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ABSTRACT- Remote photoplethysmography (rPPG) is becoming increasingly popular as a non-contact method for tracking 

physiological parameters like heart rate and respiration rate. However, the accuracy of rPPG signals is often compromised by various 

factors, including movement, lighting variations, and sensor noise. These challenges can severely impact signal quality, leading to 

unreliable measurements and hindering the practical application of rPPG-based systems. In this research, we introduced and assessed 

the effectiveness of a hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) 

Autoencoder model specifically designed for reliable anomaly detection in rPPG time-series data. This model aims to detect 

anomalies such as sensor noise and motion artifacts within the remote photoplethysmography signal. The UBFC-rPPG, COHFACE, 

and the PURE datasets were utilized for training and testing, demonstrating excellent performance in distinguishing clean segments 

from noisy ones, with high precision, recall, F1-score, and low false positive rates. 
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░ 1. INTRODUCTION   
The medical field has experienced significant changes over 

time, leading to improvements in its dependability and 

effectiveness in patient care. The creation of techniques for 

assessing physiological parameters has become essential. A 

recent study [20] suggests that noncontact technologies can be 

used to gather information about an individual's physiological 

signals. This remote monitoring approach, called remote 

photoplethysmography (rPPG), is a groundbreaking non-

contact method for estimating vital signs by analyzing the color 

variations in human skin captured by video cameras. Through 

video processing techniques, an algorithm extracts skin pixel 

data from each frame, and then the spatial averages of these 

pixels are calculated for each image. This process produces a 

series of temporal rPPG signals derived from spatial averages. 

By examining these temporal data, it is possible to extract the 

physiological information contained within the rPPG signal. 

This technology enables the monitoring of physiological 

metrics such as heart rate (HR), body temperature (BT), 

respiratory rate (RR), blood oxygen saturation (SpO2), heart 

rate variability (HRV), and blood pressure (BP) [6–12], without 

the need for physical contact, offering significant. 
 

Anomalies are a fundamental aspect of nearly every system in 

today's world, which is inundated with numerous Internet of 

Things (IoT) devices generating vast amounts of data [10]. The 

process of anomaly detection, which involves identifying 

unexpected items or events within data, has garnered significant 

interest among researchers and practitioners. It is now a primary 

focus in data mining and quality assurance [5]. This field has 

been explored across various application domains and has seen 

considerable advancements. In the realm of rPPG signals, 

anomalies refer to unexpected, irregular, or abnormal patterns 

within the extracted physiological signal that deviate from the 

anticipated heart-related waveform. Such anomalies can greatly 

affect the accuracy of vital sign estimation. The rPPG signals 

are particularly susceptible to various types of anomalies that 

can degrade signal quality and lead to incorrect heart rate or 

respiratory rate estimations. These anomalies are caused by user 

movement, environmental conditions, sensor limitations, and 

physiological variability [10],[11]. Table 1 presents the main 

common types of anomalies that can impair rPPG signal quality 

and their causes. 
 

Some studies collectively highlighted the crucial role of pre-

processing methods and anomaly detection systems in 

enhancing the dependability of rPPG signals for real-world use. 

However, there are still obstacles to overcome, especially when 

dealing with complex real-world scenarios that involve 

changing lighting conditions, facial obstructions, and 

significant head movements.  
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To address these obstacles, it is crucial to obtain an accurate 

rPPG signal. Therefore, developing an algorithm that can 

identify irregularities and assess signal quality in real-time is 

necessary to enhance the use of rPPG technology in practical 

applications. Due to the scarcity of research on anomaly 

detection in rPPG signals, our study focuses on these aspects. 

The main objective of this paper is to develop a Hybrid CNN–

BiLSTM Autoencoder model designed for robust anomaly 

detection in the rPPG time series data. Unlike methods that rely 

solely on CNNs, which focus on capturing local spatial 

characteristics, or those that use only LSTMs, which 

concentrate on temporal relationships, our model combines the 

strengths of both approaches. The CNN layers are adept at 

detecting local skin color variations due to changes in blood 

volume. In contrast, the BiLSTM layers are capable of 

modeling long-term sequential patterns over time. This 

combination enhances the model's ability to differentiate 

between clean physiological signals and anomalies such as 

motion artifacts or sensor noise. An ablation study reveals that 

our hybrid model significantly outperforms models based solely 

on CNNs or LSTMs. 
 

The key contributions are as follows: (i) To preprocess the data 

from the video and compute rPPG signals. (ii) To segment 

remote photoplethysmography signals into short windows. (iii) 

To build and train a hybrid CNN-BiLSTM Autoencoder model 

for identifying segments where the anomaly significantly 

distorts the signal. (iv) To use the reconstruction error to detect 

anomalies. 
 

The rest of the work is organized as follows: Section 2 covers 

related works, section 3 details the methodology we used, 

section 4 provides the experiments and results, section 5 

presents a discussion, and section 6 offers the conclusion. 

░ Table 1. Types of Anomalies in rPPG Signals [1-26] 
 

Anomaly type Cause of anomaly 

Physiological Irregularities Arrhythmias or stress 

Motion-Induced Anomalies  head movement, facial 

expressions, or body motion 

Occlusion-Related Anomalies Facial occlusions 

Lighting-Induced Artifacts Variations in ambient light or 

screen flicker 

Sensor-Related Anomalies hardware limitations 

 

░ 2. RELATED WORKS 
Many researchers have concentrated on improving the quality 

of rPPG signals by identifying and reducing noise and 

irregularities. Initial methods mainly utilized signal processing 

techniques like bandpass filtering [20] and ICA [21] to 

distinguish the physiological signal from noise. De Haan and 

Jeanne [14] introduced the CHROM method, which enhances 

resistance to motion by projecting the color signal into a 

chrominance subspace. Poh et al. [15] also showed that blind 

source separation techniques can successfully extract rPPG 

signals from facial videos, even when significant artifacts are 

present. 
 

Recent studies have increasingly focused on solutions based on 

machine learning. Speth et al. [4] presented a deep learning 

model that is anomaly-aware and discourages the prediction of 

unrealistic periodic signals, thereby enhancing the robustness of 

rPPG in unusual conditions. Botina-Monsalve et al. [5] 

investigated the use of LSTM networks for deep temporal 

filtering of rPPG signals, achieving better denoising results than 

traditional filters. Furthermore, Liu and Yuen [9] developed a 

deep disentanglement model that can separate environmental 

noise from physiological signals, thus improving the signal-to-

noise ratio in various conditions. 
 

There have been initiatives to evaluate and eliminate unreliable 

video segments before extracting signals. Kim et al. [3] 

introduced a screening technique based on noise assessment, 

which greatly enhances the quality of rPPG signals by removing 

frames of poor quality. Additionally, the recent DiffPhys model 

by Chen et al. [2] utilizes diffusion models to improve rPPG 

signals by learning the natural periodicity of blood flow, 

showing promising outcomes in boosting signal accuracy. 

 

░ 3. PROPOSED METHODOLOGY  
Figure 1 illustrates the system diagram. This section outlines 

the methodology employed to address the challenges mentioned 

earlier. A hybrid model combining CNN and BiLSTM 

Autoencoder was introduced to learn the reconstruction of only 

normal patterns. By comparing the input and output and setting 

a threshold on the error, anomalies such as motion artifacts in 

the rPPG signal extraction process are identified. The 

performance was evaluated based on specificity and sensitivity. 
 

3.1. Video Processing and Initial Remote 

Photoplethysmography Signal Estimation 
Initially, video frames undergo processing to identify and 

monitor the region of interest (ROI) by employing the technique 

outlined in [24]. 
 

3.1. Time Series 
A time series is a set of observations documented in a 

chronological order. Time series medical data pertains to 

information gathered over time from patients or medical 

devices, encompassing vital signs, laboratory results, and 

sensor data from wearable technology [26]. This type of data is 

utilized to monitor the development of a patient's condition, 

assess the effectiveness of treatments, or detect potential health 

concerns. In the realm of photoplethysmography signals, a time 

series denotes a sequence of signal values recorded at regular 

intervals, usually derived from facial video frames. Each value 

in the series represents the minute changes in skin color over 

time, resulting from fluctuations in blood volume due to the 

cardiac cycle. 

http://www.ijeer.forexjournal.co.in/
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Figure 1. General methodology for detecting anomalies in the remote 

photoplethysmography signal 
 

3.2. Autoencoder 
An autoencoder (AE) is a type of unsupervised neural network 

designed to discover the optimal encoding and decoding 

strategy from data. Typically, it includes an input layer, an 

output layer, an encoder neural network, a decoder neural 

network, and a latent space. When data is introduced to the 

network, the encoder compresses it into the latent space, while 

the decoder reconstructs the encoded data back into the output 

layer. The resulting output is then compared to the original data, 

and any errors are backpropagated through the network to adjust 

the weights accordingly [26]. 
 

3.3. Overview of the Proposed Model's Structure 
A hybrid model architecture is introduced, as illustrated in 

Figure 1. This model integrates Convolutional Neural Networks 

(CNNs) for extracting features and Bidirectional Long Short-

Term Memory (BiLSTM) layers for learning temporal patterns, 

all within an Autoencoder framework. Its purpose is to identify 

and reconstruct sensor noise anomalies in rPPG time-series 

signals. The model is characterized as an Autoencoder, 

consisting of a hybrid encoder (CNN-BiLSTM), a latent 

bottleneck depicted by RepeatVector, and a hybrid decoder 

(CNN-BiLSTM). The following sections provide a detailed 

layer-by-layer description of the model's features. 

3.3.1. Hybrid Encoder 

The initial layer is a one-dimensional convolutional (Conv1D) 

layer, configured with thirty-two (32) filters and a kernel size of 

three (3), which determines the filter dimensions. The input 

shape is defined as (300, 1), signifying a time-series window of 

300 frames that has been normalized and reshaped into a single 

channel, representing the rPPG signal amplitude. This layer 

utilizes the 'ReLU' activation function. Following this, a 

MaxPooling1D layer is incorporated, with a pool size of two 

(2), to downsample the temporal dimension, thereby reducing 

computational load while preserving key features. 

Subsequently, another Conv1D layer is employed to identify 

more intricate patterns over a broader receptive field. This layer 

is set with sixty-four (64) filters and a kernel size of three (3), 

and also uses the 'ReLU' activation function. Another 

MaxPooling1D layer is added to this second Conv1D layer to 

further downsample, effectively halving the time steps again for 

a more compact representation, with a pool size of two (2). 
 

Next, two BiLSTM layers are introduced. The first BiLSTM 

layer, with sixty-four (64) units or memory cells, is designed to 

capture temporal dependencies in both forward and backward 

directions, with return sequences set to True. The second 

BiLSTM layer, containing thirty-two (32) units or memory 

cells, aims to produce a fixed-size encoded vector (bottleneck) 

that encapsulates the temporal dynamics of the window, with 

return sequences set to False. 
 

Following the second BiLSTM, a RepeatVector is utilized to 

prepare the bottleneck vector for reintroduction into the decoder 

for sequence reconstruction. 

3.3.2. Hybrid Decoder 

To initiate the process, two BiLSTM layers were employed. The 

first layer, consisting of thirty-two (32) units or memory cells, 

is responsible for initiating the reconstruction of the time series 

from its compressed form. The return sequences were 

configured to True. The second layer, with sixty-four (64) units 

or memory cells, is designed to further decode the sequence by 

leveraging long-term dependencies, with return sequences also 

set to True. 
 

Following this, an UpSampling1D Layer is incorporated into 

the preceding layer, with the size parameter set to two (2), 

aiming to restore temporal resolution.  
 

A one-dimensional convolution (Conv1D) layer is then applied 

to enhance the features of the upsampled signal. This layer is 

configured with sixty-four (64) filters and a kernel size of three 

(3), utilizing the ‘ReLU’ activation function.  
 

Another UpSampling1D Layer is added to the previous 

Conv1D layer, with the size parameter again set to two (2), to 

recover the original sequence length completely.  
 

An additional Conv1D layer is applied to smooth the 

intermediate features, featuring thirty-two (32) filters and a 

kernel size of three (3), with the ‘ReLU’ activation function.  
 

The final output layer is a one-dimensional convolution 

(Conv1D) that aims to produce the reconstructed signal in the 

same shape as the input. This layer is configured with one filter 

and a kernel size of one, using the ‘Linear’ activation function. 
 

3.4. Segmenting the rPPG Signal 
Segmenting remote photoplethysmography signals into brief 

windows is a crucial step in preparing time-series data for 

models such as CNNs or BiLSTMs. This task involves breaking 

down a lengthy, continuous signal into smaller, overlapping or 

non-overlapping segments, making them more manageable for 

analysis and modeling. Such segmentation helps in capturing 

local temporal patterns. Considering a raw rPPG signal 𝑋 =
{𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝐾−1}, where 𝑋 ∈ ℝ𝐾 represents the complete 

time series rPPG signal, the total number of frames 𝐾, and the 

scalar value of the rPPG 𝑥𝑡 at time t. The number of segments 

can then be determined as [23]: 

http://www.ijeer.forexjournal.co.in/
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𝑁 =
𝐾−𝑊

𝑆
+ 1                 (1) 

 

Where W is the window length, and S is the stride. And for each 

window 𝑋(𝑖) ∈ ℝ𝑊is given by 𝑋(𝑖) = {𝑥𝑖𝑆 , 𝑥𝑖𝑆+1, . . , 𝑥𝑖𝑆+𝑊−1}, 

with 𝑖 ∈ {0, 1, 2, … , 𝑁 − 1} 
 

3.5. Measurement of Reconstruction Error 
The reconstruction model aims to identify distorted parts in 

rPPG time series by understanding the behavior of a clean 

signal. It flags segments that deviate from this learned pattern. 

Each window 𝑋(𝑖) ∈ ℝ𝑊 is taken as input, and the model 

outputs the reconstructed segment 𝑋̃(𝑖) ∈ ℝ𝑊 for each window. 

The difference between the input and the reconstructed output 

is known as the reconstruction error. The model is trained to 

minimize this error between the input and output. During 

training, the model is exposed only to clean segments, allowing 

it to learn their typical structure. During inference, if the input 

deviates from this structure, the model struggles to reconstruct 

it accurately, resulting in a high error. The reconstruction error 

is measured as the Mean Absolute Error (MAE) per segment, 

which can be determined as [23]: 

𝑒 =  
1

𝑊
∑ |𝑋𝑡 − 𝑋̃𝑡|𝑊

𝑡=1                   (2) 

 

To determine an anomaly, we first compute the error 𝑒𝑖 for each 

segment 𝑋(𝑖), which can be derived from equation (2) as: 

𝑒𝑖 =
1

𝑊
∑ |𝑋𝑡

(𝑖)
− 𝑋̃𝑡

(𝑖)
|𝑊

𝑡=1               (3) 

 

A threshold was determined based on the reconstruction errors 

from the training set. This threshold is specified in [23] as 

follows: 

Ω =  𝜇𝑒 − 𝛽 ∗ 𝜎𝑒                          (4) 
 

Where 𝜇𝑒  and 𝜎𝑒 respectively represent the mean and the 

standard deviation of the errors on the training data. The 

coefficient 𝛽 acts as the sensitivity factor, with a value of 2 as 

stated in the literature [23]. The threshold Ω is used to flag the 

anomaly by comparing it to the reconstruction error for each 

segment. If 𝑒𝑖
𝑡𝑒𝑠𝑡 >  Ω, then the segment 𝑋(𝑖) is classified as 

“anomalous”; otherwise, it is deemed “normal”. 
 

3.6. Performance Analysis 
The proposed system model was evaluated using established 

metrics from the literature, such as precision (PR), recall (R), 

F1-score, and false positive rate (FPR). Precision denotes the 

positive predictive value, recall (also referred to as sensitivity) 

indicates the True positive rate (TPR), and the F1-score is 

derived as the harmonic mean of precision and recall. The 

formulas for each of these metrics are specified in [26] as 

follows: 

𝑃𝑅 =
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑃)
                           (5) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑁)
                (6) 

 

𝐹𝑃𝑅 =
𝐹𝑃 

(𝐹𝑃 + 𝑇𝑁)
                      (7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑅 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑅+ 𝑅𝑒𝑐𝑎𝑙𝑙)
             (8) 

 

TP represents True Positives, which are the correctly predicted 

positive cases. TN stands for True Negatives, indicating the 

correctly predicted negative cases. FP refers to False Positives, 

where positive cases are incorrectly predicted. FN denotes False 

Negatives, where negative cases are incorrectly predicted. 

 

░ 4. EXPERIMENTS AND RESULTS 
4.1. Dataset 
The experiment utilizes public datasets for both training and 

testing. It involves three databases, including the PURE dataset 

[28], the COHFACE dataset [27], and the UBFC-RPPG 

database [22]. Each of these three databases consists of 

synchronized videos and physiological signals. Only PURE was 

used for training. All three databases are used for testing. Table 

2 summarizes the specific parameters for each. 
 

░ Table 2. Summary of the Datasets 
 

Datasets Subjects Frame 

rate 

Resolution Videos 

COHFACE 40 20 fps 640 x 480 160 

UBFC-

RPPG 

50 20-30 fps 640 x 480 50 

PURE 10 30 fps 640 x 480 60 

 

4.2. Data Preparation and Detection of 

Anomalous Segments 
The remote photoplethysmography signal presented in figure 2 

was extracted from the PURE dataset. Using a window length 

of 300 frames and a stride of 50 frames between windows, the 

raw rPPG signal was divided into N overlapping segments. the 

value of N is determined using equation (1). A low-pass filter 

was computed to remove high-frequency noise, simulating a 

"clean" reference signal. These segments are the noisy inputs 

used to train the model. The same segmentation method was 

applied to the filtered signal to use as the denoising target. 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Remote photoplethysmography signal extracted 
 

Figure 3 illustrates the reconstruction loss from the test data 

alongside the static reconstruction threshold derived from the 

http://www.ijeer.forexjournal.co.in/
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training loss. The signal in figure 2 was divided into N = 35 

segments. The model identifies an anomaly segment by 

computing the Mean Absolute Error (MAE) of the training data, 

with the highest MAE loss value serving as the Reconstruction 

Error Threshold. The model processes the test data, and due to 

the presence of an anomalous segment in the sequence, it is 

anticipated to reconstruct poorly, resulting in a high 

reconstruction loss at these anomalous points. Any 

reconstruction test loss value exceeding the reconstruction error 

threshold is marked as an anomaly.  

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Test reconstruction error with static threshold 
 

In figure 4, the motion artifacts present in the signal during 

video recording have been detected clearly. Our CNN-BiLSTM 

model has detected two (2) anomalous segments during the 

reconstruction loss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Motion artifacts detected on the rPPG signal 

 

Figure 5 depicts the reconstructed rPPG signal following the 

removal of anomalies using the proposed CNN–BiLSTM 

Autoencoder. The blue waveform indicates the purified rPPG 

signal, while the green sections represent the parts that were 

reconstructed to substitute anomalous intervals. As illustrated, 

the model effectively reconstructs smooth, physiologically 

consistent waveforms in areas previously impacted by noise or 

motion artifacts. This highlights the model's capability to 

accurately identify and rectify distorted segments without 

excessive smoothing or losing the periodic structure of the rPPG 

waveform, which is crucial for the reliable downstream 

estimation of physiological parameters such as heart rate and 

respiration. 
 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 5. The final rPPG signal after reconstructing the two anomaly 

segments 
 

4.3. Model Performance Evaluation 
The confusion matrix presented in figure 6 is used to represent 

the matrix of predicted labels. It illustrates that the autoencoder 

demonstrated strong differentiation, with True Positives (TP) = 

1, True Negatives (TN) = 33, False Positives (FP) = 1, and False 

Negatives (FN) = 0. This suggests that all noisy samples were 

accurately identified (recall = 1.000), while only one normal 

sample was incorrectly classified as noisy (false positive rate = 

2.94%). Consequently, the model prioritizes high sensitivity, 

ensuring no anomalies are overlooked, which is crucial for 

physiological monitoring applications where missing anomalies 

are more critical than occasional false alarms. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Confusion matrix of the proposed model 
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Figure 7 illustrates the precision and recall for different 

threshold values. The analysis of Precision and Recall resulted 

in an Average Precision (AP) score of 1.000, indicating that the 

model flawlessly prioritized anomalous samples over normal 

ones. This finding illustrates that the autoencoder achieves 

optimal precision-recall balance across various thresholds, 

further supporting the effectiveness of using reconstruction 

error as an anomaly score. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Precision and recall for different threshold values 

The receiver operating characteristic curves (ROC) for the 

proposed approach are presented in figure 8. The ROC analysis 

of the autoencoder yielded an AUC of 1.000, indicating perfect 

differentiation between normal and abnormal segments. This 

performance, which is not dependent on a specific threshold, 

shows that the model consistently assigns higher reconstruction 

errors to anomalies compared to normal signals, confirming its 

capability to detect noise-induced deviations in the rPPG 

waveform accurately. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Receiver operating characteristic curves for the proposed 

approach 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Sensitivity of anomaly detection to threshold choice 

To evaluate the strength of the anomaly detection framework, 

we conducted a threshold sensitivity analysis by examining 

precision, recall, and F1-score over various reconstruction error 

thresholds in figure 9. The analysis showed that the model 

achieves its highest F1-score of 1.000 at a threshold of 1.0999, 

suggesting an almost perfect distinction between normal and 

anomalous segments. Our predetermined threshold, based on 

the 95th percentile of the error distribution (1.938), is slightly 

lower than this optimal point. This choice emphasizes recall, 

ensuring all anomalies are detected, while remaining very close 

to the F1-optimal threshold, thus preserving high precision. 

This closeness indicates that the model is not overly dependent 

on the threshold choice and that heuristic percentile-based 

thresholds can perform similarly to optimal data-driven cutoffs. 

Such consistency enhances the method's reliability for use in 

real-world monitoring situations where adaptive threshold 

adjustment may not always be possible. 
 

4.4. Ablation Study 
We performed an ablation study to compare a CNN-only model, 

a BiLSTM-only model, and our proposed CNN-BiLSTM 

Autoencoder. As illustrated in table 3, the hybrid model 

consistently outperformed the others, achieving the highest 

precision, recall, and F1-score, along with the lowest false 

positive rate. This highlights the complementary advantages of 

combining CNN and BiLSTM layers. 

░ Table 3. Simulation result using testing data 
 

 

DATASETS 

 

MODELS 

METRICS 

PR 

(%) 

Recall 

(%) 

F1-

score 

(%) 

FPR 

(%) 

 
 

COHFACE 

CNN 60 86 79 4.7 

BiLSTM 50 95 80 2.02 

CNN-BiLSTM 70 100 82 1.8 

 
 

UBFC-RPPG 

CNN 70 75 80 2.06 

BiLSTM 60 89 77 3.3 

CNN-BiLSTM 75 100 85 1.6 

 

 
PURE 

CNN 50 86 50 3.9 

BiLSTM 50 99 59 3.05 

CNN-BiLSTM 50 100 66.7 2.94 

http://www.ijeer.forexjournal.co.in/
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4.5. Comparative Evaluation with other Methods 
To assess the performance of the proposed Hybrid CNN–

BiLSTM Autoencoder, we conducted a comparison with 

several leading rPPG anomaly detection and enhancement 

techniques. Despite the use of different architectures and 

evaluation criteria in prior research, our qualitative analysis 

indicates that the proposed model excels in anomaly 

discrimination, reconstruction accuracy, and real-time 

applicability. 

Table 4 presents a summary of the main features and 

performance patterns of recent methods for anomaly detection 

and rPPG enhancement, in comparison to our proposed model. 

Unlike previous studies that primarily focus on signal 

enhancement or heart-rate estimation, our method prioritizes 

anomaly differentiation and reconstruction accuracy, providing 

both interpretability and suitability for real-time use. 

░ Table 4. Proposed model comparison with existing works 
 

Methods  Dataset (s) Evaluation 

metrics 

Key findings Comparison 

to the 

proposed 

model  

LSTM-based 

filter [5] 

MMSE-

HR 

 
VIPL-HR 

 

COHFACE 

HR-

MAE, 

RMSE 

An LSTM-

based filter is 

a better 
alternative to 

improve the 

heart rate 
measurement. 

 moderate 

robustness to 
motion 

Our model 

achieves 

comparable 
efficiency 

with higher 

robustness to 
motion and 

illumination 

artifacts. 

DiffPhys [2] UBFC-

rPPG, 

 
PURE 

SNR, 

HR Error 

Enhances 

SNR under 

noise; 
improves 

pulse 

estimation in 
low-light 

scenarios. 

Our model 

complement

s this by 
performing 

anomaly 

localization 
and 

correction 

before HR 
estimation. 

Optimal 

Digital 
Filtering 

[16] 

Own data SNR, 

Filter 
Response 

Improves 

signal 
conditioning 

but lacks 

adaptive 
temporal 

modeling. 

Our model 

captures both 
spatial and 

temporal 

dependencies 
dynamically. 

Proposed: 

CNN–

BiLSTM 

Autoencoder 

UBFC-
rPPG 

 

 PURE 
 

COHFACE 

AUC, 
AP, F1, 

FPR, 

Recall 

robust real-
time anomaly 

detection and 

signal 
reconstruction. 

Demonstrate
s superior 

separability, 

stability 
across 

thresholds, 

and near-
real-time 

inference (24 

Hz). 

 

░ 5. DISCUSSION 
The Hybrid CNN–BiLSTM Autoencoder offers a balance 

between precision and computational speed, making it ideal for 

real-time remote photoplethysmography (rPPG) monitoring. 

With around 1.2 million parameters, the model can handle a 

300-frame sequence in about 42 milliseconds on a GPU and 

approximately 130 milliseconds on a CPU, allowing for nearly 

instantaneous inference. This level of efficiency facilitates 

ongoing physiological monitoring with minimal delay. 
 

Nonetheless, certain limitations persist. The model's validation 

was largely conducted using controlled datasets (UBFC-rPPG, 

PURE, COHFACE), which might not accurately reflect real-

world clinical scenarios characterized by varying lighting, 

movement, or skin tones. Moreover, for continuous 

deployment, it would be essential to ensure robust calibration, 

privacy protection, and validation across diverse populations. 

Future efforts will concentrate on adaptive thresholding, 

integrating multimodal data, and optimizing for edge and 

mobile devices to improve practical usability. 

░ 6. CONCLUSION 
In this study, we presented and validated the efficacy of a hybrid 

CNN-BiLSTM Autoencoder model tailored for dependable 

anomaly detection in rPPG time-series data. This model is 

designed to identify anomalies such as sensor noise and motion 

artifacts within the remote photoplethysmography signal. The 

procedure starts by segmenting the signal into multiple parts. 

Subsequently, convolutional layers are employed to capture 

localized spatial and temporal patterns. Ultimately, the 

bidirectional LSTM's ability is harnessed to model sequential 

dependencies over time, enabling the model to effectively learn 

representations of clean physiological signals. Quantitative 

analyses using reconstruction error thresholds demonstrated 

outstanding performance with the UBFC-rPPG, COHFACE, 

and the PURE datasets, distinguishing clean segments from 

noisy ones with high precision, recall, F1-score, and low false 

positive rates. 
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