𝑦𝑢,𝑣), 𝑓𝑝 < 𝑓𝑣

𝑦𝑢,𝑣 + 𝑟𝑎𝑛𝑑𝑢,𝑣 . (𝑦𝑢,𝑣 − 𝑦𝑝,𝑣), 𝑒𝑙𝑠𝑒
                 (17) 

 

𝑌𝑢 = {
𝑌𝑢

𝐿2 , 𝑓𝑢
𝐿2 < 𝑓𝑢

𝑌𝑢 , 𝑒𝑙𝑠𝑒
                                                          (18) 

 

Here, 𝑌𝑢
𝐿2indicates the upgraded position for 𝑢𝑡ℎ walrus based 

on migration, 𝑦𝑢,𝑣
𝐿2  indicates the 𝑣𝑡ℎ  dimension, 𝑓𝑝indicates 

fitness values, 𝑓𝑢
𝐿2 indicates fitness values, 𝑌𝑝 , 𝑝 ∈ {1,2, . . . . , 𝑀} 

and 𝑝 ≠ 𝑢symbolizes the pointed walrus adjacent 𝑢𝑡ℎwalrus 

and 𝑦𝑝,𝑣indicates 𝑣𝑡ℎ  dimension.  

Step 6: Exploitation Phase 

Predators like polar bears and killer whales pose serious hazards 

to walruses, which frequently forces them to travel constantly 

across their environment to avoid and deal with these threats. 

An algorithm's capacity to investigate condensed search areas 

surrounding possible solutions can be enhanced by drawing 

inspiration from this natural behavior. It fine-tunes the solutions 

by narrowing the local search region, simulating predator 

avoidance and focused foraging. The dynamic range is reduced 

over iterations to converge to the global optimum. Each walrus's 

adjustment process takes place within a specific neighborhood, 

the range of which is first set to its greatest value and then 

shrinks while the algorithm runs. Finding the best areas in the 

search space requires a great deal of investigation in the early 

iterations. This is made possible by the introduction of a 

dynamic range, which modifies the boundaries for localized 

searches as part of the WOA method. This dynamic 

modification mimics the walrus's spatial distribution, in which 

every individual is encircled by a region that symbolizes its 

immediate surroundings. Equations (19) and (20) customized 

to the algorithm's specifications are then used to generate a new 

random point inside this localized region. 
 

𝑦𝑢,𝑣
𝐿3 = 𝑦𝑢,𝑣 + (𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑣

𝑡 + (𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑣
𝑡 − 𝑟𝑎𝑛𝑑. 𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑣

𝑡 ))      (19) 

 

𝐿𝐵: {
𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑣

𝑡 =
𝑙𝑏𝑣

𝑡

𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑣
𝑡 =

𝑢𝑏𝑣

𝑡

}                                                         (20) 

 

𝑌𝑢 = {
𝑌𝑢

𝐿3, 𝑓𝑢
𝐿3 < 𝑓𝑢

𝑌𝑢 , 𝑒𝑙𝑠𝑒
                                                           (21) 

 

Here, 𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑣
𝑡 and 𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑣

𝑡 deliberates the local lower bounds 

for 𝑣𝑡ℎvariable. 𝑓𝑢
𝐿3indicates the fitness value,  𝑌𝑢

𝐿3indicates the 

𝑣𝑡ℎdimension, 𝑢𝑏𝑣and 𝑙𝑏𝑣signifies upper and lower bounds.  

Step 7: Return the Best Optimal Solution 

Step 8: Termination 
 

Finally, the parameters of the MTS-BiLSTM technique are 

tuned using the WOA, repeating step 3 until the 𝑘 = 𝑘 +
1 stopping criteria are met. Figure 3 depicts the flowchart of the 

developed WOA technique. Algorithm 2 represents the 

pseudocode of the proposed WOA technique.  

 

#Algorithm 2: Pseudocode of the Proposed WOA Technique 
 

Begin WOA 

       Define the optimization problem and the relevant objective 

function. 

       Initialize parameters: number of walruses 𝑀, and 

maximum iterations 𝑇 

       Randomly assign initial positions to all walruses in the 

search space. 

       For each iteration 𝑡 = 1 𝑡𝑜 𝑇:  

                 Identify the walrus with the best fitness value 

(strongest candidate). 

              For each walrus 𝑢 = 1 𝑡𝑜𝑀:  
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              Phase 1: Feeding Behavior (Exploration) 

     Compute a new exploratory position for the walrus 

      𝑣 using equation (15).  

                    Update the walrus 𝑢location using equation (16) 

               Phase 2: Migration 

                   Select a migration target for the walrus 𝑢.  

              Determine the new location using equation (17).  

              Adjust walrus 𝑢position based on equation (18). 

             Phase 3: Escaping/Fighting Predators (Exploitation)  

Generate a nearby candidate solution using equations (19) 

and (20).                                               

      Update the location of the walrus 𝑢using equation (21).  

  End For 

        Retain the best solution found in this iteration if it 

outperforms previous candidates 

End For 

     Return the best solution (quasi-optimal) identified by WOA 

for the defined problem 

End WOA 

 

 
Figure 3. Flowchart of the developed WOA Technique 

 

░ 4. RESULTS AND DISCUSSION 
The proposed scheme is analyzed and processed via the Python 

simulation platform. For the experimentation process, 

hyperparameters like learning rate, min-batch size, dropout, and 

several epochs are considered. The proposed method is 

processed under Intel(R) Core (TM) i5-4300M CPU with 4GB 

installed RAM using a 64-bit operating system. For the training 

process, 80% of the training data, 10% of the testing data, and 

10% of the validation data are considered, which are in the ratio 

8:1:1. Table 1 indicates the Hyperparameters of the Developed 

Method. 
 

░  Table 1. Hyperparameters of the Developed Method 
 

Parameters Used Values 

Learning rate 0.001 

Batch size 64 

Dropout 0.3 

Total number of epochs 100 

Optimizer WOA 

Search Agents 30 

Maximum Iteration 100 

Fixed-length time window 30 

Input Shape for BiLSTM 30×9 matrix 

Data normalization 
Min-max; 

range [0,1] 
 

4.1. Assessment Measures  
To better understand the proposed approach, performance 

indicators R2, RMSE, MAE, MAPE, prediction PHA, and CT 

are computed. 
 

4.1.1. R-squared Analysis 

R² measures how well the predicted values explain the 

variability of the actual RUL data. It spans from 0 to 1, with 

values nearer to 1 reflecting a better fit. It can be evaluated using 

equation (22),  

 𝑅2 = 1 −
∑ (𝑢𝑥−𝑢̑𝑥)2𝑀

𝑥=1

∑ (𝑢𝑥−𝑢𝑥)2𝑀
𝑥=1

                                              (22) 

Here, 𝑢𝑥signifies the actual RUL, 𝑢̑𝑥defines the predicted RUL, 

𝑢̃𝑥contemplates the mean of actual RUL values, and 𝑀signifies 

the number of samples.  

 

4.1.2. RMSE Analysis 

MSE quantifies the average magnitude of errors between 

definite and forecast RUL values. A lower RMSE indicates 

better predictive performance. It can be evaluated using 

equation (23),  

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑢𝑥 − 𝑢̑𝑥)

2𝑀
𝑥=1                                          (23) 

4.1.3. MAE Analysis 

MAE calculates the average of absolute differences between 

definite and forecast RUL values, providing an intuitive 

measure of prediction error. It can be evaluated using equation 

(24), 
 

𝑀𝐴𝐸 =
1

𝑀
∑ |𝑢𝑥 − 𝑢̑𝑥|

2𝑀
𝑥=1                                                 (24) 

 

4.1.4. MAPE Analysis 

MAPE represents prediction error as a percentage, making it 

useful for comparing errors across different scales. It can be 

evaluated using equation (25), 

           𝑀𝐴𝑃𝐸 =
1

𝑀
∑ |

𝑢𝑥−𝑢̑𝑥

𝑢𝑥
| × 100𝑀

𝑥=1                                 (25) 
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4.1.5. PHA Analysis 

PHA evaluates how accurately the model predicts the RUL 

within a specified tolerance window near the end of life (EOL). 

It can be evaluated using equation (26), 
 

𝑃𝐻𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟 𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100  (26) 

Tolerance Window: Define acceptable deviation from the true 

RUL, e.g., ±10%. 
 

4.2. Correlation Matrix Analysis  
In this section, the Correlation matrix analysis for the input data 

is analyzed under different feature subsets. This correlation 

matrix plot visually represents the relationships between 

various features related to battery parameters and Remaining 

Useful Life (RUL). The values in the matrix range from -1 to 1, 

where 1 indicates a perfect positive correlation, -1 indicates a 

perfect negative correlation, and 0 indicates no correlation. The 

plot uses both colors and circular segment sizes to indicate the 

strength and direction of the correlations. 
 

 
Figure 4. Correlation Plot Analysis of the Input Data 
 

Figure 4 signifies the correlation plot analysis of the input data. 

From the matrix, we observe that the "Cycle_Index" and "RUL" 

exhibit a perfect negative correlation (-1.00), meaning as the 

cycle index increases, the RUL decreases consistently. 

Similarly, "Min. Voltage Charg. (V)" is negatively correlated 

with both "Cycle_Index" (-0.76) and "RUL" (-0.76), suggesting 

its significant role in indicating battery degradation. 

Conversely, "Max. Voltage Dischar. (V)" shows a strong 

positive correlation (0.78) with "RUL," indicating its potential 

as a predictor for the remaining life. Features like "Charging 

time (s)" and "Time constant current (s)" have strong positive 

correlations (above 0.90) with "Discharge Time (s)," 

highlighting interdependencies in the charging and discharging 

processes. Overall, the matrix underscores how specific battery 

parameters correlate with the RUL, providing insights for 

predictive maintenance and battery health monitoring. 
 

4.3. Simulation Analysis of Proposed Scheme over 

Traditional Methods 
In this section, the effectiveness achieved by the introduced 

method over the existing schemes is deliberated via graphical 

illustration. Several existing methods like LSTM-CNN, 

BiLSTM, GRU-RNN, and PSR-SVR techniques are compared 

with the proposed WOA_MTS-BiLSTM technique framework. 

The comprehensive analysis of the attained efficacy is depicted 

below. 
 

 

 
Figure 5. Training and Validation Analysis, (a) Loss and (b) MAE 

 

Figures 5(a) and 5(b) indicate the training and validation 

analysis for loss and MAE, respectively. In figure 5(a), the loss 

function, which measures the model's error during training, 

starts at approximately 0.04 for the training set and 0.03 for the 

validation set at epoch 1. As training progresses, the training 

loss decreases consistently, reaching approximately 0.002 at 

epoch 100. In figure 5(b), initially, at epoch 1, the training MAE 

is approximately 0.12, while the validation MAE starts slightly 

lower, around 0.1. The training MAE steadily decreases over 

the epochs, reaching a minimum value near 0.002 at epoch 100. 

The validation MAE fluctuates in the earlier epochs but 

eventually aligns with the training MAE, stabilizing at 

approximately 0.002.  

http://www.ijeer.forexjournal.co.in/


                                                     International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 3 | Pages 501-514 | e-ISSN: 2347-470X 

 

Website: www.ijeer.forexjournal.co.in                                                            Remaining Useful Life Prediction of EV Lithium-Ion 510 

 
 

Figure 6. R-squared Analysis for the RUL Testing Data 
 

Figure 6 illustrates the R-squared Analysis for the RUL testing 

data. The R-squared value is explicitly shown as 0.99, 

signifying that 99% of the variability in the measured data is 

explained by the predicted data. The diagonal line represents the 

ideal fit, and the plotted points closely align with this line, 

further emphasizing the model's high precision in forecasting 

RUL values. The high R² value and minimal deviation from the 

diagonal line indicate the model's effectiveness in seizing the 

underlying trends in the testing data. 
 

 
 

Figure 7. MAE Analysis for Varying Techniques 
 

Figure 7 emphasizes the MAE Analysis for varying techniques. 

The MAE graph compares the MAE values for different 

models, including LSTM-CNN, BiLSTM, GRU-RNN, PSR-

SVR, and the proposed WOA_MTS-BiLSTM model. The box 

plot shows that the proposed WOA_MTS-BiLSTM model 

achieves the lowest MAE, with a median value significantly 

below the other models, approximately at 12.5. The LSTM-

CNN model demonstrates the highest MAE, with a median near 

30, indicating lower prediction accuracy. The variability in 

error is also lower in the proposed WOA_MTS-BiLSTM model 

than in other models, showcasing its stability and reliability in 

predicting RUL. The GRU-RNN and PSR-SVR models 

perform moderately, with median MAE values around 22.5 and 

17.5, respectively, while BiLSTM achieves a median close to 

27.5. Table 2 tabulates the experimental outcomes of the MAE 

metric. 
 

░ Table 2. Experimental Outcomes of the MAE metric 
 

Technique Used Obtained Values 

LSTM-CNN 28.7% 

BiLSTM 25.8% 

GRU-RNN 22.35% 

PSR-SVR 19.42% 

Proposed (WOA_MTS-BiLSTM) 17.048% 

 

 

 
 

Figure 8. MAPE Analysis for Varying Techniques 

 

Figure 8 emphasizes the MAPE Analysis for varying 

techniques. In the MAPE graph, the proposed WOA_MTS-

BiLSTM model exhibits the smallest MAPE with a median 

value of approximately 5, highlighting its superior accuracy in 

percentage-based error metrics. In contrast, the LSTM-CNN 

model has the highest MAPE, with a median close to 30, 

reflecting a much larger deviation from the true RUL. The PSR-

SVR model achieves a slightly better result than GRU-RNN, 

with median MAPE values around 10 and 15, respectively. 

BiLSTM, similar to its performance in MAE, shows a median 

MAPE of approximately 25, which indicates a consistent but 

less accurate trend compared to the proposed WOA_MTS-

BiLSTM model. Table 3 tabulates the experimental outcomes 

of the MAPE metric. 
 

░ Table 3. Experimental Outcomes of the MAPE 

Metric 
 

         Technique Used Obtained Values 

LSTM-CNN 25.7% 

BiLSTM 21.08% 

GRU-RNN 18.15% 

PSR-SVR 12.65% 

Proposed (WOA_MTS-BiLSTM) 8.63% 
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Figure 9. RMSE Analysis for Varying Techniques 
 

Figure 9 emphasizes the RMSE Analysis for varying 

techniques. In the RMSE plot, the proposed WOA_MTS-

BiLSTM model again outperforms others with a median RMSE 

of around 5%, indicating minimal deviation from the actual 

RUL values. The LSTM-CNN model records the largest 

RMSE, with a median value near 20%, showing poor 

performance in minimizing squared deviations. The BiLSTM 

model displays a higher RMSE compared to GRU-RNN and 

PSR-SVR, with median values around 17.5%, 12.5%, and 10%, 

respectively. The box plot for the proposed WOA_MTS-

BiLSTM model reveals a tight distribution, demonstrating its 

robustness and reduced prediction error variance. Table 4 

tabulates the experimental outcomes of the RMSE metric.  
 

░ Table 4. Experimental Outcomes of the RMSE 

metric 
 

Technique Used Obtained Values 

LSTM-CNN 18.7% 

BiLSTM 15.8% 

GRU-RNN 12.5% 

PSR-SVR 9.2% 

Proposed (WOA_MTS-BiLSTM) 5.839% 

 

 
Figure 10. PHA Analysis for Varying Number of Samples 

Figure 10 contemplates the PHA analysis for varying numbers 

of samples. From the graphical illustration, it is obvious that the 

proposed WOA_MTS-BiLSTM technique obtained better 

accuracy than conventional techniques. For 1000 samples, the 

existing LSTM-CNN, BiLSTM, GRU-RNN, PSR-SVR, and 

proposed WOA_MTS-BiLSTM technique obtained a PHA of 

88.23%, 90.19%, 91.34%, 94.17%, and 95.4% respectively. For 

2000 samples, the existing LSTM-CNN, BiLSTM, GRU-RNN, 

PSR-SVR, and proposed WOA_MTS-BiLSTM technique 

obtained a PHA of 90.04%, 92.08%, 93.29%, 95.13%, and 

96.2% respectively. For 3000 samples, the existing LSTM-

CNN, BiLSTM, GRU-RNN, PSR-SVR, and proposed 

WOA_MTS-BiLSTM technique obtained a PHA of 93.03%, 

95.52%, 96.78%, 97.84%, 98% respectively. For 3000 samples, 

the existing LSTM-CNN, BiLSTM, GRU-RNN, PSR-SVR, 

and proposed WOA_MTS-BiLSTM technique obtained a PHA 

of 93.03%, 95.52%, 96.78%, 97.84%, 98% respectively. Table 

5 tabulates the experimental outcomes of the PHA metric. 
 

░ Table 5. Experimental Outcomes of PHA metric 
 

Technique 

Used 

Number of Samples 

1000 1500 2000 2500 3000 

LSTM-CNN 88.231% 89.559% 90.044% 91.353% 93.034% 

BiLSTM 90.197% 91.183% 92.081% 93.043% 95.522% 

GRU-RNN 91.342% 92.406% 93.298% 94.907% 96.786% 

PSR-SVR 94.173% 94.628% 95.139% 96.661% 97.843% 

Proposed 

(WOA_MT

S-BiLSTM) 

95.4% 95.8% 96.2% 97.6% 98% 

 

 
 

Figure 11. CT Analysis for Varying Iterations 
 

Figure 11 depicts the CT analysis for varying iterations. The 

proposed WOA_MTS-BiLSTM model consistently 

demonstrates the lowest computation time, starting from 

approximately 2 seconds at 0 iterations and reaching around 15 

seconds at 100 iterations. In contrast, other methods like LSTM-

CNN and BiLSTM show significantly higher computation 

times, peaking at 35 seconds and 30 seconds, respectively, by 

100 iterations. The lower computational overhead of the 

proposed WOA_MTS-BiLSTM method highlights its 

efficiency and suitability for real-time applications in RUL 

prediction. Table 6 tabulates the experimental outcomes of the 

CT metric. 
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░ Table 6. Experimental Outcomes of CT Metric 
 

Techniques used 
Number of Iterations 

0 20 40 60 80 100 

LSTM-CNN 3.39s 

 

15.8

5
s 

 

22.0

1
s 

 

25.2

7
s 

 

32.0

3
s 

 

37.9

3
s 

BiLSTM 3.2s 

 

11.0

8
s 

 

16.1

9
s 

 

21.7

5
s 

26.8

s 

 

32.9

9
s 

GRU-RNN 2.8s 
8.85

s 

 

13.8
1

s 

 

18.5
7

s 

 

21.0
9

s 

 

25.5
9

s 

PSR-SVR 
2.65

s 
6.33

s 

 

12.0
8

s 

 

14.4
3

s 

 

16.3
9

s 

 

18.1
5

s 

Proposed (WOA_MTS-

BiLSTM) 

0.98

s 

3.89

s 

5.98

s 

8.04

s 

 

11.6

1

s 

 

14.9

4

s 

 

 

Figure 12. R-squared Analysis for Varying Techniques 

Figure 12 contemplates the R-squared analysis for varying 

techniques. The R-squared metric measures the proportion of 

variance explained by the model, with a value closer to 1 

indicating better performance. For the LSTM-CNN model, the 

R² values predominantly range between 0.92 and 0.94, 

reflecting lower predictive accuracy compared to other models. 

The BiLSTM model shows slightly better performance, with R-

squared values centered between 0.94 and 0.96. The GRU-RNN 

model demonstrates further improvement, achieving R-squared 

values predominantly in the range of 0.96 to 0.975. The PSR-

SVR model exhibits R-squared values slightly higher than 

GRU-RNN, primarily between 0.97 and 0.98, indicating an 

incremental enhancement in accuracy. The proposed 

WOA_MTS-BiLSTM model outperforms all others, with R-

squared values clustering tightly between 0.98 and 1.00, 

reflecting its superior capability in explaining the variance in 

the data. This progression of R-squared values highlights the 

increasing effectiveness of the models, culminating in the 

proposed WOA_MTS-BiLSTM approach as the most accurate 

among those compared. Table 7 tabulates the experimental 

outcomes of the R2 metric. 
 

░ Table 7. Experimental Outcomes of R-squared Metric 
 

Technique Used Obtained Values 

LSTM-CNN 0.927 

BiLSTM 0.953 

GRU-RNN 0.965 

PSR-SVR 0.98 

Proposed (WOA_MTS-BiLSTM) 0.99 

 

 
 

Figure 13. MSE Analysis for Varying Techniques 

 

Figure 13 emphasizes the MSE Analysis for varying 

techniques. The MSE is a metric that evaluates the average 

squared difference between predicted and actual values, with 

lower values indicating better performance. For the LSTM-

CNN model, the MSE values are concentrated around 50, 

signifying the lowest performance among the models. The 

BiLSTM model demonstrates an improvement, with MSE 

values clustering around 45. The GRU-RNN model further 

reduces the error, with MSE values centered near 42. The PSR-

SVR model performs even better, achieving MSE values around 

40. Finally, the proposed WOA_MTS-BiLSTM model exhibits 

the best performance, with MSE values tightly distributed 

around 35, indicating the smallest prediction errors among all 

models. This decreasing trend in MSE highlights the superior 

accuracy of the proposed WOA_MTS-BiLSTM approach 

compared to the alternatives. Table 8 tabulates the experimental 

outcomes of the MSE metric. 
 

░ Table 8. Experimental Outcomes of the MSE metric 
 

Technique Used Obtained Values 

LSTM-CNN 48.7 

BiLSTM 45.8 

GRU-RNN 42.5 

PSR-SVR 39.2 

Proposed (WOA_MTS-BiLSTM) 34.096 
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4.4. Ablation Study Analysis  
This section performs the ablation analysis for the developed 

scheme to determine the outcomes achieved over different 

modules. Four different modules are considered and various 

performance measures like MSE, RMSE, MAE, and MAPE are 

scrutinized. The investigation is made over without 

preprocessing (i.e., without TG-AMF), without parameter 

tuning (i.e., without WOA), without preprocessing, and without 

parameter tuning (i.e. TG-AMF + WOA), and the presence of 

all three stages (i.e., presence of TG-AMF + MTS-BiLSTM + 

WOA. The brief analysis for each module and its obtained 

outcomes is blemished below; 
 

 

Figure 14. Ablation Study Analysis under Different Metrics 

Figure 14 depicts the Ablation study Analysis under different 

Metrics. Module 4 indicates the presence of all three stages. For 

module 4, the MSE, RMSE, MAE, and MAPE achieved about 

14.34, 12.45, 9.45, and 8.63, respectively. Module 3 indicates 

the absence of the TG-AMF + WOA. For module 3, the MSE, 

RMSE, MAE, and MAPE achieved about 25.93, 23.64, 20.34, 

and 17.04, respectively. Module 2 deliberates the absence of a 

parameter tuning process (i.e., without the WOA technique). 

For module 2, the MSE, RMSE, MAE, and MAPE achieved 

about 11.35, 9.45, 7.56, and 5.83, respectively. Module 1 

encompasses the absence of the TG-AMF technique. For 

module 1, the MSE, RMSE, MAE, and MAPE achieved about 

39.45, 37.56, 35.6, and 34.09, respectively. From the 

experimental outcomes, it is proven that the effective 

performance achieved with the presence of all three stages is 

defined by the proposed method. Table 9 tabulates the 

experimental outcomes of the ablation study plot for varying 

modules. 
 

░ Table 9. Experimental Outcomes of Ablation Study 

Plot for Varying Modules 
 

Modules 
Assessment Measures 

MSE RMSE MAE MAPE 

Without 

Preprocessing 
39.45 11.35 25.93 14.34 

Without parameter 

tuning 
37.56 9.45 23.64 12.45 

Without 

preprocessing and 

without parameter 

tuning 

35.6 7.56 20.34 9.45 

Presence of all three 

stages (TG-AMF + 

MTS-BiLSTM + 

WOA) 

34.09 5.839 17.04 8.630 

 

░ 5. CONCLUSION 

The proposed framework introduced and investigated an 

advanced approach to optimize the RUL forecast of EV Li-ion 

batteries, leveraging an MTS-BiLSTM network. By employing 

data from the RUL Prediction Dataset on Kaggle, the 

framework integrates a TG-AMF to enhance data quality by 

efficiently removing noise while preserving critical degradation 

features. The MTS-BiLSTM network effectively captures both 

Proximal correlations and Delayed dependencies in the data, 

ensuring accurate modeling of trends for reliable RUL 

forecasting. Further, the hyperparameters of the proposed 

model are fine-tuned using the WOA, significantly improving 

prediction accuracy while minimizing computational overhead. 

The robustness and effectiveness of the developed framework 

are demonstrated through benchmarking against state-of-the-art 

methods using key assessment measures, including R-squared, 

RMSE, MAE, MAPE, PHA, and CT. Notably, the proposed 

method achieves an overall PHA of 98%, MAE of 17.04, 

MAPE of 8.63, CT of 7.57 seconds, and RMSE of 5.83, 

underscoring its superior performance. However, several 

limitations remained in that the framework is validated only on 

a specific publicly available dataset, which may restrict its 

generalizability across different battery chemistries (e.g., LFP, 

NMC, LCO) and operational environments (e.g., temperature, 

charge/discharge rates). Second, while the model is optimized 

for computation, further improvements are needed to support 

real-time deployment in embedded or resource-constrained 

environments, such as on-board battery management systems 

(BMS) in electric vehicles. Third, although the proposed DL 

architecture exhibits strong predictive capabilities, 

interpretability and explainability remain limited. Future work 

should focus on evaluating the model across diverse datasets 

and battery types to ensure broader applicability. Techniques 

such as model pruning, quantization, or edge AI deployment 

strategies will also be explored to reduce latency and memory 

usage. Moreover, explainable AI (XAI) techniques (e.g., SHAP, 

LIME, attention mechanisms) will also be integrated to provide 

greater transparency into model decisions, enabling trust and 

insights for stakeholders such as engineers and battery 

manufacturers. 
 

Conflicts of Interest: The authors declare no conflict of 

interest. 

 

░ REFERENCES 
[1] Wang, Shilong, Peiben Wang, Lingfeng Wang, Ke Li, Haiming Xie, and 

Fachao Jiang. "An enhanced deep learning framework for state of health 

and remaining useful life prediction of lithium-ion battery based on 
discharge fragments." Journal of Energy Storage 107 (2025): 114952. 

http://www.ijeer.forexjournal.co.in/


                                                     International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 3 | Pages 501-514 | e-ISSN: 2347-470X 

 

Website: www.ijeer.forexjournal.co.in                                                            Remaining Useful Life Prediction of EV Lithium-Ion 514 

[2] Reza, M.S., Hannan, M.A., Mansor, M., Ker, P.J., Rahman, S.A., Jang, 
G. and Mahlia, T.I., 2024. Towards enhanced remaining useful life 

prediction of lithium-ion batteries with uncertainty using an optimized 

deep learning algorithm. Journal of Energy Storage, 98, p.113056. 
 

[3] Li, J., Zhao, S., Miah, M.S. and Niu, M., 2023. Remaining useful life 

prediction of lithium-ion batteries via an EIS-based deep learning 
approach. Energy Reports, 10, pp.3629-3638. 

 

[4] CL, Sravanthi, Chandra Sekhar JN, N. Chinna Alluraiah, Dhanamjayulu 
C, Harish Kumar Pujari, and Baseem Khan. "An Overview of Remaining 

Useful Life Prediction of Battery Using Deep Learning and Ensemble 

Learning Algorithms on Data‐Dependent Models." International 
Transactions on Electrical Energy Systems 2025, no. 1 (2025): 2242749. 

 

[5] Wu, J., Kong, L., Cheng, Z., Yang, Y. and Zuo, H., 2022. RUL prediction 
for lithium batteries using a novel ensemble learning method. Energy 

Reports, 8, pp.313-326. 

 

[6] Khan, M.K., Abou Houran, M., Kauhaniemi, K., Zafar, M.H., Mansoor, 

M. and Rashid, S., 2024. Efficient state of charge estimation of lithium-

ion batteries in electric vehicles using evolutionary intelligence-assisted 
GLA–CNN–Bi-LSTM deep learning model. Heliyon, 10(15). 

 

[7] Li, Yuanjiang, Liping Li, Lei Li, Xinyu Huang, Guodong Sun, Yina 
Wang, and Jinglin Zhang. "Research on hybrid data-driven method for 

predicting the remaining useful life of lithium-ion batteries." Computer 
Physics Communications 309 (2025): 109500. 

 

[8] Bak, Gwiman, and Youngchul Bae. "Deep learning network for 
predicting the remaining useful life of lithium-ion batteries using the 

positive and negative convolution perceptron model." Journal of the 

Chinese Institute of Engineers 48, no. 4 (2025): 467-479. 
 

[9] Hussien, S.A., BaQais, A. and Al-Gabalawy, M., 2024. Estimation of the 

residual useful life of EV batteries using advanced hybrid learning tools. 
Electrical Engineering, 106(3), pp.2651-2677. 

 

[10] Zhao, S., Zhang, C. and Wang, Y., 2022. Lithium-ion battery capacity 
and remaining useful life prediction using board learning system and long 

short-term memory neural network. Journal of Energy Storage, 52, 

p.104901. 
 

[11] Liu, Wei, and Jiashen Teh. "Remaining useful life prediction of lithium-

ion batteries based on an incremental internal resistance aging model and 
a gated recurrent unit neural network." Energy (2025): 137527. 

 

[12] Rastegarpanah, A., Asif, M.E. and Stolkin, R., 2024. Hybrid Neural 
Networks for Enhanced Predictions of Remaining Useful Life in 

Lithium-Ion Batteries. Batteries, 10(3), p.106. 

 
[13] Granado, L., Ben-Marzouk, M., Saenz, E.S., Boukal, Y. and Jugé, S., 

2022. Machine learning predictions of lithium-ion battery state-of-health 

for eVTOL applications. Journal of Power Sources, 548, p.232051. 
 

[14]  Lee, J., Sun, H., Liu, Y. and Li, X., 2024. A machine learning framework 

for remaining useful lifetime prediction of li-ion batteries using diverse 

neural networks. Energy and AI, 15, p.100319. 

 

[15] Feng, Weiguo, Zhongtian Sun, Yilin Han, Nian Cai, and Yinghong Zhou. 
"A multi-strategy attention regression network for joint prediction of 

state of health and remaining useful life of lithium-ion batteries using 

only charging data." Journal of Power Sources 636 (2025): 236507. 
 

[16]  Li, X., Yu, D., Byg, V.S. and Ioan, S.D., 2023. The development of 

machine learning-based remaining useful life prediction for lithium-ion 
batteries. Journal of Energy Chemistry, 82, pp.103-121. 

 

[17] Wang, S., Ma, H., Zhang, Y., Li, S. and He, W., 2023. Remaining useful 
life prediction method of lithium-ion batteries is based on variational 

modal decomposition and deep learning integrated approach. Energy, 
282, p.128984. 

 

[18] Zraibi, Brahim, Mohamed Mansouri, and Salah Eddine Loukili. "RUL 
prediction for lithium-ion batteries using improved-CGD hybrid model." 

International Journal of Dynamics and Control 13, no. 6 (2025): 237. 

 
[19] Shi, J., Rivera, A. and Wu, D., 2022. Battery health management using 

physics-informed machine learning: Online degradation modeling and 

remaining useful life prediction. Mechanical Systems and Signal 
Processing, 179, p.109347. 

 

[20] Zhou, Y., Wang, S., Xie, Y., Shen, X. and Fernandez, C., 2023. 
Remaining useful life prediction and state of health diagnosis for lithium-

ion batteries based on improved grey wolf optimization algorithm-deep 

extreme learning machine algorithm. Energy, 285, p.128761. 
 

[21] Swain, D., Kumar, M., Nour, A., Patel, K., Bhatt, A., Acharya, B. and 

Bostani, A., 2024. Remaining Useful Life Predictor for EV Batteries 

Using Machine Learning. IEEE Access. 

 

[22] Gao, D., Liu, X., Zhu, Z. and Yang, Q., 2023. A hybrid cnn-bilstm 
approach for remaining useful life prediction of evs lithium-ion battery. 

Measurement and Control, 56(1-2), pp.371-383. 

 
[23] Mishra, S., Choubey, A., Reddy, B.A. and Misra, R., 2024. Enhancing 

EV lithium-ion battery management: automated machine learning for 
early remaining useful life prediction with innovative multi-health 

indicators. The Journal of Supercomputing, pp.1-48. 

 
[24] Zhao, J., Ling, H., Liu, J., Wang, J., Burke, A.F. and Lian, Y., 2023. 

Machine learning for predicting battery capacity for electric vehicles. 

ETransportation, 15, p.100214. 
 

[25] Cai, S., Hu, J., Ma, S., Yang, Z. and Wu, H., 2022. Remaining useful life 

prediction method of EV power battery for DC fast charging condition. 
Energy Reports, 8, pp.1003-1010. 

 

[26] Jafari, S., Shahbazi, Z. and Byun, Y.C., 2022. Lithium-ion battery health 
prediction on hybrid vehicles using machine learning approach. 

Energies, 15(13), p.4753. 

 
[27] Ma, Liang, Jinpeng Tian, Tieling Zhang, Qinghua Guo, and Chi Yung 

Chung. "Enhanced battery life prediction with reduced data demand via 

semi-supervised representation learning." Journal of Energy Chemistry 
101 (2025): 524-534. 

 

[28] https://www.kaggle.com/code/sasakitetsuya/remaining-useful-lifetime-
prediction/notebook 

 

[29] Fatima, S.H., Munir, A. and Hussain, S.T., 2024. Image denoising using 
difference classifier and trimmed global mean filter adaptive approach. 

The Visual Computer, 40(8), pp.5309-5321. 

 
[30] Zou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y. and Wu, C., 2020. A water 

quality prediction method based on the multi-time scale bidirectional 

long short-term memory network. Environmental Science and Pollution 

Research, 27, pp.16853-16864. 

 

[31] Han, M., Du, Z., Yuen, K.F., Zhu, H., Li, Y. and Yuan, Q., 2024. Walrus 
optimizer: A novel nature-inspired metaheuristic algorithm. Expert 

Systems with Applications, 239, p.122413. 

 

© 2025 by Mandeddu Sudhakar Reddy, M. Monisha. 

Submitted for possible open access publication 

under the terms and conditions of the Creative 

Commons Attribution (CC BY) license   

(http://creativecommons.org/licenses/by/4.0/).

 

http://www.ijeer.forexjournal.co.in/

