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░ ABSTRACT- Photovoltaic (PV) systems are increasingly vital to global energy transitions but remain vulnerable to 

surface anomalies such as dust, snow, bird droppings, and physical or electrical damage—that significantly reduce power yield 

and long-term reliability. Manual inspection is inefficient for large-scale solar farms, motivating the development of intelligent 

and automated fault detection systems. This study introduces a reproducible comparative deep-learning framework that 

systematically benchmarks four convolutional neural network (CNN) architectures ResNet50, EfficientNetB0, 

MobileNetV3Small, and DenseNet121 under identical preprocessing, training, and validation settings. The framework integrates 

runtime efficiency analysis, five-fold cross-validation, and a real-time GUI-based deployment interface, bridging the gap between 

academic benchmarking and field-level implementation. A six-class labeled dataset of 1,574 RGB images was expanded through 

extensive data augmentation (rotation, flipping, brightness adjustment, and Gaussian noise perturbation) to simulate diverse real-

world conditions. Among the four tested models, DenseNet121 achieved the highest macro-averaged F1-score (≈ 0.96), followed 

by ResNet50 (0.93), EfficientNetB0 (0.92), and MobileNetV3Small (0.92), highlighting clear accuracy–efficiency trade-offs 

across architectures. The novelty of this work lies in its multi-model benchmarking design and transparent methodology, providing 

a standardized and reproducible reference for future PV image-based diagnostics. Practically, integrating the models into a real-

time graphical user interface (GUI) demonstrates their feasibility for UAV-based or on-site PV inspection. From an operational 

and economic perspective, this approach supports cost-effective, scalable, and non-invasive monitoring solutions tailored for 

modern large-scale solar farms. 

 

Keywords: Photovoltaic fault classification, Deep learning, Surface anomaly detection, ResNet50, EfficientNetB0, 

MobileNetV3Small, DenseNet121, RGB image analysis. 
 

 

 

░ 1. INTRODUCTION 
Photovoltaic (PV) systems have become a cornerstone of global 

renewable energy strategies due to their scalability, declining 

costs, and contribution to carbon neutrality goals. According to 

the International Renewable Energy Agency (IRENA), global 

PV capacity exceeded 1.3 terawatts by the end of 2024 and 

continues to expand rapidly under worldwide decarbonization 

initiatives [1–3]. 
 

Despite this unprecedented growth, PV modules remain 

susceptible to surface-level faults such as dust accumulation, 

humidity, snow deposition, and partial shading, which 

collectively reduce energy yield, induce hotspot formation, and 

accelerate material degradation. For instance, studies in desert 

regions indicate that heavy dust accumulation over a two-month 

period can reduce power output by nearly 8–10%, while 

localized shading can generate hotspots exceeding 150 °C, 

leading to microcracks and solder joint failures [4, 5].  
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To sustain optimal efficiency in large-scale installations, 

automated monitoring and fault detection have become essential 

components of modern PV management systems. Traditional 

inspection techniques—such as manual visual checks or 

handheld thermography—are labor-intensive, error-prone, and 

impractical for geographically distributed solar plants [1]. In 

response, deep learning has emerged as a powerful paradigm 

capable of automating visual inspection tasks through image-

based analysis. Among various models, convolutional neural 

networks (CNNs) have demonstrated outstanding capability to 

learn hierarchical spatial features and detect nonlinear patterns 

indicative of PV surface anomalies. Researchers have validated 

CNNs across different imaging modalities, including infrared 

thermography and electroluminescence (EL), achieving high 

accuracy in identifying microcracks and hotspots [6, 7]. 

Similarly, RGB-based CNN models have proven effective in 

detecting dust, snow, and mechanical damage directly from 

standard photographs [8, 9]. 
 

Among modern CNN architectures, ResNet leverages deep 

residual learning for enhanced feature extraction, while Efficient 

Net introduces compound scaling and depth wise separable 

convolutions to optimize accuracy versus computation cost [8–

10]. These frameworks have shown promising results in solar 

fault diagnosis, yet most prior studies either used non-standard 

datasets or evaluated models under different preprocessing and 

training conditions, hindering fair comparison. Consequently, 

there remains a clear gap for a standardized, reproducible 

benchmarking framework that evaluates multiple CNN 

architectures under identical experimental configurations—not 

only in terms of accuracy but also computational efficiency and 

real-time feasibility. 
 

Addressing this limitation, the present study performs a 

comprehensive four-model comparison involving ResNet50, 

EfficientNetB0, MobileNetV3Small, and DenseNet121 using a 

unified training pipeline. To counteract dataset constraints, 

extensive data augmentation (rotation, flipping, brightness 

variation, and Gaussian noise perturbation) and 5-Fold Cross-

Validation were employed to enhance diversity and ensure 

statistical robustness. 
 

The novelty of this research lies in establishing a reproducible 

multi-architecture evaluation framework that integrates cross-

validation, runtime-aware analysis, and GUI-based 

interpretability, thereby bridging the gap between academic 

benchmarking and field-level deployment. This approach 

advances beyond conventional accuracy-centric studies by 

enabling transparent, scalable, and real-time PV fault diagnosis, 

providing both scientific reproducibility and direct industrial 

relevance. 

 
░ 2. MATERIALS AND METHODS 
2.1. Dataset Description 
This study utilizes the PV Panel Defect Dataset compiled by 

Lenarczyk [11], comprising 1,574 manually annotated RGB 

images depicting various surface anomalies observed in 

photovoltaic (PV) modules. The dataset, intended for academic 

and educational use, includes six defect categories: Clean, 

Dusty, Bird-drop, Snow-covered, Electrical-damage, and 

Physical-damage. All images were collected from verified open-

access repositories, including Kaggle and other publicly 

available databases, ensuring class diversity, image realism, and 

reproducibility. 
 

To ensure fair and unbiased model evaluation, the dataset was 

stratified into three disjoint subsets: 

1. Training subset, used for learning generalizable patterns;  

2.Validation subset, applied during model tuning to assess 

overfitting; 

3. Test subset, held out entirely for final performance 

evaluation.   
 

This proportional stratification mitigated class imbalance and 

provided consistent representation of each fault type across all 

subsets. 
 

Given the moderate dataset size (1,574 images), extensive data 

augmentation was applied to enhance visual diversity and 

reduce overfitting. The applied transformations included 

random rotation, horizontal and vertical flipping, zoom scaling, 

brightness variation, and Gaussian noise perturbation. 

Collectively, these operations increased the effective dataset 

size fivefold, enriching image variability across lighting 

conditions, dust density, and camera angles—thus improving 

the model’s generalization to real-world scenarios. 
 

To further improve statistical robustness, a 5-fold cross-

validation strategy was employed. This ensured that every 

sample contributed to both training and validation phases at 

least once, thereby reducing performance variance and 

improving model reliability across architectures. 
 

Although the current dataset includes only RGB imagery, the 

proposed framework was designed for extensibility, remaining 

compatible with multi-modal data sources such as infrared (IR) 

and electroluminescence (EL) images, which can capture both 

surface and sub-surface defects in PV cells. 
 

Compared with existing PV fault datasets—many of which are 

unbalanced, domain-limited, or lack standardized labeling—this 

dataset offers a more systematically stratified and reproducible 

structure, making it well suited for multi-architecture 

benchmarking and fair performance comparison. 
 

Table 1 summarizes the distribution of images per PV fault class 

across training, validation, and test subsets, before and after 

augmentation. The table highlights dataset uniformity and 

shows that augmentation was applied exclusively to the training 

subset, leaving validation and test data unchanged to preserve 

unbiased evaluation integrity. 
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░ Table 1. Distribution of images per PV fault class across training, validation, and test subsets (before and after 

augmentation) 
 

 

2.2. Data Preprocessing 
All RGB input images were resized to a standardized resolution 

of 224 × 224 pixels and normalized according to the 

preprocessing conventions associated with each pretrained 

architecture. Prior to training, the dataset was stratified into 

training, validation, and test subsets, ensuring class balance and 

randomized shuffling across all folds of the 5-fold cross-

validation scheme. For transfer learning, the convolutional 

backbone of each pretrained CNN—ResNet50, EfficientNetB0, 

MobileNetV3Small, and DenseNet121 was initialized with 

ImageNet weights and kept frozen during initial training to 

preserve learned low-level feature representations. A 

lightweight classification head was then appended to each 

model, composed of a Global Average Pooling layer to reduce 

feature map dimensionality, Batch Normalization to stabilize 

gradient propagation, a Dropout layer (rate = 0.3) for 

regularization, and a SoftMax-activated dense layer configured 

for six-class output.  
 

 This unified preprocessing and model assembly pipeline 

ensured methodological consistency across all architectures, 

enabling a fair and transparent cross-model performance 

comparison in both accuracy and computational efficiency. 

Model training was carried out using a fixed batch size of 16, 

optimized with the Adam optimizer and Sparse categorical 

cross-entropy loss function. To enhance model generalization, 

early stopping was applied with a patience threshold of five 

epochs, while validation-based checkpointing automatically 

preserved the best-performing model weights per fold.  
Throughout training, key performance metrics  including 

accuracy, precision, recall, F1-score, and confusion matrices 
were continuously logged. Additionally, training loss and 

accuracy curves were recorded in structured formats to facilitate 

post-training statistical analysis and visualization. These 

metrics were subsequently integrated into the real-time 

graphical user interface (GUI), enabling direct field-level fault 

classification and validation under deployment conditions. 
 

2.3. Model Configuration 
2.3.1. Training Strategy and Hyperparameter 

Configuration 

 

 

 

To ensure methodological consistency and depth of 

experimentation, all four CNN architectures—ResNet50, 

EfficientNetB0, MobileNetV3Small, and DenseNet121—were 

trained under identical optimization conditions, allowing for a 

fair and unbiased comparative assessment of both performance 

and computational efficiency.  A stratified 5-Fold Cross-

Validation scheme was employed to enhance statistical 

reliability and minimize performance variance, ensuring that 

each sample was used once for testing and four times for 

training. This approach strengthens the generalization capability 

of all models while mitigating overfitting tendencies in limited 

datasets. Each model utilized the Adam optimizer with a fixed 

learning rate and the Sparse Categorical Cross entropy loss 

function. Early stopping and dropout regularization were applied 

to prevent overfitting, while validation-based checkpointing was 

activated to retain the best model weights per fold. The detailed 

hyperparameter settings used throughout all experiments are 

summarized in table 2. The configuration ensures 

reproducibility and comparability across architectures. 
 

░ Table 2. Training hyperparameters configured for all 

CNN architectures 

 

 

Fault Type Training Validation Testing 
Total 

(Original) 

Training 

(Augmented 

additions) 

Total 

(Augmented 

additions) 

Clean 169 102 18 289 676 796 

Dusty 162 97 16 275 648 761 

Bird-drop 177 104 17 298 705 826 

Snow-covered 154 92 16 262 616 724 

Electrical-damage 135 77 13 225 531 621 

Physical-damage 132 78 15 225 528 621 

Total Images 929 550 95 1574 3704 4349 

Parameter Configuration 

Optimizer 

Adam optimizer (learning rate = 

0.0008 for ResNet50, 

MobileNetV3Small, DenseNet121; 

0.001 for EfficientNetB0) 

Cross-Validation 

5-Fold stratified validation (reduces 

variance & improves statistical 

reliability) 

Loss Function Sparse Categorical Crossentropy 

Number of Epochs 
15 epochs × 5 folds (total = 75 epochs 

per model) 

Batch Size 
16 (samples), adjusted for 8 GB RAM 

(CPU training environment) 

Dropout Rate 
0.3 for all models except ResNet50 

(0.4) 

Early Stopping Strategy 
Enabled (patience = 3 for most 

models; 5 for EfficientNetB0) 

Input Size 224 × 224 × 3 

http://www.ijeer.forexjournal.co.in/
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2.3.2. Hardware Environment and Execution Timeline 

To ensure methodological fairness in performance 

benchmarking, all models were trained and evaluated on the 

same CPU-only workstation, maintaining identical software and 

hardware environments. This configuration allowed for an 

equitable comparison of computational efficiency among the 

four architectures. Training was executed using TensorFlow 

2.19.0 (Python 3.10, Visual Studio Code environment), under 

uniform runtime settings. Each model underwent a 5-Fold 

Cross-Validation procedure, and the total as well as mean 

training times were computed as the average across all folds to 

ensure statistical reliability. The selected CPU-based setup also 

reflects realistic deployment scenarios, particularly for low-cost 

or embedded PV inspection systems, where GPU acceleration 

may not be available. Such a configuration highlights the trade-

off between accuracy and computational feasibility in real-

world applications. The complete hardware configuration and 

runtime environment are summarized in table 3, while table 4 

presents the mean and cumulative training durations across the 

four CNN architectures, serving as indicators of computational 

scalability. 
 

░ Table 3. Hardware and software configuration used for 

model training 

 

Table 4 summarizes the total training time and relative 

computational efficiency across all CNN models. 

MobileNetV3Small achieved the shortest overall training 

duration (77.6 min), setting the reference for 100 % efficiency. 

EfficientNetB0 ranked second (25.8 %), confirming its 

suitability for lightweight deployment, while DenseNet121 and 

ResNet50, despite higher accuracy, required significantly longer 

training cycles. 
 

░ Table 4. Training time summary and computational 

efficiency of CNN models 
 

Model 

Mean 

Training 

Time 

(s/fold) 

Total 

(min) 
Total 

(hrs) 

Relative 

Efficiency 

(%) 

ResNet50 5926.72 493.89 8.23 15.7 

EfficientNetB0 3600  300.0 5.00 25.8 

MobileNetV3Small 930.93 77.58 1.29 100 

DenseNet121 7476.06 623.01 10.38 12.4 

 

2.3.3. Architectural Design and Transfer Learning 

Adaptation 

All four CNN architectures were implemented within a unified 

transfer learning framework to ensure structural consistency and 

reproducibility. Each model employed a pretrained convolutional 

backbone (initialized with ImageNet weights) as a fixed feature 

extractor, onto which a standardized lightweight classification 

head was appended.  The classification head comprised a Global 

Average Pooling (GAP) layer to reduce spatial dimensions, 

followed by Batch Normalization for stable convergence, a 

Dropout layer for regularization, and a fully connected SoftMax 

layer with six output neurons corresponding to the PV fault 

categories. This consistent top-layer configuration allowed direct 

comparison of representational efficiency among architectures of 

varying depth and parameter count. By adopting this design, the 

study introduces a reproducible architectural benchmarking 

strategy that isolates the performance impact of the backbone 

network itself, rather than the influence of arbitrary classifier 

design choices—thus strengthening the methodological novelty of 

the comparative framework.  The detailed architectural 

configuration and parameterization of all CNN models are 

summarized in table 5. 
 

░ Table 5. Architectural configuration and parameterization 

of CNN models 

Parameter ResNet50 

Base Model 

Pretrained on ImageNet 

(ResNet50, 

EfficientNetB0, 

MobileNetV3Small, 

DenseNet121; include_top 

= False) 

Frozen Layers All convolutional layers 

Pooling 

Strategy 
GlobalAveragePooling2D 

Normalization BatchNormalization 

Dropout Rate 
0.3 for all models except 

ResNet50 (0.4) 

Final Dense 

Layer 

6 output units with 

Softmax activation 

Trainable 

Parameters 

~23.6M (ResNet50), 

~4.1M (EfficientNetB0), 

~2.5M 

(MobileNetV3Small), 

~7.2M (DenseNet121) 

Architectural 

Complexity 

Level 

Deep residual network 

(ResNet50); Compound-

scaled efficient CNN 

(EfficientNetB0); 

Lightweight mobile CNN 

(MobileNetV3Small); 

Deep densely connected 

CNN (DenseNet121) 
 

Figure 1 provides a schematic overview of the complete 

experimental workflow, encompassing dataset preparation, 

preprocessing, model training, performance evaluation, and GUI-

based real-time validation. This pipeline illustrates the integration 

between algorithmic experimentation and practical deployment. 

Parameter Value 

Development Platform 
Visual Studio Code (VS Code) + 

Python 3.10 + TensorFlow 2.19.0 

Hardware Specs 

Intel Core i5-3340 CPU @ 3.10 

GHz, 8 GB RAM (No GPU 

acceleration) 

Operating System Windows 10 Pro (64-bit) 

Cross-Validation Setup 

5-Fold validation, 15 epochs per 

fold (Total = 75 epochs per 

model) 

http://www.ijeer.forexjournal.co.in/
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Figure 1. Experimental workflow illustrating dataset processing, model training, evaluation, and GUI-based PV fault classification 

 

░ 3. RESULTS 
3.1. Training Behavior and Temporal Efficiency 
The training and validation performance of all four CNN architectures ResNet50, EfficientNetB0, MobileNetV3Small, and 

DenseNet121 was analyzed using epoch-based learning curves depicting accuracy and loss variations throughout the training process. 

Figures 2 and 3 present these results, each displaying two models for visual clarity and comparative readability. As shown in figure 2, 

ResNet50 achieved the highest peak validation accuracy but exhibited moderate oscillations during convergence, reflecting its 

sensitivity to learning rate fluctuations. Conversely, EfficientNetB0 demonstrated smoother convergence with faster stabilization of 

both training and validation curves, confirming its robustness and computational efficiency. 
 

 
Figure 2. Training and validation accuracy and loss curves versus epochs for ResNet50 and EfficientNetB0 

 

Figure 3 illustrates the behavior of the lightweight MobileNetV3Small and the deeper DenseNet121 architectures. 

MobileNetV3Small converged rapidly within fewer epochs, achieving stable accuracy at early stages due to its compact 

parameterization. In contrast, DenseNet121 required a longer training duration to reach optimal convergence but ultimately provided 

consistent learning stability and lower validation loss across folds, aligning with its high-capacity design. 
 

Figure 3. Training and validation accuracy and loss curves versus epochs for MobileNetV3Small and DenseNet121 

http://www.ijeer.forexjournal.co.in/
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Collectively, the four learning curves highlight distinct optimization dynamics across architectures of varying depth and complexity. 

The results confirm that lightweight models (EfficientNetB0, MobileNetV3Small) are more suitable for real-time or embedded PV 

diagnostic applications, whereas deeper networks (ResNet50, DenseNet121) offer superior representational power for complex fault 

differentiation. Overall, these findings reveal a clear trade-off between training efficiency and classification accuracy, underscoring 

the methodological importance of evaluating both performance and computational behavior within a unified experimental 

framework. 

 

3.2. Evaluation Metrics 
The quantitative performance of all four CNN architectures—ResNet50, EfficientNetB0, MobileNetV3Small, and DenseNet121—was 

comprehensively assessed on the same dataset partitions using multiple evaluation indicators, including accuracy, precision, recall, and 

F1-score. This ensured a fair and statistically reliable comparison of both predictive quality and model robustness. ResNet50 achieved 

the highest validation and test accuracies, confirming its superior feature extraction capability derived from deeper residual connections. 

EfficientNetB0 maintained comparable performance, showing slightly lower loss values and smoother convergence, which reflects its 

efficient compound-scaling structure. MobileNetV3Small, while yielding marginally lower accuracy, demonstrated remarkable 

computational efficiency and rapid convergence—making it highly suitable for low-power or real-time embedded PV fault 

classification. DenseNet121, on the other hand, provided a strong trade-off between accuracy and stability, maintaining balanced 

precision–recall values across all fault classes and achieving the best macro-averaged F1-score (0.96). These observations collectively 

emphasize that deeper networks (ResNet50 and DenseNet121) generally achieve superior fault discrimination at the cost of longer 

training time, whereas compact architectures (EfficientNetB0 and MobileNetV3Small) provide faster convergence and enhanced 

computational feasibility for lightweight deployment environments.  The detailed class-wise precision, recall, and F1-scores for all 

models are reported in tables 6 and 7. These tables present per-class metrics across six fault types, allowing a granular interpretation of 

model performance consistency and misclassification tendencies. 
 

░ Table 6. Class-wise evaluation metrics for ResNet50 and EfficientNetB0 in PV surface fault classification 

 

Note: P = Precision, R = Recall, F1 = F1-score, S = Support (true instances), CP = Correct Predictions, APL = Accuracy Per Label (%). 
 

As illustrated in table 6, ResNet50 marginally outperformed EfficientNetB0 across most categories, particularly in Bird-drop and 

Physical Damage detection, confirming its robustness in discriminating visually complex surface anomalies. EfficientNetB0, however, 

exhibited nearly identical mean performance with smoother generalization and lower overfitting tendency. 
 

░ Table 7. Class-wise evaluation metrics for MobileNetV3Small and DenseNet121 in PV surface fault classification 

Note: P = Precision, R = Recall, F1 = F1-score, S = Support (true instances), CP = Correct Predictions, APL = Accuracy Per Label (%).

Class Fault Type 
ResNet50 EfficientNetB0 

P R F1 S CP APL P R F1 S CP APL 

1 Bird drop 0.94 0.88 0.91 17 15 0.88 0.94 0.88 0.91 17 15 0.88 

2 Clean 0.89 0.89 0.89 18 16 0.88 0.94 0.83 0.88 18 15 0.83 

3 Dusty 0.93 0.88 0.90 16 14 0.88 0.88 0.94 0.91 16 15 0.94 

4 Electrical Damage 1.00 1.00 1.00 13 13 1.00 0.87 1.00 0.93 13 13 1.00 

5 Physical Damage 0.83 1.00 0.91 15 15 1.00 0.93 0.93 0.93 15 14 0.93 

6 Snow Covered 1.00 0.94 0.97 16 15 0.94 1.00 1.00 1.00 16 16 1.00 

Mean 0.93 0.93 0.93 95 88 0.93 0.93 0.93 0.93 95 88 0.93 

Class Fault Type 
MobileNetV3Small DenseNet121 

P R F1 S CP APL P R F1 S CP APL 

1 Bird drop 0.94 0.88 0.91 17 15 0.88 0.94 1.00 0.97 17 17 1.00 

2 Clean 0.83 0.83 0.83 18 15 0.83 0.94 0.89 0.91 18 16 0.88 

3 Dusty 0.88 0.88 0.88 16 14 0.88 0.88 0.88 0.88 16 14 0.88 

4 Electrical Damage 0.93 1.00 0.96 13 13 1.00 1.00 1.00 1.00 13 13 1.00 

5 Physical Damage 0.93 0.93 0.93 15 14 0.93 1.00 1.00 1.00 15 15 1.00 

6 Snow Covered 1.00 1.00 1.00 16 16 1.00 1.00 1.00 1.00 16 16 1.00 

Mean 0.92 0.92 0.92 95 87 0.92 0.96 0.96 0.96 95 91 0.96 
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As observed in table 7, DenseNet121 achieved the highest 

macro-average precision and recall values (96%), confirming its 

ability to maintain consistent accuracy across all fault classes. 

In contrast, MobileNetV3Small reached stable yet slightly 

lower metrics, reflecting the trade-off between model 

compactness and representational capacity. 
 

3.3. Confusion Matrix Analysis 
To further evaluate model reliability and inter-class 

discrimination, confusion matrices were generated for all four 

CNN architectures, providing a visual interpretation of class-

wise prediction consistency across the six PV fault categories 

(Clean, Dusty, Bird-drop, Snow-covered, Electrical-damage, 

and Physical-damage) . Figure 5 illustrates the confusion 

matrices for ResNet50 (a) and EfficientNetB0 (b). The diagonal 

elements denote correctly classified instances, whereas off-

diagonal values represent misclassifications. ResNet50 

exhibited near-perfect diagonal dominance, achieving 100 % 

precision in “Physical-damage” and “Snow-covered” classes, 

with minor confusion between “Clean” and “Dusty” panels—

two visually similar categories. EfficientNetB0 produced 

comparable overall performance but achieved slightly higher 

recall in the “Bird-drop” and “Clean” classes, confirming its 

generalization advantage and smoother decision boundaries .  
 

Figure 6 presents the confusion matrices for the lightweight 

MobileNetV3Small (a) and the deeper DenseNet121 (b) 

MobileNetV3Small achieved rapid convergence with strong 

diagonal concentration yet revealed minor cross-confusion 

between “Dusty” and “Electrical-damage” samples, attributable 

to overlapping texture patterns in RGB space. Conversely, 

DenseNet121 achieved perfectly clean diagonals for most 

classes, including “Snow-covered” and “Physical-damage,” 

indicating superior feature reuse through dense connectivity and 

yielding the highest overall macro-averaged accuracy . 
 

Collectively, the four confusion matrices confirm the distinct 

learning behaviors of depth-oriented and lightweight CNNs. 

While deeper models (ResNet50, DenseNet121) demonstrate 

stronger discriminative power for complex fault patterns, 

compact architectures (EfficientNetB0, MobileNetV3Small) 

exhibit smoother generalization and faster adaptability for field-

level PV fault monitoring. These complementary characteristics 

suggest that hybrid or ensemble approaches could further 

exploit the strengths of both network families in future PV 

diagnostic frameworks. 
 

 
 

Figure 5. Confusion matrices of (a) ResNet50 and (b) EfficientNetB0 

for PV surface-fault classification (six classes) 

 
 

Figure 6. Confusion matrices of (a) MobileNetV3Small and (b) 

DenseNet121 for PV surface-fault classification (six classes). 
 

3.4. Receiver Operating Characteristic (ROC) 

Analysis 
To comprehensively evaluate the discrimination capability of 

the models, multi-class Receiver Operating Characteristic 

(ROC) curves were generated for all four CNN architectures. 

The ROC curve represents the trade-off between the true positive 

rate (TPR) and false positive rate (FPR), while the Area Under 

the Curve (AUC) quantifies each model’s overall separability 

across the six PV surface-fault categories. Figure 7 presents the 

comparative multi-class ROC curves for ResNet50 and 

EfficientNetB0. ResNet50 achieved near-perfect separability, 

with AUC values ≥ 0.99 for all classes and perfect discrimination 

(AUC = 1.00) for the “Snow-covered” and “Physical-damage” 

faults. EfficientNetB0 achieved similarly strong separability 

with AUCs above 0.99 for most classes, particularly excelling in 

“Bird-drop” and “Clean” fault types, confirming its efficiency-

oriented feature scaling.  Figure 8 displays the ROC curves for 

MobileNetV3Small and DenseNet121. The lightweight 

MobileNetV3Small achieved strong class-wise separability 

(AUC ≈ 0.97–0.99) but showed minor overlap between “Dusty” 

and “Electrical-damage” classes—attributable to their visual 

similarity in RGB texture features. DenseNet121 demonstrated 

the most stable performance among all architectures, attaining 

perfect or near-perfect AUC values (≥ 0.99) across all six 

classes, confirming its superior discriminative ability and 

robustness to inter-class noise. Across all four CNNs, the AUC 

scores consistently exceeded 0.97, reinforcing the models’ 

reliability for real-world PV surface-fault identification. Deeper 

networks such as ResNet50 and DenseNet121 provided higher 

separability margins, while compact architectures 

(EfficientNetB0, MobileNetV3Small) achieved competitive 

accuracy with lower computational overhead.  These results 

further validate the comparative framework’s robustness and 

highlight the complementary advantages of depth-oriented and 

efficiency-oriented CNN designs in the context of photovoltaic 

fault analysis. 
 

 
 

Figure 7. Multi-class ROC curves for (a) ResNet50 and (b) 

EfficientNetB0 across six PV surface fault types 
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Figure 8. Multi-class ROC curves for (a) MobileNetV3Small and (b) 

DenseNet121 across six PV surface fault types 

 

3.5. Real-World Case Testing Using GUI-Based 

Interface 
To demonstrate practical deployment and model 

interpretability, a custom multi-model GUI was developed to 

enable real-time PV fault prediction and visual benchmarking 

across all four CNN architectures—ResNet50, EfficientNetB0, 

MobileNetV3Small, and DenseNet121.  As illustrated in figure 

9, the interface allows users to upload a solar panel image and 

instantly view comparative predictions through synchronized 

bar charts and per-model summaries. In the presented example, 

DenseNet121 achieved the highest confidence (82%) for the 

“Dusty” fault, followed by ResNet50 (72%), EfficientNetB0 

(68%), and MobileNetV3Small (61%), reflecting clear trade-

offs between model depth, computational efficiency, and 

classification precision.  This runtime-aware GUI not only 

enhances accessibility for non-experts but also validates the 

scalability and deployment feasibility of the proposed models in 

real-world PV systems and mobile diagnostic platforms. 

 

 
 

Figure 9. (a) GUI displaying the uploaded solar panel image with 

detected anomaly, (b) reset interface ready for new input, and (c) 

comparison window showing multi-model predictions for the same 

panel image 

 

░ 4. DISCUSSION 
This study systematically investigated and compared four 

advanced CNN architectures—ResNet50, EfficientNetB0, 

MobileNetV3Small, and DenseNet121—for automated surface-

level PV fault classification using RGB imagery.  The results 

reaffirm that all models can effectively automate visual 

inspection tasks while highlighting specific performance–

efficiency trade-offs that guide real-world deployment. 
 

4.1. Interpretation and Comparison with Previous 

Studies 
The experimental results revealed that DenseNet121 achieved 

the highest overall accuracy (96%) and F1-score (0.96), 

surpassing ResNet50 (93.68%), EfficientNetB0 (92.63%), and 

MobileNetV3Small   (92%.)  ResNet50 maintained superior 

discrimination of complex anomalies such as Bird-drop and 

Physical damage, while EfficientNetB0 achieved faster 

convergence with reduced computational cost  .This observation 

aligns with the results of Abdelsattar et al. [5], who showed 

deeper residual networks exhibit higher sensitivity to subtle 

defects, and with Tan and Le [8], who reported EfficientNet’s 

strong accuracy-to-computation trade-off. Our comparative 

multi-model framework advances prior works such as Ledmaoui 

et al. [7] by providing a reproducible evaluation under identical 

experimental settings—bridging the gap between academic 

benchmarking and operational deployment  .Hence, the study 

contributes novel insight into how architecture depth and 

compound scaling distinctly affect PV fault discrimination 

accuracy, particularly under real-world imagery conditions. 
 

4.2. Strengths of the Study 
Employs a curated real-world RGB dataset covering six 

representative PV fault types, ensuring diversity and realism. 

Implements a 5-Fold Cross-Validation procedure to enhance 

statistical reliability and minimize variance.  Introduces a 

standardized benchmarking framework across four CNN models 

with unified preprocessing, identical training settings, and 

runtime analysis. Integrates a user-oriented real-time GUI that 

demonstrates model explain ability and immediate deployment 

potential in field environments. 
 

4.3. Limitations 
Although data augmentation expanded the dataset fivefold, the 

base dataset (1,574 images) remains relatively moderate, 

potentially limiting generalization to unseen environmental 

conditions. Only RGB imagery was utilized; future inclusion of 

IR or EL modalities could uncover internal faults beyond surface 

anomalies.  The current work did not explore robustness under 

noise, motion blur, or varied illumination, which should be 

analyzed in extended testing campaigns. 
 

4.4. Future Research Directions 
Expand the dataset with samples from diverse climates and panel 

technologies to improve model adaptability. Investigate hybrid 

or ensemble CNN approaches (e.g., ResNet + EfficientNet 

feature fusion) for enhanced accuracy–speed balance.  Deploy 

lightweight variants on embedded systems or UAVs for field 

diagnostics and integrate explainable AI modules to interpret 

model behavior. Combine RGB with IR/EL inputs to achieve 

unified detection of surface and internal PV faults—thus 

bridging the gap between imaging modalities and real-time 

reliability assurance. 
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░ Table 7. Summary of Related Works Using ResNet Architectures for PV Fault Detection 

 

░ Table 8. Summary of Related Works Using EfficientNet Architectures for PV Surface Fault Analysis
 

  

Ref. Application Domain Input Features Target Output Accuracy Dataset Source 

[7] 
Precise crack detection in 

PV modules (cell-level) 

EL images of solar cells 

(mono- & 

polycrystalline) 

Binary classification 

(cracked vs. healthy cell) 

~91% accuracy 

(ResNet-50; F1 

≈87.37%) 

~2,000 EL images of 

PV cells (public 

datasets, curated) 

[12] 

Hotspot localization & 

multi-fault classification in 

PV panels (UAV 

thermography) 

Infrared thermal images 

of solar panels (drone-

based) 

Binary fault detection + 

multi-class fault 

identification (5 fault 

types) 

85.37% F1 

(ResNet-50 

classification) and 

67% mAP 

(hotspot 

detection) 

~837 IR images of 

field PV modules 

(five fault 

categories) 

[13] 

Automated defect detection 

in solar cells (lab EL 

imaging) 

Electroluminescence 

(EL) images of PV cells 

Semantic segmentation 

(defective cell regions) 

95.4% defect 

detection accuracy 

1,968 EL images of 

monocrystalline cells 

(custom lab dataset) 

[14] 

Surface anomaly 

classification in PV modules 

(outdoor visible-light) 

RGB photographs of 

solar panels (field) 

Multi-class classification 

(no fault, dust, crack, 

shadow) 

75% (binary fault 

detection) and 

70% (four-class 

fault ID) 

Field images of PV 

panels (RGB); 2-

class vs 4-class 

datasets 

[15] 
PV farm fault diagnosis 

(real-world inspection) 

Thermal & visual images 

of PV modules (plant 

inspection) 

Multi-class fault 

classification (various 

module defects) 

83% macro F1 

(ResNet-18 

model) 

IR and RGB images 

from an operational 

PV plant (multiple 

fault types) 

This 

Study 

Surface fault classification 

in PV modules (RGB-based) 

Visible-light RGB 

images of solar panels 

Multi-class classification 

(clean, dust, bird, snow, 

electrical, physical) 

93.68% test 

accuracy (ResNet-

50); F1 ≈ 0.93 

1,574 images from 

open-source datasets 

(Kaggle). 

Ref Application Domain Input Features Target Output Accuracy Dataset Source 

[8] 

Hybrid CNN ensemble for 

surface anomalies (transfer 

learning) 

Visible-light images of 

solar panels (online 

dataset) 

Multi-class classification 

(6 surface conditions) 

87.55% accuracy 

(ResNet101 + 

EfficientNet-B1 

ensemble) 

2,262 solar panel 

images (Kaggle 

dataset: clean, 

dust, snow, bird 

drop, 

physical/electrical 

damage) 

[10] 
PV module fault diagnosis 

(mixed climate conditions) 

Thermal IR images of PV 

panels (drone & 

handheld) 

Multi-class defect 

classification (hotspot, 

crack, PID, etc.) 

95.72% accuracy 

(EfficientNet-B0 

model) 

Custom IR image 

dataset of PV 

modules under 

diverse conditions 

(several fault 

types) 

[13] 
PV cell defect identification 

(EL imaging) 

EL images of solar cells 

(high noise) 

Binary classification 

(defective vs normal cell) 

93.59% accuracy 

(EfficientNet with 

attention modules) 

8-class public EL 

image dataset 

(with defects like 

cracks, breaks, 

etc.), augmented 

for training 

[16] 

Surface fault classification in 

PV modules (environmental 

soiling) 

Visible-light RGB images 

of panel surfaces 

Multi-class classification 

(soiling, damage, 

shading, etc.) 

97.24% 

classification 

accuracy 

1,200+ field 

images 

(augmented) of 

clean vs various 

surface faults 

(balanced dataset) 

This 

Study 

Surface fault classification in 

PV modules (RGB-based) 

Visible-light RGB images 

of solar panels 

Multi-class classification 

(clean, dust, bird, snow, 

electrical, physical) 

92.63% test 

accuracy 

(EfficientNet-B0); 

F1 ≈ 0.92 

1,574 images from 

open-source 

datasets (Kaggle) 
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░ 5. CONCLUSIONS 
This study conducted a comprehensive comparative analysis 

across four convolutional neural network (CNN) architectures 

ResNet50, EfficientNetB0, MobileNetV3Small, and 

DenseNet121  for the automated detection and classification of 

surface-level faults in photovoltaic (PV) modules using visible-

light RGB imagery. The experimental findings demonstrate that 

DenseNet121 achieved the highest classification accuracy (96%) 

and F1-score (0.96), outperforming the other models while 

maintaining stable convergence. ResNet50 exhibited superior 

feature discrimination, particularly in visually complex faults 

such as Bird-drop and Physical damage, whereas EfficientNetB0 

provided faster training and lower computational load, 

confirming its suitability for lightweight and real-time PV 

inspection systems. The MobileNetV3Small model, although 

slightly less accurate, demonstrated notable efficiency for 

embedded and edge-level applications reinforcing the trade-off 

between model depth and deployment feasibility. The novelty of 

this research lies in its reproducible benchmarking framework, 

which integrates multiple CNN architectures under identical 

preprocessing, training, and validation protocols. This unified 

approach ensures methodological transparency, fair comparison, 

and replicability addressing prior literature gaps where model 

evaluations often relied on disparate datasets or inconsistent 

conditions. Furthermore, the inclusion of a 5-Fold Cross-

Validation scheme and extensive data augmentation (×5) 

enhanced the statistical robustness of the results and mitigated 

overfitting risks despite the moderate dataset size (1,574 images). 

The integration of a real-time GUI with computation-efficiency 

metrics provides a tangible bridge between algorithmic design 

and field-level PV diagnostics, enabling intuitive visualization 

and multi-model interpretability for end-users. Such integration 

demonstrates how deep learning outputs can be operationalized 

for on-site decision support thus moving beyond theoretical 

validation toward applied sustainability. In summary, the study 

contributes a holistic performance efficiency analysis of CNN 

architectures for PV fault detection, establishing a standardized 

benchmark that links experimental accuracy with deploy ability. 

These findings serve as a foundation for future development of 

hybrid or ensemble PV fault detection frameworks, combining 

the precision of deep residual networks with the scalability of 

efficient models. Ultimately, the proposed approach supports the 

transition toward intelligent, automated, and cost-effective solar 

monitoring infrastructures, essential for maximizing energy yield, 

ensuring reliability, and minimizing operational costs in large-

scale solar farms. 
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