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ABSTRACT- Remote photoplethysmography (rPPG) is becoming increasingly popular as a non-contact method for tracking
physiological parameters like heart rate and respiration rate. However, the accuracy of rPPG signals is often compromised by various
factors, including movement, lighting variations, and sensor noise. These challenges can severely impact signal quality, leading to
unreliable measurements and hindering the practical application of rPPG-based systems. In this research, we introduced and assessed
the effectiveness of a hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM)
Autoencoder model specifically designed for reliable anomaly detection in rPPG time-series data. This model aims to detect
anomalies such as sensor noise and motion artifacts within the remote photoplethysmography signal. The UBFC-rPPG, COHFACE,
and the PURE datasets were utilized for training and testing, demonstrating excellent performance in distinguishing clean segments

from noisy ones, with high precision, recall, F1-score, and low false positive rates.
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1. INTRODUCTION

The medical field has experienced significant changes over
time, leading to improvements in its dependability and
effectiveness in patient care. The creation of techniques for
assessing physiological parameters has become essential. A
recent study [20] suggests that noncontact technologies can be
used to gather information about an individual's physiological
signals. This remote monitoring approach, called remote
photoplethysmography (rPPG), is a groundbreaking non-
contact method for estimating vital signs by analyzing the color
variations in human skin captured by video cameras. Through
video processing techniques, an algorithm extracts skin pixel
data from each frame, and then the spatial averages of these
pixels are calculated for each image. This process produces a
series of temporal rPPG signals derived from spatial averages.
By examining these temporal data, it is possible to extract the
physiological information contained within the rPPG signal.
This technology enables the monitoring of physiological
metrics such as heart rate (HR), body temperature (BT),

respiratory rate (RR), blood oxygen saturation (SpO2), heart
rate variability (HRV), and blood pressure (BP) [6—12], without
the need for physical contact, offering significant.

Anomalies are a fundamental aspect of nearly every system in
today's world, which is inundated with numerous Internet of
Things (IoT) devices generating vast amounts of data [10]. The
process of anomaly detection, which involves identifying
unexpected items or events within data, has garnered significant
interest among researchers and practitioners. It is now a primary
focus in data mining and quality assurance [5]. This field has
been explored across various application domains and has seen
considerable advancements. In the realm of rPPG signals,
anomalies refer to unexpected, irregular, or abnormal patterns
within the extracted physiological signal that deviate from the
anticipated heart-related waveform. Such anomalies can greatly
affect the accuracy of vital sign estimation. The rPPG signals
are particularly susceptible to various types of anomalies that
can degrade signal quality and lead to incorrect heart rate or
respiratory rate estimations. These anomalies are caused by user
movement, environmental conditions, sensor limitations, and
physiological variability [10],[11]. Table I presents the main
common types of anomalies that can impair rPPG signal quality
and their causes.

Some studies collectively highlighted the crucial role of pre-
processing methods and anomaly detection systems in
enhancing the dependability of rPPG signals for real-world use.
However, there are still obstacles to overcome, especially when
dealing with complex real-world scenarios that involve
changing lighting conditions, facial obstructions, and
significant head movements.
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To address these obstacles, it is crucial to obtain an accurate
rPPG signal. Therefore, developing an algorithm that can
identify irregularities and assess signal quality in real-time is
necessary to enhance the use of rPPG technology in practical
applications. Due to the scarcity of research on anomaly
detection in rPPG signals, our study focuses on these aspects.
The main objective of this paper is to develop a Hybrid CNN-—
BiLSTM Autoencoder model designed for robust anomaly
detection in the rPPG time series data. Unlike methods that rely
solely on CNNs, which focus on capturing local spatial
characteristics, or those that use only LSTMs, which
concentrate on temporal relationships, our model combines the
strengths of both approaches. The CNN layers are adept at
detecting local skin color variations due to changes in blood
volume. In contrast, the BiLSTM layers are capable of
modeling long-term sequential patterns over time. This
combination enhances the model's ability to differentiate
between clean physiological signals and anomalies such as
motion artifacts or sensor noise. An ablation study reveals that
our hybrid model significantly outperforms models based solely
on CNNs or LSTMs.

The key contributions are as follows: (i) To preprocess the data
from the video and compute rPPG signals. (i) To segment
remote photoplethysmography signals into short windows. (iii)
To build and train a hybrid CNN-BiLSTM Autoencoder model
for identifying segments where the anomaly significantly
distorts the signal. (7v) To use the reconstruction error to detect
anomalies.

The rest of the work is organized as follows: Section 2 covers

related works, section 3 details the methodology we used,

section 4 provides the experiments and results, section 5

presents a discussion, and section 6 offers the conclusion.

% Table 1. Types of Anomalies in rPPG Signals [1-26]
Anomaly type Cause of anomaly

Physiological Irregularities Arrhythmias or stress

head movement, facial
expressions, or body motion

Motion-Induced Anomalies

Occlusion-Related Anomalies Facial occlusions

Lighting-Induced Artifacts Variations in ambient light or

screen flicker

Sensor-Related Anomalies hardware limitations

2. RELATED WORKS

Many researchers have concentrated on improving the quality
of rPPG signals by identifying and reducing noise and
irregularities. Initial methods mainly utilized signal processing
techniques like bandpass filtering [20] and ICA [21] to
distinguish the physiological signal from noise. De Haan and
Jeanne [14] introduced the CHROM method, which enhances
resistance to motion by projecting the color signal into a
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chrominance subspace. Poh et al. [15] also showed that blind
source separation techniques can successfully extract rPPG
signals from facial videos, even when significant artifacts are
present.

Recent studies have increasingly focused on solutions based on
machine learning. Speth et al. [4] presented a deep learning
model that is anomaly-aware and discourages the prediction of
unrealistic periodic signals, thereby enhancing the robustness of
rPPG in unusual conditions. Botina-Monsalve et al. [5]
investigated the use of LSTM networks for deep temporal
filtering of rPPG signals, achieving better denoising results than
traditional filters. Furthermore, Liu and Yuen [9] developed a
deep disentanglement model that can separate environmental
noise from physiological signals, thus improving the signal-to-
noise ratio in various conditions.

There have been initiatives to evaluate and eliminate unreliable
video segments before extracting signals. Kim et al. [3]
introduced a screening technique based on noise assessment,
which greatly enhances the quality of rPPG signals by removing
frames of poor quality. Additionally, the recent DiffPhys model
by Chen et al. [2] utilizes diffusion models to improve rPPG
signals by learning the natural periodicity of blood flow,
showing promising outcomes in boosting signal accuracy.

3, PROPOSED METHODOLOGY

Figure I illustrates the system diagram. This section outlines
the methodology employed to address the challenges mentioned
earlier. A hybrid model combining CNN and BiLSTM
Autoencoder was introduced to learn the reconstruction of only
normal patterns. By comparing the input and output and setting
a threshold on the error, anomalies such as motion artifacts in
the rPPG signal extraction process are identified. The
performance was evaluated based on specificity and sensitivity.

3.1. Video Processing and Initial Remote
Photoplethysmography Signal Estimation
Initially, video frames undergo processing to identify and

monitor the region of interest (ROI) by employing the technique
outlined in [24].

3.1. Time Series

A time series is a set of observations documented in a
chronological order. Time series medical data pertains to
information gathered over time from patients or medical
devices, encompassing vital signs, laboratory results, and
sensor data from wearable technology [26]. This type of data is
utilized to monitor the development of a patient's condition,
assess the effectiveness of treatments, or detect potential health
concerns. In the realm of photoplethysmography signals, a time
series denotes a sequence of signal values recorded at regular
intervals, usually derived from facial video frames. Each value
in the series represents the minute changes in skin color over
time, resulting from fluctuations in blood volume due to the
cardiac cycle.
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Figure 1. General methodology for detecting anomalies in the remote
photoplethysmography signal

3.2. Autoencoder

An autoencoder (AE) is a type of unsupervised neural network
designed to discover the optimal encoding and decoding
strategy from data. Typically, it includes an input layer, an
output layer, an encoder neural network, a decoder neural
network, and a latent space. When data is introduced to the
network, the encoder compresses it into the latent space, while
the decoder reconstructs the encoded data back into the output
layer. The resulting output is then compared to the original data,
and any errors are backpropagated through the network to adjust
the weights accordingly [26].

3.3. Overview of the Proposed Model's Structure
A hybrid model architecture is introduced, as illustrated in
Figure 1. This model integrates Convolutional Neural Networks
(CNNs) for extracting features and Bidirectional Long Short-
Term Memory (BiLSTM) layers for learning temporal patterns,
all within an Autoencoder framework. Its purpose is to identify
and reconstruct sensor noise anomalies in rPPG time-series
signals. The model is characterized as an Autoencoder,
consisting of a hybrid encoder (CNN-BiLSTM), a latent
bottleneck depicted by RepeatVector, and a hybrid decoder
(CNN-BIiLSTM). The following sections provide a detailed
layer-by-layer description of the model's features.

3.3.1. Hybrid Encoder

The initial layer is a one-dimensional convolutional (Conv1D)
layer, configured with thirty-two (32) filters and a kernel size of
three (3), which determines the filter dimensions. The input
shape is defined as (300, 1), signifying a time-series window of
300 frames that has been normalized and reshaped into a single
channel, representing the rPPG signal amplitude. This layer
utilizes the 'ReLU' activation function. Following this, a
MaxPooling1D layer is incorporated, with a pool size of two
(2), to downsample the temporal dimension, thereby reducing
computational load while preserving key features.

Subsequently, another Conv1D layer is employed to identify
more intricate patterns over a broader receptive field. This layer
is set with sixty-four (64) filters and a kernel size of three (3),
and also uses the 'ReLU' activation function. Another
MaxPooling1D layer is added to this second Conv1D layer to
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further downsample, effectively halving the time steps again for
a more compact representation, with a pool size of two (2).

Next, two BiLSTM layers are introduced. The first BILSTM
layer, with sixty-four (64) units or memory cells, is designed to
capture temporal dependencies in both forward and backward
directions, with return sequences set to True. The second
BiLSTM layer, containing thirty-two (32) units or memory
cells, aims to produce a fixed-size encoded vector (bottleneck)
that encapsulates the temporal dynamics of the window, with
return sequences set to False.

Following the second BiLSTM, a RepeatVector is utilized to
prepare the bottleneck vector for reintroduction into the decoder
for sequence reconstruction.

3.3.2. Hybrid Decoder

To initiate the process, two BILSTM layers were employed. The
first layer, consisting of thirty-two (32) units or memory cells,
is responsible for initiating the reconstruction of the time series
from its compressed form. The return sequences were
configured to True. The second layer, with sixty-four (64) units
or memory cells, is designed to further decode the sequence by
leveraging long-term dependencies, with return sequences also
set to True.

Following this, an UpSamplinglD Layer is incorporated into
the preceding layer, with the size parameter set to two (2),
aiming to restore temporal resolution.

A one-dimensional convolution (Conv1D) layer is then applied
to enhance the features of the upsampled signal. This layer is
configured with sixty-four (64) filters and a kernel size of three
(3), utilizing the ‘ReL.U” activation function.

Another UpSamplinglD Layer is added to the previous
Conv1D layer, with the size parameter again set to two (2), to
recover the original sequence length completely.

An additional ConvlD layer is applied to smooth the
intermediate features, featuring thirty-two (32) filters and a
kernel size of three (3), with the ‘ReLU’ activation function.

The final output layer is a one-dimensional convolution
(Conv1D) that aims to produce the reconstructed signal in the
same shape as the input. This layer is configured with one filter
and a kernel size of one, using the ‘Linear’ activation function.

3.4. Segmenting the rPPG Signal

Segmenting remote photoplethysmography signals into brief
windows is a crucial step in preparing time-series data for
models such as CNNs or BILSTMs. This task involves breaking
down a lengthy, continuous signal into smaller, overlapping or
non-overlapping segments, making them more manageable for
analysis and modeling. Such segmentation helps in capturing
local temporal patterns. Considering a raw rPPG signal X =
{x1, X3, X3, ..., Xg_1}, Where X € RX represents the complete
time series rPPG signal, the total number of frames K, and the
scalar value of the rPPG x, at time . The number of segments
can then be determined as [23]:

Website: www.ijeer.forexjournal.co.in

Hybrid CNN-BiLSTM Autoencoder for Anomaly Detection

706


http://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

N=%11 (1

Where W is the window length, and S is the stride. And for each
window X® € RYis given by X® = {x;5, Xis41, -+ Xissw—1}»
withi €{0,1,2,..,N — 1}

3.5. Measurement of Reconstruction Error

The reconstruction model aims to identify distorted parts in
rPPG time series by understanding the behavior of a clean
signal. It flags segments that deviate from this learned pattern.
Each window X® € RY is taken as input, and the model
outputs the reconstructed segment X € R" for each window.
The difference between the input and the reconstructed output
is known as the reconstruction error. The model is trained to
minimize this error between the input and output. During
training, the model is exposed only to clean segments, allowing
it to learn their typical structure. During inference, if the input
deviates from this structure, the model struggles to reconstruct
it accurately, resulting in a high error. The reconstruction error
is measured as the Mean Absolute Error (MAE) per segment,
which can be determined as [23]:

e= %ZKJX:: _X~t| )

To determine an anomaly, we first compute the error e; for each
segment X, which can be derived from equation (2) as:

) o
e =YX - X1 3)

A threshold was determined based on the reconstruction errors
from the training set. This threshold is specified in [23] as
follows:

Q= pe—pB*oe “4)

Where u, and o, respectively represent the mean and the
standard deviation of the errors on the training data. The
coefficient § acts as the sensitivity factor, with a value of 2 as
stated in the literature [23]. The threshold () is used to flag the
anomaly by comparing it to the reconstruction error for each
segment. If e/** > (, then the segment X is classified as
“anomalous”; otherwise, it is deemed “normal”.

3.6. Performance Analysis

The proposed system model was evaluated using established
metrics from the literature, such as precision (PR), recall (R),
F1-score, and false positive rate (FPR). Precision denotes the
positive predictive value, recall (also referred to as sensitivity)
indicates the True positive rate (TPR), and the Fl-score is
derived as the harmonic mean of precision and recall. The
formulas for each of these metrics are specified in [26] as
follows:

TP
PR = (TP + FP) )
TP
recall = m (6)
FP
FPR = o (7
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(PR * Recall)

F1 —score =2 *
(PR+ Recall)

(®)

TP represents True Positives, which are the correctly predicted
positive cases. TN stands for True Negatives, indicating the
correctly predicted negative cases. FP refers to False Positives,
where positive cases are incorrectly predicted. FN denotes False
Negatives, where negative cases are incorrectly predicted.

: ‘4. EXPERIMENTS AND RESULTS
4.1. Dataset

The experiment utilizes public datasets for both training and
testing. It involves three databases, including the PURE dataset
[28], the COHFACE dataset [27], and the UBFC-RPPG
database [22]. Each of these three databases consists of
synchronized videos and physiological signals. Only PURE was
used for training. All three databases are used for testing. Table
2 summarizes the specific parameters for each.

Table 2. Summary of the Datasets

Datasets Subjects Frame Resolution | Videos
rate
COHFACE 40 20 fps 640 x 480 160
UBFC- 50 20-30 fps 640 x 480 50
RPPG
PURE 10 30 fps 640 x 480 60

4.2. Data Preparation and Detection of

Anomalous Segments

The remote photoplethysmography signal presented in figure 2
was extracted from the PURE dataset. Using a window length
of 300 frames and a stride of 50 frames between windows, the
raw rPPG signal was divided into N overlapping segments. the
value of N is determined using equation (1). A low-pass filter
was computed to remove high-frequency noise, simulating a
"clean" reference signal. These segments are the noisy inputs
used to train the model. The same segmentation method was
applied to the filtered signal to use as the denoising target.

rPPG signal over time

186
—— raw rgb signal

185

Average intensity
-
@
>

-
@
w

182 1

0 250 500 750 1000 1250 1500 1750 2000
Frame

Figure 2. Remote photoplethysmography signal extracted

Figure 3 illustrates the reconstruction loss from the test data
alongside the static reconstruction threshold derived from the
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training loss. The signal in figure 2 was divided into N = 35
segments. The model identifies an anomaly segment by
computing the Mean Absolute Error (MAE) of the training data,
with the highest MAE loss value serving as the Reconstruction
Error Threshold. The model processes the test data, and due to
the presence of an anomalous segment in the sequence, it is
anticipated to reconstruct poorly, resulting in a high
reconstruction loss at these anomalous points. Any
reconstruction test loss value exceeding the reconstruction error
threshold is marked as an anomaly.

Test Reconstruction Error with Static Threshold from Training

Reconstruction Errar (MAE)

[ 5 10 15 20 25 30 35
Test Segment

—8— Test Reconstruction Error === Threshold = 1.0938 ® Anomaly segment

Figure 3. Test reconstruction error with static threshold
In figure 4, the motion artifacts present in the signal during
video recording have been detected clearly. Our CNN-BiLSTM

model has detected two (2) anomalous segments during the
reconstruction loss.

Detected Anomalies Segment in rPPG Signal

186
= Original Signal
= Anomaly Segments

185 A

Amplitude
._
@
=

-
@©
w

182

1000 1250 1750 2000

frame

0 250 500 750 1500

Figure 4. Motion artifacts detected on the rPPG signal

Figure 5 depicts the reconstructed rPPG signal following the
removal of anomalies using the proposed CNN-BiLSTM
Autoencoder. The blue waveform indicates the purified rPPG
signal, while the green sections represent the parts that were
reconstructed to substitute anomalous intervals. As illustrated,
the model effectively reconstructs smooth, physiologically
consistent waveforms in areas previously impacted by noise or
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motion artifacts. This highlights the model's capability to
accurately identify and rectify distorted segments without
excessive smoothing or losing the periodic structure of the rPPG
waveform, which is crucial for the reliable downstream
estimation of physiological parameters such as heart rate and
respiration.

rPPG Signal after Reconstruction

—— Clean Signal
= Reconstructed Segments

Amplitude
o

-1

-2

o 250 500 750 1000

Frame

1250 1500 1750 2000

Figure 5. The final rPPG signal after reconstructing the two anomaly
segments

4.3. Model Performance Evaluation

The confusion matrix presented in figure 6 is used to represent
the matrix of predicted labels. It illustrates that the autoencoder
demonstrated strong differentiation, with True Positives (TP) =
1, True Negatives (TN) = 33, False Positives (FP) = 1, and False
Negatives (FN) = 0. This suggests that all noisy samples were
accurately identified (recall = 1.000), while only one normal
sample was incorrectly classified as noisy (false positive rate =
2.94%). Consequently, the model prioritizes high sensitivity,
ensuring no anomalies are overlooked, which is crucial for
physiological monitoring applications where missing anomalies
are more critical than occasional false alarms.

Confusion Matrix

30
Normal 1 25
20
]
2
]
E L 15
=
F 10
Noisy ] 1
F5
T T —L-0
Normal Moisy

Predicted label

Figure 6. Confusion matrix of the proposed model
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Figure 7 illustrates the precision and recall for different
threshold values. The analysis of Precision and Recall resulted
in an Average Precision (AP) score of 1.000, indicating that the
model flawlessly prioritized anomalous samples over normal
ones. This finding illustrates that the autoencoder achieves
optimal precision-recall balance across various thresholds,
further supporting the effectiveness of using reconstruction
error as an anomaly score.

Precision-Recall (PR) Curve

1.0

0.8

0.6 1

Precision

0.4 1

0.2 4

—— PR curve (AP = 1,000)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8

Recall

1.0

Figure 7. Precision and recall for different threshold values

The receiver operating characteristic curves (ROC) for the
proposed approach are presented in figure 8. The ROC analysis
of the autoencoder yielded an AUC of 1.000, indicating perfect
differentiation between normal and abnormal segments. This
performance, which is not dependent on a specific threshold,
shows that the model consistently assigns higher reconstruction
errors to anomalies compared to normal signals, confirming its
capability to detect noise-induced deviations in the rPPG
waveform accurately.

Receiver Operating Characteristic (ROC)
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0.2 4 »”°
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P
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False Positive Rate

Figure 8. Receiver operating characteristic curves for the proposed
approach
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Metrics vs Threshold
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Figure 9. Sensitivity of anomaly detection to threshold choice

To evaluate the strength of the anomaly detection framework,
we conducted a threshold sensitivity analysis by examining
precision, recall, and F1-score over various reconstruction error
thresholds in figure 9. The analysis showed that the model
achieves its highest F1-score of 1.000 at a threshold of 1.0999,
suggesting an almost perfect distinction between normal and
anomalous segments. Our predetermined threshold, based on
the 95th percentile of the error distribution (1.938), is slightly
lower than this optimal point. This choice emphasizes recall,
ensuring all anomalies are detected, while remaining very close
to the Fl-optimal threshold, thus preserving high precision.
This closeness indicates that the model is not overly dependent
on the threshold choice and that heuristic percentile-based
thresholds can perform similarly to optimal data-driven cutoffs.
Such consistency enhances the method's reliability for use in
real-world monitoring situations where adaptive threshold
adjustment may not always be possible.

4.4. Ablation Study

We performed an ablation study to compare a CNN-only model,
a BiLSTM-only model, and our proposed CNN-BiLSTM
Autoencoder. As illustrated in fable 3, the hybrid model
consistently outperformed the others, achieving the highest
precision, recall, and Fl-score, along with the lowest false
positive rate. This highlights the complementary advantages of
combining CNN and BiLSTM layers.

Table 3. Simulation result using testing data

METRICS
DATASETS MODELS PR Recall F1- FPR
(%) (%) score (%)
(%)
CNN 60 86 79 4.7
BiLSTM 50 95 80 2.02
COHFACE

CNN-BILSTM 70 100 82 1.8

CNN 70 75 80 2.06

BiLSTM 60 89 77 33

UBFC-RPPG

CNN-BILSTM 75 100 85 1.6

CNN 50 86 50 39

BiLSTM 50 99 59 3.05

PURE

CNN-BILSTM 50 100 66.7 2.94
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4.5. Comparative Evaluation with other Methods
To assess the performance of the proposed Hybrid CNN-
BiLSTM Autoencoder, we conducted a comparison with
several leading rPPG anomaly detection and enhancement
techniques. Despite the use of different architectures and
evaluation criteria in prior research, our qualitative analysis
indicates that the proposed model excels in anomaly
discrimination, reconstruction accuracy, and real-time
applicability.

Table 4 presents a summary of the main features and
performance patterns of recent methods for anomaly detection
and rPPG enhancement, in comparison to our proposed model.
Unlike previous studies that primarily focus on signal
enhancement or heart-rate estimation, our method prioritizes
anomaly differentiation and reconstruction accuracy, providing
both interpretability and suitability for real-time use.

2 Table 4. Proposed model comparison with existing works

Methods Dataset (s) Evaluation Key findings Comparison
metrics to the
proposed
model
LSTM-based | MMSE- HR- An  LSTM- | Our model
filter [5] HR MAE, based filter is | achieves
RMSE a better | comparable
VIPL-HR alternative to | efficiency
improve the | with higher
COHFACE heart rate | robustness to
measurement. | motion and
moderate illumination
robustness to | artifacts.
motion
DiffPhys [2] | UBFC- SNR, Enhances Our model
rPPG, HR Error | SNR  under | complement
noise; s this by
PURE improves performing
pulse anomaly
estimation in | localization
low-light and
scenarios. correction
before HR
estimation.
Optimal Own data SNR, Improves Our  model
Digital Filter signal captures both
Filtering Response | conditioning spatial  and
[16] but lacks | temporal
adaptive dependencies
temporal dynamically.
modeling.
Proposed: UBFC- AUC, robust real-| Demonstrate
CNN- rPPG AP, FI1, | time anomaly| s superior
BiLSTM FPR, detection and| separability,
Autoencoder | PURE Recall signal stability
reconstruction. | across
COHFACE thresholds,
and near-
real-time
inference (24
Hz).

# 5, DISCUSSION

The Hybrid CNN-BiLSTM Autoencoder offers a balance
between precision and computational speed, making it ideal for
real-time remote photoplethysmography (rPPG) monitoring.
With around 1.2 million parameters, the model can handle a

International Journal of

Electrical and Electronics Research (IJEER)
Research Article | Volume 13, Issue 4 | Pages 704-711 | e-ISSN: 2347-470X

300-frame sequence in about 42 milliseconds on a GPU and
approximately 130 milliseconds on a CPU, allowing for nearly
instantaneous inference. This level of efficiency facilitates
ongoing physiological monitoring with minimal delay.

Nonetheless, certain limitations persist. The model's validation
was largely conducted using controlled datasets (UBFC-rPPG,
PURE, COHFACE), which might not accurately reflect real-
world clinical scenarios characterized by varying lighting,
movement, or skin tones. Moreover, for continuous
deployment, it would be essential to ensure robust calibration,
privacy protection, and validation across diverse populations.
Future efforts will concentrate on adaptive thresholding,
integrating multimodal data, and optimizing for edge and
mobile devices to improve practical usability.

i 6, CONCLUSION

In this study, we presented and validated the efficacy of a hybrid
CNN-BiLSTM Autoencoder model tailored for dependable
anomaly detection in rPPG time-series data. This model is
designed to identify anomalies such as sensor noise and motion
artifacts within the remote photoplethysmography signal. The
procedure starts by segmenting the signal into multiple parts.
Subsequently, convolutional layers are employed to capture
localized spatial and temporal patterns. Ultimately, the
bidirectional LSTM's ability is harnessed to model sequential
dependencies over time, enabling the model to effectively learn
representations of clean physiological signals. Quantitative
analyses using reconstruction error thresholds demonstrated
outstanding performance with the UBFC-rPPG, COHFACE,
and the PURE datasets, distinguishing clean segments from
noisy ones with high precision, recall, F1-score, and low false
positive rates.
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