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ABSTRACT- The statistical properties of aberrant samples are unstable, and traditional chest X-ray image data is difficult
to gather and unevenly distributed. A CAE-D-GAN anomaly detection model based on dual GANs and convolutional autoencoders
is proposed in this paper. We employ the DGAN module to obtain clear degraded images, the convolutional autoencoder to extract
low-dimensional features from high-dimensional data, and the DDGAN module to learn how to degrade images and recover clearer
images from degraded photos during the adversarial process. While the reconstruction error score identifies sample flaws, the
network is optimized by the error loss between the original and reconstructed samples. The network just needs normal samples to
be trained, and it can reach a maximum AUROC value of 0.86. The findings demonstrate that the CAE-D-GAN model outperforms
a number of different anomaly detection models in terms of detection effects and feature reconstruction capabilities. There are

special opportunities for using this approach to detect other anomalies in medical images.
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1. INTRODUCTION

It is challenging to identify abnormalities in medical imaging
because abnormal samples are rare and challenging to obtain,
and the distribution of lesion data is uneven and varied. As a
result, we propose a method that uses dual GANs and
convolutional autoencoders to automatically detect anomalies
in chest X-ray pictures. The convolutional autoencoder has a
lower reconstruction error since it learns reconstruction features
from normal data [1]. The network design of the generative
adversarial network is founded on an adversarial mechanism.
Both the discriminative and generative models keep playing
games of minimization and maximization while they are being
trained. As a result, the model has a strong capacity to produce
data [2]. Compared to the conventional unsupervised learning
framework, the generative model, which collaborates with the
discriminative model, requires less previous knowledge [3,4]. It
can also efficiently learn the distribution of actual data and
modify its settings to get the best outcomes.

Convolutional autoencoder, DGAN, and DDGAN are the three
modules that make up the suggested model. We compress the

original data from the high-dimensional data space into feature
representations in the low-dimensional data space and utilize
the convolutional autoencoder module to learn low-dimensional
features from high-dimensional data. To acquire paired, clear,
degraded images and train on unpaired datasets, we primarily
utilize the DGAN module. Realistic, deteriorated images are
produced by DGAN. One module that learns to deteriorate is
the DDGAN module. During the adversarial process, it recovers
sharper images from deteriorated ones in order to identify
irregularities.

2. ALGORITHM MODEL STRUCTURE
2.1. CAE-D-GAN Model Structure

As you can see in figure 1, we developed a novel method for
automatically detecting anomalies called CAE-D-GAN, which
consists of a double GAN and a convolutional autoencoder. The
three modules that make up the model are the DGAN, DDGAN,
and convolutional autoencoder modules. We acquire paired,
clear, degraded images using the DGAN module, learn to
degrade using the DDGAN module, and extract low-
dimensional features from high-dimensional data using the
convolutional autoencoder module. After training the DGAN
on unpaired datasets, the discriminator oversees it to generate
more realistic damaged images. In order to create clear images,
the DDGAN generating network trains on paired, clear,
degraded images after receiving the realistic degraded images
from DGAN. The generated clear images and genuine images
are sent to the discriminator network of DDGAN, which plays
a game with the generator and faces off against it. In order to
identify irregularities, the confronting procedure recovers
sharper images from deteriorated ones.
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Figure 1. CAE-D-GAN

A restructured power system is one that moves away from the
old, vertically integrated utility model and towards a more
decentralised, competitive, and market-based structure.
Deregulation in the electrical sector refers to the progression of
amending the law and policy governing corporate operations to
provide consumers with a selection of energy firms. In a
deregulated electricity market as shown in figure I, consumers
and energy suppliers have the freedom to invest their resources
in the preservation and perfection of power production and
transmission infrastructure as they perceive vigorous. The
power generated by Genco's assets is distributed extensively via
the trade utilities network. Customers get advantages through
the ability to assess and contrast prices and amenities, along
with the adoption of stochastic techniques.

2.2. Algorithm Framework

Part of the pseudocode may be seen in figure 2. The input image
is down-sampled and its dimensionality reduced to obtain the
encoded representation of the hidden layer. Up-sampling and
dimensional augmentation are then used to reconstruct the input
data for the DGAN generator. The discriminator oversees the
creation of an authentically damaged image. A link to the
DDGAN network is made in series. This dual GAN series
connection requires the model to preserve information
necessary for reconstructing data samples. To reduce the overall
reconstruction error, the information that is kept must be as
pertinent to most typical samples as feasible. As a result, data
samples that are not representative of the main dataset are not
adequately rebuilt. The pixel differences between the input and
reconstructed images can be used to learn more about anomaly
detection. Variations in the reconstruction error's distribution
indicate anomalies, and the data reconstruction error serves as
an anomaly score. During the training phase, the network
weights are optimized using the reconstruction error. During the
inference stage, backpropagation is used to iteratively
determine the feature representation of the test image's hidden
space.

def main_test(self,option=1) :
values, labels=self.get roc(option)
TPRs=[]
FPRs=[]

Model Architecture

best_acc=0
best _idx=0
for i in tgdm(np.arange(0,1,0.01)) :
TPR,FPR,
acc=self.split_values(values,labels,i)
FPRs.append(FPR)
TPRs.append(TPR)
if acc>best_acc :
best_acc=acc
best idx=i

Figure 2. A portion of the pseudocode

2.3. Autoencoder Model Architecture

The convolutional encoder, convolutional decoder, and
bottleneck module that connects them make up the
convolutional autoencoder's network topology, which is
depicted in figure 3. In order to increase the dimension and
reconstruct the input data, the convolutional encoder
downsamples the input data [5], and the convolutional decoder
upsamples the encoded representation of the hidden layer to
decrease the dimension [6].

Input image
e

Output image
e

ind

Downsampling Upsampling

R

(Encoder)
Bottleneck ]\

Figure 3. Convolutional autoencoder network structure

(Decoder)

]

2.3. DGAN Network Structure

2.3.1 DGAN Generator Network

The generator network's structure is shown in Figure 4. An input
component, a residual network portion made up of 16 residual
networks, an image magnification part, and an output part make
up the DGAN generation network.
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Figure 4. DGAN Generator Network Structure

A residual network comes after the image has gone through a convolution layer with a 3*3 kernel and an activation function layer.
There are sixteen residual blocks in the residual network [7]. To create a deep convolutional network, we add a skip connection
between each of the two residual blocks. This improves the model's gradient stability throughout training.

2.3.2. DGAN Discriminator Network

The discriminator network structure of the DGAN is shown in figure 5. It is composed of three parts: input, convolution, and output.
Different convolution kernels used in the convolution layer of the convolution component are distinguished by light blue and dark
blue, respectively. Using the output part's elementwise sum layer, we fuse features [8]. By keeping all extracted feature variables,
regularization methods lower the order of magnitude of the variables.
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Figure 5. DGAN Discriminant Network Structure -

2.4. DDGAN Network Structure

2.4.1 DDGAN Generator Network

The DDGAN's generative network structure is displayed in figure 6. In DDGAN's generative network, we have an input part, an
RDB part with 24 residual dense blocks that combine the DenseNet structure and residual network, an image magnification part,
and an output part. The RDB component integrates the DenseNet network structure with the concept of residual networks. Each
RDB is made up of three DenseNet blocks that are tightly coupled via residual scaling. The network can produce a lot of features
with just a few convolution kernels.
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Figure 6. DDGAN Generation Network Structure
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The DDGAN's discriminant network is displayed in figure 7. An input portion, a convolution part, and an output part make up the
DDGAN discriminant network. Using dark blue and green modules, the convolution layer of the convolution section differentiates

between various convolution kernels.
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Figure 7. DDGAN Discriminant Network Structure

#3. MODEL TRAINING

To optimize the model parameters during the training process
and improve the reconstruction ability of normal samples, the
following three loss functions are set: generator loss functionL;,
discriminator loss functionL, , and pixel-level loss functionLp

[9].

3.1. Generator loss function L

We propose the generator loss function to enhance the quality
of the reconstructed image and generate a reconstructed output
that closely resembles the original input data. The generator loss
functionL;includes three  sub-functions: reconstruction
lossL;econ», €ncoding lossL,,, and adversarial lossL,gs, -

The reconstruction loss is the difference per pixel between the
input image and the reconstructed image [10], as defined below:

Lyecon = x~pr(x)||x —G)ly (1)

Among them, xis the input image, G (x) is the reconstructed
output image, and p,.(x) is the input normal data distribution.

Coding lossL,,is used to measure the similarity between the

A
feature codingzof the input image and the feature codingzof the
reconstructed output, as defined below:

Loy = x~Pr(x)"GEn(x) — Gpn(G())Il4 (2)

Among them, Gg,(x) represents the feature encoding of the
input image.

The generator's adversarial loss Lgg,aims to replicate the
original image as closely as possible in the reconstructed image.
For the generatorG, it is necessary to minimize the adversarial
loss; for the discriminatorD, it is necessary to maximize the
adversarial loss. Through such a game, it is finally
achieved mGinmngad,,, as defined below:

Logy = _Ex~P-,(x) [D(G(x))] 3)

[ ] [ ] &
%)
3
= o 5} Q
SLilEli -
2/(a 2|8
]
-
The total generator loss function is expressed as follows:
LG = AreconLrecon + Aenl‘en + Aadvl‘adv (4)
Among  them,A.cons Aens Aagy represent  the  weight

parameters, respectively.

3.2. Discriminator loss function Ly

The concept of a binary cross-entropy loss function is used by
the discriminator loss function [11]. The discriminator can
separate created data from real data as much as feasible by
reducing this disparity. The following is its definition:

Lp = Ex p,x)[max(0,1 — D(x))] + E§~Py(x)

D(X))] 5)

[max(0,1 +

3.3. Pixel-level loss function Lp

To confine the generator's training in the image reconstruction
task, the pixel-level distance between the rebuilt and original
images must be determined [12]. The following is its definition:

1
Lp = NZ{V

o]

From the standpoints of limiting feature semantics, constraining
reconstruction errors [13], and adversarial learning using three
distinct loss functions, the reconstruction generator enhances
the model's capacity to generate reconstructions.

4, EXPERIMENTAL SETUP
4.1. Dataset

With a primary focus on three image types—normal lungs,
COVID-19, and viral pneumonia—the datasets used in this

work are taken from  three  public  datasets
(http://www kaggle.com/tawsifurrahman/covid-
19radiography-

database,https://www.kaggle.com/prashant268/chest-xray-
covid19-
pneumonia,https://www.kaggle.com/pranavraikokte/covid19-
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image-dataset). There are 4,961 aberrant chest X-ray photos and
10,192 normal chest X-ray images in dataset 1. There are 4,849
aberrant chest X-ray photos and 1,583 normal chest X-ray
images in dataset 2. There are 222 abnormal chest X-ray photos
and 90 normal chest X-ray images in dataset 3.

Every set of data is separated into training and test sets. Half of
the normal images are chosen at random to serve as the training
set, and the remaining normal images are combined with
abnormal images in four different proportions to create the test
set: 25%, 50%, 75%, and 100%.

4.2. Model Parameters
During the training process, the Adam [14] optimizer is used,
the learning rate is set to 1e~*, the weight penalty coefficient is

set to 0, the momentum coefficient f; = 0.9, B, = 0.999, and
the weight of the loss function are set tod,g, = 1, Arecon =
50, 4., = 1, all models are iterated over the entire training set
(epoch) and trained 10, 20, and 50 times, each time before The
number of samples (batch size) for forward propagation and
backpropagation is 159. We implement the model using the
PyTorch framework version 1.5.1, and train it on an NVIDIA
GeForce GTX 1080 GPU.

4.3. Evaluation indicators

The samples are classified as follows: false negative (FN:
abnormal sample is considered normal), true negative (TN:
normal sample is correctly detected), false positive (FP: normal
samples are considered abnormal), and true positive (TP:
abnormal sample is successfully detected) [15]. In light of this,
we define the true positive rate (TPR) and false positive rate
(FPR) and use precision rate (P), recall rate (R), and F1 score as
assessment indicators.

TP

Pr e cision = —— (7
TP+FP
Recall = —= 3
TP+FN

Fl= 2XPr e.ci.sioane call (9)
Pr ecision+Re call

FPR = (10)
FP+TN

TPR = —+ (11)
TP+FN

To get the ROC curve, connect the coordinate points below the
threshold, using TPR as the ordinate and FPR as the abscissa.
The performance index, or AUROC, is the area under the curve
[16]. The network's ability to detect anomalies improves with a
higher AUROC rating.

In order to assess the quality of the network-reconstructed
image, the study additionally established two assessment
indicators: SSIM[17] and PSNR[18]. The difference in structural
information between the original image and the reconstructed
image can be more accurately reflected by SSIM. By comparing
the mean square error between the original and rebuilt images,
PSNR calculates the quality of the reconstructed picture[19].
The PSNR value increases and the quality of the reconstructed
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image improves with a lower difference between the
corresponding pixels of the two images. The following is its
definition:

SSIM(x, %) =

(@uxpatc1)(26 p+cz)
b XX

(M +pE+c1)(82+83+c2)
b b

(12)

. A
Where u,.and prare the average values of images xand x,52 and
. . A . .
S87are the variances of images xand x, and 5’& is the covariance
X
. A
of images x and x.

PSNR =10 - logy, (%) = 20 - logy, (M,f,f;‘)

(13)

Among them, MAX, is the maximum possible pixel value of the
image, and MSE is the mean square error of the input image.

= 5. EXPERIMENTAL RESULTS

The application of the suggested model CAE-D-GAN to the
reconstruction impact of chest X-ray datasets 1, 2, and 3 is
demonstrated in figure 8. The input chest X-ray test image is
shown in the first row, followed by the chest X-ray image that
was reconstructed using the suggested network in the second
row, and the difference between the input and reconstructed
values in the third row. We can see that aberrant images are
successfully and with little reconstruction error reconstructed
by the suggested network.

datasetl

dataset2
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AUROC primarily determines if an image is normal or
abnormal based on the image as a whole. With Module 1
denoting the convolutional autoencoder module, Module 2
denoting the DGAN module, and Module 3 denoting the
DDGAN module, figure 9 displays the AUROC evaluation
index findings of the proposed CAE-D-GAN model on dataset
1 for tests of varying proportions. Following testing, we
discover that the maximum AUROC values for Modules 1 ,2
and 3 at a 25% ratio are 0.92, 0.87, and 0.84, respectively.
Module 1's maximum AUROC value is 0.91, Module 2's
maximum AUROC value is 0.90, and Module 3's maximum
AUROC value is 0.84 at a 50% ratio. Module 1's maximum
AUROC value is 0.92, Module 2's maximum AUROC value is
0.93, and Module 3's highest AUROC value is 0.86 at a 75%
ratio. Module 1's maximum AUROC value is 0.91, Module 2's
maximum AUROC value is 0.90, and Module 3's maximum

dataset3
Figure 8. Reconstruction Effect on datasetl, dataset2, and dataset3 AUROC value is 0.85 at a 100% ratio.

based on the CAE-D-GAN Model
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Figure 9. AUROC Results of Dataset 1 in Different Test Sets
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The AUROC evaluation index values for test sets of varying
proportions that the algorithm in this paper produced are
displayed in figure 10. The model can get an AUROC value of
up to 0.86. The algorithm's employment of two GANSs is the
cause. While the second GAN learns to degrade, the algorithm
uses the first GAN to produce clear degraded images. To
improve anomaly detection findings and recover clearer images
from degraded photographs, we train it on paired clear and
degraded images.

The F1-Confidence curve after 50 epochs is shown in figure 11.
The graphic shows that the F1 value for all chest X-ray image
recognition at a confidence level of 0.82 is centered at 0.272,
indicating robust model recognition performance and a
respectable balance between precision and recall. The model
has a good recognition accuracy and predicts positive values.

Table 1 displays the acquired precision, recall, F1 score, PSNR,
and SSIM values. The PSNR value is approximately 28.3,
which is within a reasonably consistent range, as the number of
epochs grows. The model produces good picture quality, and
the reconstructed image quality is high, as indicated by the
SSIM values, which are primarily around 0.93. The loss
function value of dataset 1 is shown as a curve in figure 12 as
the iteration procedure varies. As the loss gap between the
rebuilt and original images narrows and eventually stabilizes, it
is evident that the network has a good reconstruction capacity
for normal samples.
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Figure 10. Comparison of the AUROC curves obtained with
different sample proportions
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“ Table 1. Performance index values obtained for different

Epoch 25% 50% 75% 100% | Parameters
0.80 0.82 0.83 0.85 Precision
10 0.95 0.93 0.90 0.89 Recall
0.88 0.86 0.89 0.83 F1-score
26.35 28.17 28.63 28.46 PSNR
0.92 0.93 0.93 0.93 SSIM
0.82 0.80 0.85 0.84 Precision
0.95 0.92 0.93 0.92 Recall
20 0.90 | 0.89 | 0.87 | 085 Fl-score
27.23 28.59 28.66 28.85 PSNR
0.92 0.94 0.92 0.93 SSIM
0.81 0.83 0.85 0.84 Precision
0.93 0.94 0.91 0.92 Recall
50 0.88 0.91 0.89 0.88 F1-score
27.56 28.68 28.49 28.27 PSNR
0.92 0.93 0.93 0.94 SSIM
3.0 q
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Figure 12. G-Loss, D-Loss, and P-Loss over training iterations under
different scale data sets
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The detection outcomes of the CAE-D-GAN method are
compared in this study with those of GANomaly [20], Efficient-
GAN [21], Skip-GAN [22], and EGBAD [23]. The suggested
approach is algorithmically based on an unsupervised learning
approach and is structurally made up of a dual GAN cascade
and a convolutional autoencoder. The suggested CAE-D-GAN
model differs from models like GANomaly mostly in these two
areas. The training parameter setups for every model are shown
in table 2. The five models' best AUROC values on chest X-ray
datasets at various sizes are shown in figure /3. The CAE-D-
GAN model, which performs best in detecting abnormalities in
chest X-rays, is proposed in this work. The performance
indicators of the five models on the chest X-ray dataset are
shown in table 3. It can be seen that the proposed model has
high detection accuracy, good image reconstruction ability and
high image signal-to-noise ratio. The proposed approach has
clear benefits in terms of interpretability, training speed, and
reconstruction quality.

Table 2. The training parameter settings

Methods Input Batch Epochs Whether
sizes sizes each
model
was re-
trained
GANormaly | 256x256 64 50 Y
Efficient- 256%256 64 50 Y
GAN
Skip-GAN 128x128 64 50 Y
EGBAD 128x128 64 50 Y
CAE-D- 128x128 64 50 Y
GAN

o6 085 W GANomaly

Efficient-GAN

&
&

o8t
Skip-GAN

e ors EGBAD
CAED-GAN

oz

077
075 om
75%

The sample ratios

Detection performance{AUC)

25% 0% 100%

Figure 13. The detection accuracy of different models under different
sample proportions

Table 3. Five Unsupervised Anomaly Detection Model
Performance Metrics

W Preci [Recall| Fl- AUROC| PSNR| SSIM
Methods sion score
GANormaly 0.80 0.90 0.84 0.76 | 26.19 | 0.79
Efficient- 0.81 0.86 0.86 0.78 26.58 0.83
GAN
Skip-GAN 0.83 0.89 | 0.90 0.82 | 27.93 | 091
EGBAD 0.83 0.93 0.88 0.80 | 27.32 | 0.89
CAE-D- 0.85 0.95 091 0.86 | 28.46 | 0.94
GAN
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6. DISCUSSION AND CONCLUSIONS

To overcome the imbalance of positive and negative samples in
chest X-ray pictures, we develop an unsupervised anomaly
detection technique based on normal samples. The technique
extracts the possible feature vector distribution in normal data
more precisely by utilizing a network structure that combines a
double GAN cascade with a convolutional autoencoder. In
order to rebuild high-quality photos, we employ the GAN
module to learn the de-degradation ability during the game
process. In order to reach convergence, we improve the network
model using different loss functions, including SSIM. The
CAE-D-GAN model presented in this paper outperforms the
earlier advanced GAN anomaly detection model for the chest
X-ray dataset. By using only normal samples for training, we
are able to detect chest X-ray anomalies.

The main contributions of this paper are:

1. For the first time, we apply the unsupervised anomaly
detection technique of double GAN and convolutional
autoencoder to the detection of abnormalities in chest X-rays.

2. The network is optimised using the error loss between the
original and reconstructed samples, and it only requires normal
samples for training.

3. The network model presented in this research has a better
generalisation ability and a higher detection accuracy than the
previous advanced anomaly detection model for chest X-ray
abnormality detection.

To develop a more complete system for identifying
abnormalities in chest X-rays, we can further optimise the
network model structure in the future depending on the features
of chest X-ray pictures. Furthermore, by lowering network
model parameters and cutting down on network operating time,
the upcoming research paths seek to increase the effectiveness
of real-world medical applications.
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