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i ABSTRACT- Photovoltaic (PV) systems are increasingly vital to global energy transitions but remain vulnerable to
surface anomalies such as dust, snow, bird droppings, and physical or electrical damage—that significantly reduce power yield
and long-term reliability. Manual inspection is inefficient for large-scale solar farms, motivating the development of intelligent
and automated fault detection systems. This study introduces a reproducible comparative deep-learning framework that
systematically benchmarks four convolutional neural network (CNN) architectures ResNet50, EfficientNetBO,
MobileNetV3Small, and DenseNet121 under identical preprocessing, training, and validation settings. The framework integrates
runtime efficiency analysis, five-fold cross-validation, and a real-time GUI-based deployment interface, bridging the gap between
academic benchmarking and field-level implementation. A six-class labeled dataset of 1,574 RGB images was expanded through
extensive data augmentation (rotation, flipping, brightness adjustment, and Gaussian noise perturbation) to simulate diverse real-
world conditions. Among the four tested models, DenseNet121 achieved the highest macro-averaged F1-score (= 0.96), followed
by ResNet50 (0.93), EfficientNetBO (0.92), and MobileNetV3Small (0.92), highlighting clear accuracy—efficiency trade-offs
across architectures. The novelty of this work lies in its multi-model benchmarking design and transparent methodology, providing
a standardized and reproducible reference for future PV image-based diagnostics. Practically, integrating the models into a real-
time graphical user interface (GUI) demonstrates their feasibility for UAV-based or on-site PV inspection. From an operational
and economic perspective, this approach supports cost-effective, scalable, and non-invasive monitoring solutions tailored for
modern large-scale solar farms.
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costs, and contribution to carbon neutrality goals. According to
the International Renewable Energy Agency (IRENA), global
PV capacity exceeded 1.3 terawatts by the end of 2024 and
continues to expand rapidly under worldwide decarbonization
initiatives [1-3].

Despite this unprecedented growth, PV modules remain
susceptible to surface-level faults such as dust accumulation,
humidity, snow deposition, and partial shading, which
collectively reduce energy yield, induce hotspot formation, and
accelerate material degradation. For instance, studies in desert
regions indicate that heavy dust accumulation over a two-month

Publisher’s Note: FOREX Publication stays neutral with regard to
jurisdictional claims in Published maps and institutional affiliations.

#11. INTRODUCTION

Photovoltaic (PV) systems have become a cornerstone of global
renewable energy strategies due to their scalability, declining

period can reduce power output by nearly 8-10%, while
localized shading can generate hotspots exceeding 150 °C,
leading to microcracks and solder joint failures [4, 5].

Website: www.ijeer.forexjournal.co.in

Comparative Deep Learning for RGB-Based PV Surface

712


http://www.ijeer.forexjournal.co.in/
https://doi.org/10.37391/ijeer.130411
https://ijeer.forexjournal.co.in/archive/volume-13/ijeer-130411.html
https://orcid.org/0000-0002-6374-6075
https://orcid.org/0009-0000-4084-0205
https://orcid.org/0009-0004-9207-0336
http://orcid.org/0000-0002-3576-9974
https://orcid.org/0000-0002-1454-1751

FOREX

Publication
Open Access | Rapid and quality publishing

To sustain optimal efficiency in large-scale installations,
automated monitoring and fault detection have become essential
components of modern PV management systems. Traditional
inspection techniques—such as manual visual checks or
handheld thermography—are labor-intensive, error-prone, and
impractical for geographically distributed solar plants [1]. In
response, deep learning has emerged as a powerful paradigm
capable of automating visual inspection tasks through image-
based analysis. Among various models, convolutional neural
networks (CNNs) have demonstrated outstanding capability to
learn hierarchical spatial features and detect nonlinear patterns
indicative of PV surface anomalies. Researchers have validated
CNNs across different imaging modalities, including infrared
thermography and electroluminescence (EL), achieving high
accuracy in identifying microcracks and hotspots [6, 7].
Similarly, RGB-based CNN models have proven effective in
detecting dust, snow, and mechanical damage directly from
standard photographs [8, 9].

Among modern CNN architectures, ResNet leverages deep
residual learning for enhanced feature extraction, while Efficient
Net introduces compound scaling and depth wise separable
convolutions to optimize accuracy versus computation cost [8—
10]. These frameworks have shown promising results in solar
fault diagnosis, yet most prior studies either used non-standard
datasets or evaluated models under different preprocessing and
training conditions, hindering fair comparison. Consequently,
there remains a clear gap for a standardized, reproducible
benchmarking framework that evaluates multiple CNN
architectures under identical experimental configurations—not
only in terms of accuracy but also computational efficiency and
real-time feasibility.

Addressing this limitation, the present study performs a
comprehensive four-model comparison involving ResNet50,
EfficientNetB0, MobileNetV3Small, and DenseNet121 using a
unified training pipeline. To counteract dataset constraints,
extensive data augmentation (rotation, flipping, brightness
variation, and Gaussian noise perturbation) and 5-Fold Cross-
Validation were employed to enhance diversity and ensure
statistical robustness.

The novelty of this research lies in establishing a reproducible
multi-architecture evaluation framework that integrates cross-
validation,  runtime-aware  analysis, and GUI-based
interpretability, thereby bridging the gap between academic
benchmarking and field-level deployment. This approach
advances beyond conventional accuracy-centric studies by
enabling transparent, scalable, and real-time PV fault diagnosis,
providing both scientific reproducibility and direct industrial
relevance.

#12. MATERIALS AND METHODS
2.1. Dataset Description
This study utilizes the PV Panel Defect Dataset compiled by
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Lenarczyk [11], comprising 1,574 manually annotated RGB
images depicting various surface anomalies observed in
photovoltaic (PV) modules. The dataset, intended for academic
and educational use, includes six defect categories: Clean,
Dusty, Bird-drop, Snow-covered, Electrical-damage, and
Physical-damage. All images were collected from verified open-
access repositories, including Kaggle and other publicly
available databases, ensuring class diversity, image realism, and
reproducibility.

To ensure fair and unbiased model evaluation, the dataset was
stratified into three disjoint subsets:

1. Training subset, used for learning generalizable patterns;
2.Validation subset, applied during model tuning to assess
overfitting;

3. Test subset, held out entirely for final performance
evaluation.

This proportional stratification mitigated class imbalance and
provided consistent representation of each fault type across all
subsets.

Given the moderate dataset size (1,574 images), extensive data
augmentation was applied to enhance visual diversity and
reduce overfitting. The applied transformations included
random rotation, horizontal and vertical flipping, zoom scaling,
brightness variation, and Gaussian noise perturbation.
Collectively, these operations increased the effective dataset
size fivefold, enriching image variability across lighting
conditions, dust density, and camera angles—thus improving
the model’s generalization to real-world scenarios.

To further improve statistical robustness, a 5-fold cross-
validation strategy was employed. This ensured that every
sample contributed to both training and validation phases at
least once, thereby reducing performance variance and
improving model reliability across architectures.

Although the current dataset includes only RGB imagery, the
proposed framework was designed for extensibility, remaining
compatible with multi-modal data sources such as infrared (IR)
and electroluminescence (EL) images, which can capture both
surface and sub-surface defects in PV cells.

Compared with existing PV fault datasets—many of which are
unbalanced, domain-limited, or lack standardized labeling—this
dataset offers a more systematically stratified and reproducible
structure, making it well suited for multi-architecture
benchmarking and fair performance comparison.

Table 1 summarizes the distribution of images per PV fault class
across training, validation, and test subsets, before and after
augmentation. The table highlights dataset uniformity and
shows that augmentation was applied exclusively to the training
subset, leaving validation and test data unchanged to preserve
unbiased evaluation integrity.
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Table 1. Distribution of images per PV fault class across training, validation, and test subsets (before and after

:.iilgmentation)
Total Training Total
Fault Type Training Validation Testing (Original) (Au.gr.nented (Auigr.nented
additions) additions)
Clean 169 102 18 289 676 796
Dusty 162 97 16 275 648 761
Bird-drop 177 104 17 298 705 826
Snow-covered 154 92 16 262 616 724
Electrical-damage 135 77 13 225 531 621
Physical-damage 132 78 15 225 528 621
Total Images 929 550 95 1574 3704 4349
2.2. Data Preprocessing To ensure methodological consistency and depth of
All RGB input images were resized to a standardized resolution ~ experimentation, all four CNN  architectures—ResNet50,

of 224 x 224 pixels and normalized according to the
preprocessing conventions associated with each pretrained
architecture. Prior to training, the dataset was stratified into
training, validation, and test subsets, ensuring class balance and
randomized shuffling across all folds of the 5-fold cross-
validation scheme. For transfer learning, the convolutional
backbone of each pretrained CNN—ResNet50, EfficientNetBO,
MobileNetV3Small, and DenseNetl21 was initialized with
ImageNet weights and kept frozen during initial training to
preserve learned low-level feature representations. A
lightweight classification head was then appended to each
model, composed of a Global Average Pooling layer to reduce
feature map dimensionality, Batch Normalization to stabilize
gradient propagation, a Dropout layer (rate = 0.3) for
regularization, and a SoftMax-activated dense layer configured
for six-class output.

This unified preprocessing and model assembly pipeline
ensured methodological consistency across all architectures,
enabling a fair and transparent cross-model performance
comparison in both accuracy and computational efficiency.
Model training was carried out using a fixed batch size of 16,
optimized with the Adam optimizer and Sparse categorical
cross-entropy loss function. To enhance model generalization,
early stopping was applied with a patience threshold of five
epochs, while validation-based checkpointing automatically
preserved the best-performing model weights per fold.
Throughout training, key performance metrics including
accuracy, precision, recall, F1-score, and confusion matrices
were continuously logged. Additionally, training loss and
accuracy curves were recorded in structured formats to facilitate
post-training  statistical analysis and visualization. These
metrics were subsequently integrated into the real-time
graphical user interface (GUI), enabling direct field-level fault
classification and validation under deployment conditions.

2.3. Model Configuration
2.3.1. Training  Strategy
Configuration

and  Hyperparameter

EfficientNetB0, MobileNetV3Small, and DenseNet121—were
trained under identical optimization conditions, allowing for a
fair and unbiased comparative assessment of both performance
and computational efficiency. A stratified 5-Fold Cross-
Validation scheme was employed to enhance statistical
reliability and minimize performance variance, ensuring that
each sample was used once for testing and four times for
training. This approach strengthens the generalization capability
of all models while mitigating overfitting tendencies in limited
datasets. Each model utilized the Adam optimizer with a fixed
learning rate and the Sparse Categorical Cross entropy loss
function. Early stopping and dropout regularization were applied
to prevent overfitting, while validation-based checkpointing was
activated to retain the best model weights per fold. The detailed
hyperparameter settings used throughout all experiments are
summarized in tfable 2. The configuration ensures
reproducibility and comparability across architectures.

‘7 Table 2. Training hyperparameters configured for all
CNN architectures

Parameter Configuration

Adam optimizer (learning rate =
Optimizer 0.0008 for ResNetS0,
P MobileNetV3Small, DenseNetl21;

0.001 for EfficientNetB0)

5-Fold stratified validation (reduces
variance & improves  statistical
reliability)

Cross-Validation

Loss Function Sparse Categorical Crossentropy

15 epochs x 5 folds (total = 75 epochs
per model)

16 (samples), adjusted for 8 GB RAM
(CPU training environment)

0.3 for all models except ResNet50
0.4

Enabled (patience = 3 for most
models; 5 for EfficientNetB0)

224 x 224 x3

Number of Epochs

Batch Size

Dropout Rate

Early Stopping Strategy

Input Size
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2.3.2. Hardware Environment and Execution Timeline

To ensure methodological fairness in performance
benchmarking, all models were trained and evaluated on the
same CPU-only workstation, maintaining identical software and
hardware environments. This configuration allowed for an
equitable comparison of computational efficiency among the
four architectures. Training was executed using TensorFlow
2.19.0 (Python 3.10, Visual Studio Code environment), under
uniform runtime settings. Each model underwent a 5-Fold
Cross-Validation procedure, and the total as well as mean
training times were computed as the average across all folds to
ensure statistical reliability. The selected CPU-based setup also
reflects realistic deployment scenarios, particularly for low-cost
or embedded PV inspection systems, where GPU acceleration
may not be available. Such a configuration highlights the trade-
off between accuracy and computational feasibility in real-
world applications. The complete hardware configuration and
runtime environment are summarized in fable 3, while table 4
presents the mean and cumulative training durations across the
four CNN architectures, serving as indicators of computational
scalability.

Table 3. Hardware and software configuration used for
model training

Parameter Value

Visual Studio Code (VS Code) +

Development Platform Python 3.10 + TensorFlow 2.19.0

Intel Core 15-3340 CPU @ 3.10
GHz, 8 GB RAM (No GPU
acceleration)

Hardware Specs

Operating System Windows 10 Pro (64-bit)
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2.3.3. Architectural
Adaptation

All four CNN architectures were implemented within a unified
transfer learning framework to ensure structural consistency and
reproducibility. Each model employed a pretrained convolutional
backbone (initialized with ImageNet weights) as a fixed feature
extractor, onto which a standardized lightweight classification
head was appended. The classification head comprised a Global
Average Pooling (GAP) layer to reduce spatial dimensions,
followed by Batch Normalization for stable convergence, a
Dropout layer for regularization, and a fully connected SoftMax
layer with six output neurons corresponding to the PV fault
categories. This consistent top-layer configuration allowed direct
comparison of representational efficiency among architectures of
varying depth and parameter count. By adopting this design, the
study introduces a reproducible architectural benchmarking
strategy that isolates the performance impact of the backbone
network itself, rather than the influence of arbitrary classifier
design choices—thus strengthening the methodological novelty of
the comparative framework. The detailed architectural
configuration and parameterization of all CNN models are
summarized in table 5.

Design and Transfer Learning

Table 5. Architectural configuration and parameterization
of CNN models

5-Fold validation, 15 epochs per
fold (Total = 75 epochs per
model)

Cross-Validation Setup

Table 4 summarizes the total training time and relative
computational  efficiency across all CNN  models.
MobileNetV3Small achieved the shortest overall training
duration (77.6 min), setting the reference for 100 % efficiency.
EfficientNetBO ranked second (25.8 %), confirming its
suitability for lightweight deployment, while DenseNet121 and
ResNet50, despite higher accuracy, required significantly longer
training cycles.

Table 4. Training time summary and computational
efficiency of CNN models

Mean Relative
Model T.”“““‘g To?al Total Efficiency

Time (min) (hrs) (%)

(s/fold) °
ResNet50 5926.72 | 493.89 | 8.23 15.7
EfficientNetBO 3600 300.0 5.00 25.8
MobileNetV3Small | 930.93 77.58 1.29 100
DenseNet121 7476.06 | 623.01 | 10.38 | 12.4

Parameter ResNet50
Pretrained on ImageNet
(ResNet50,
EfficientNetBO,

Base Model MobileNetV3Small,
DenseNet121; include top
= False)

Frozen Layers All convolutional layers

g?rzinggy GlobalAveragePooling2D

Normalization BatchNormalization
0.3 for all models except

Dropout Rate ResNet50 (0.4)

Final Dense 6 output units with

Layer Softmax activation
~23.6M (ResNet50),

Trainable ~421éﬁ (EfficientNetBO0),

Parameters (MobileNetV3Small),
~7.2M (DenseNet121)
Deep residual network
(ResNet50); Compound-

Architectural scaled efficient ~CNN

Complexity (EfficientNetBO0);

Level Lightweight mobile CNN
(MobileNetV3Small);
Deep densely connected
CNN (DenseNet121)

Figure 1 provides a schematic overview of the complete
experimental workflow, encompassing dataset preparation,
preprocessing, model training, performance evaluation, and GUI-
based real-time validation. This pipeline illustrates the integration
between algorithmic experimentation and practical deployment.
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Figure 1. Experimental workflow illustrating dataset processing, model training, evaluation, and GUI-based PV fault classification

:3. RESULTS

3.1. Training Behavior and Temporal Efficiency

The training and validation performance of all four CNN architectures ResNet50, EfficientNetBO, MobileNetV3Small, and
DenseNet121 was analyzed using epoch-based learning curves depicting accuracy and loss variations throughout the training process.
Figures 2 and 3 present these results, each displaying two models for visual clarity and comparative readability. As shown in figure 2,
ResNet50 achieved the highest peak validation accuracy but exhibited moderate oscillations during convergence, reflecting its
sensitivity to learning rate fluctuations. Conversely, EfficientNetBO demonstrated smoother convergence with faster stabilization of
both training and validation curves, confirming its robustness and computational efficiency.

ResNet50 — Accuracy vs Epochs ResNet50 — Loss vs Epochs EfficientNetB0 — Accuracy vs Epochs EfficientNetBO — Loss vs Epoachs
0.85] — Tain - — Train 0.85 — Train
validation 1.2- validation 1.4- Validation
0.80
Lo 0.75 1.2
fy Z
g P & 0.70 n10-
2 Sos S §
< & 0-65
0.8
0.60
0.6
0.55 - 0.6
<N — Train
validation
0.4- 0.50 0.4-
0 2 4 1) 8 10 12 14 0 2 4 6 8 10 12 14 2 4 6 8 10 12z 2 4 6 8 10 12
Epochs Epochs Epochs Epochs

Figure 2. Training and validation accuracy and loss curves versus epochs for ResNet50 and EfficientNetB0

Figure 3 illustrates the behavior of the lightweight MobileNetV3Small and the deeper DenseNetl21 architectures.
MobileNetV3Small converged rapidly within fewer epochs, achieving stable accuracy at early stages due to its compact
parameterization. In contrast, DenseNet121 required a longer training duration to reach optimal convergence but ultimately provided
consistent learning stability and lower validation loss across folds, aligning with its high-capacity design.

ResNet50 — Accuracy vs Epochs ResNet50 — Loss vs Epochs EfficientNetBO — Accuracy vs Epochs EfficientNetBO — Loss vs Epachs
0.85 | = Train s = Train 0.85 — Train
Validation 1.2 validation 1.4- Validation
0.80
0.80
1.0 0.75 1.2
= >
Z0.75 o
g a goro n10-
2 Sos g 3
4070 § 065
0.8
0.60
0.65 0.6
0.55 — 0.8
- — Train
0.60 . -
0. o 050 Validation oal
o 2 L} L) 8 10 12 14 o 2 4 6 8 10 12 14 2 4 6 8 10 12 2 4 6 8 10 12
Epochs Epochs Epochs Epochs

Figure 3. Training and validation accuracy and loss curves versus epochs for MobileNetV3Small and DenseNet121
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Collectively, the four learning curves highlight distinct optimization dynamics across architectures of varying depth and complexity.
The results confirm that lightweight models (EfficientNetB0, MobileNetV3Small) are more suitable for real-time or embedded PV
diagnostic applications, whereas deeper networks (ResNet50, DenseNet121) offer superior representational power for complex fault
differentiation. Overall, these findings reveal a clear trade-off between training efficiency and classification accuracy, underscoring
the methodological importance of evaluating both performance and computational behavior within a unified experimental
framework.

3.2. Evaluation Metrics

The quantitative performance of all four CNN architectures—ResNet50, EfficientNetB0, MobileNetV3Small, and DenseNet121—was
comprehensively assessed on the same dataset partitions using multiple evaluation indicators, including accuracy, precision, recall, and
F1-score. This ensured a fair and statistically reliable comparison of both predictive quality and model robustness. ResNet50 achieved
the highest validation and test accuracies, confirming its superior feature extraction capability derived from deeper residual connections.
EfficientNetB0 maintained comparable performance, showing slightly lower loss values and smoother convergence, which reflects its
efficient compound-scaling structure. MobileNetV3Small, while yielding marginally lower accuracy, demonstrated remarkable
computational efficiency and rapid convergence—making it highly suitable for low-power or real-time embedded PV fault
classification. DenseNet121, on the other hand, provided a strong trade-off between accuracy and stability, maintaining balanced
precision—recall values across all fault classes and achieving the best macro-averaged F1-score (0.96). These observations collectively
emphasize that deeper networks (ResNet50 and DenseNet121) generally achieve superior fault discrimination at the cost of longer
training time, whereas compact architectures (EfficientNetBO and MobileNetV3Small) provide faster convergence and enhanced
computational feasibility for lightweight deployment environments. The detailed class-wise precision, recall, and F1-scores for all
models are reported in tables 6 and 7. These tables present per-class metrics across six fault types, allowing a granular interpretation of
model performance consistency and misclassification tendencies.

Table 6. Class-wise evaluation metrics for ResNet50 and EfficientNetB0 in PV surface fault classification

Class Fault Type ResNet50 EfficientNetB0

P R F1 S CP APL P R F1 S CP APL

1 Bird drop 0.94 0.88 0.91 17 15 0.88 0.94 0.88 0.91 17 15 0.88

2 Clean 0.89 0.89 0.89 18 16 0.88 0.94 0.83 0.88 18 15 0.83

3 Dusty 0.93 0.88 0.90 16 14 0.88 0.88 0.94 0.91 16 15 0.94

4 Electrical Damage 1.00 1.00 1.00 13 13 1.00 0.87 1.00 0.93 13 13 1.00

5 Physical Damage 0.83 1.00 0.91 15 15 1.00 0.93 0.93 0.93 15 14 0.93

6 Snow Covered 1.00 0.94 0.97 16 15 0.94 1.00 1.00 1.00 16 16 1.00
Mean 0.93 0.93 0.93 95 88 0.93 0.93 0.93 0.93 95 88 0.93

Note: P = Precision, R = Recall, F1 = Fl-score, S = Support (true instances), CP = Correct Predictions, APL = Accuracy Per Label (%).

As illustrated in table 6, ResNet50 marginally outperformed EfficientNetBO across most categories, particularly in Bird-drop and
Physical Damage detection, confirming its robustness in discriminating visually complex surface anomalies. EfficientNetB0, however,
exhibited nearly identical mean performance with smoother generalization and lower overfitting tendency.

. Class-wise evaluation metrics for MobileNetV3Small and DenseNet121 in PV surface fault classification

MobileNetV3Small DenseNet121
Class | Fault Type

P R F1 S CP APL P R F1 S Cp APL
1 Bird drop 0.94 0.88 0.91 17 15 0.88 0.94 1.00 0.97 17 17 1.00
2 Clean 0.83 0.83 0.83 18 15 0.83 0.94 0.89 0.91 18 16 0.88
3 Dusty 0.88 0.88 0.88 16 14 0.88 0.88 0.88 0.88 16 14 0.88
4 Electrical Damage 0.93 1.00 0.96 13 13 1.00 1.00 1.00 1.00 13 13 1.00
5 Physical Damage 0.93 0.93 0.93 15 14 0.93 1.00 1.00 1.00 15 15 1.00
6 Snow Covered 1.00 1.00 1.00 16 16 1.00 1.00 1.00 1.00 16 16 1.00
Mean 0.92 0.92 0.92 95 87 0.92 0.96 0.96 0.96 95 91 0.96

Note: P = Precision, R = Recall, F1 = Fl-score, S = Support (true instances), CP = Correct Predictions, APL = Accuracy Per Label (%).
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As observed in fable 7, DenseNetl21 achieved the highest
macro-average precision and recall values (96%), confirming its
ability to maintain consistent accuracy across all fault classes.
In contrast, MobileNetV3Small reached stable yet slightly
lower metrics, reflecting the trade-off between model
compactness and representational capacity.

3.3. Confusion Matrix Analysis

To further evaluate model reliability and inter-class
discrimination, confusion matrices were generated for all four
CNN architectures, providing a visual interpretation of class-
wise prediction consistency across the six PV fault categories
(Clean, Dusty, Bird-drop, Snow-covered, Electrical-damage,
and Physical-damage). Figure 5 illustrates the confusion
matrices for ResNet50 (a) and EfficientNetBO0 (b). The diagonal
elements denote correctly classified instances, whereas off-
diagonal values represent misclassifications. ResNet50
exhibited near-perfect diagonal dominance, achieving 100 %
precision in “Physical-damage” and “Snow-covered” classes,
with minor confusion between “Clean” and “Dusty” panels—
two visually similar categories. EfficientNetBO produced
comparable overall performance but achieved slightly higher
recall in the “Bird-drop” and “Clean” classes, confirming its
generalization advantage and smoother decision boundaries.

Figure 6 presents the confusion matrices for the lightweight
MobileNetV3Small (a) and the deeper DenseNetl21 (b)
MobileNetV3Small achieved rapid convergence with strong
diagonal concentration yet revealed minor cross-confusion
between “Dusty” and “Electrical-damage” samples, attributable
to overlapping texture patterns in RGB space. Conversely,
DenseNet121 achieved perfectly clean diagonals for most
classes, including “Snow-covered” and “Physical-damage,”
indicating superior feature reuse through dense connectivity and
yielding the highest overall macro-averaged accuracy.

Collectively, the four confusion matrices confirm the distinct
learning behaviors of depth-oriented and lightweight CNNs.
While deeper models (ResNet50, DenseNet121) demonstrate
stronger discriminative power for complex fault patterns,
compact architectures (EfficientNetB0O, MobileNetV3Small)
exhibit smoother generalization and faster adaptability for field-
level PV fault monitoring. These complementary characteristics
suggest that hybrid or ensemble approaches could further
exploit the strengths of both network families in future PV
diagnostic frameworks.

Confusion Matrix — ResNet50 Confusion Matrix — EfficientNetB0

Bird 1] 1] 0 0 0 15.0 Bird 15.0
Glean | 0 20|00 125  Clean 125
Dust | 1 1 0 0 0 10.0 Dust 10.0
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Pys 0 | O | O | O 0o | 50 . 50
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& £ =3 &
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Figure 5. Confusion matrices of (a) ResNet50 and (b) EfficientNetB0
for PV surface-fault classification (six classes)
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Figure 6. Confusion matrices of (a) MobileNetV3Small and (b)
DenseNet121 for PV surface-fault classification (six classes).
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3.4. Receiver Operating Characteristic (ROC)
Analysis

To comprehensively evaluate the discrimination capability of
the models, multi-class Receiver Operating Characteristic
(ROC) curves were generated for all four CNN architectures.
The ROC curve represents the trade-off between the true positive
rate (TPR) and false positive rate (FPR), while the Area Under
the Curve (AUC) quantifies each model’s overall separability
across the six PV surface-fault categories. Figure 7 presents the
comparative multi-class ROC curves for ResNet50 and
EfficientNetB0. ResNet50 achieved near-perfect separability,
with AUC values > 0.99 for all classes and perfect discrimination
(AUC = 1.00) for the “Snow-covered” and “Physical-damage”
faults. EfficientNetBO achieved similarly strong separability
with AUCs above 0.99 for most classes, particularly excelling in
“Bird-drop” and “Clean” fault types, confirming its efficiency-
oriented feature scaling. Figure 8 displays the ROC curves for
MobileNetV3Small and DenseNetl21. The lightweight
MobileNetV3Small achieved strong class-wise separability
(AUC = 0.97-0.99) but showed minor overlap between “Dusty”
and “Electrical-damage” classes—attributable to their visual
similarity in RGB texture features. DenseNet121 demonstrated
the most stable performance among all architectures, attaining
perfect or near-perfect AUC values (> 0.99) across all six
classes, confirming its superior discriminative ability and
robustness to inter-class noise. Across all four CNNs, the AUC
scores consistently exceeded 0.97, reinforcing the models’
reliability for real-world PV surface-fault identification. Deeper
networks such as ResNet50 and DenseNet121 provided higher
separability =~ margins,  while = compact  architectures
(EfficientNetB0O, MobileNetV3Small) achieved competitive
accuracy with lower computational overhead. These results
further validate the comparative framework’s robustness and
highlight the complementary advantages of depth-oriented and
efficiency-oriented CNN designs in the context of photovoltaic
fault analysis.
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Figure 7. Multi-class ROC curves for (a) ResNetS0 and (b)
EfficientNetBO across six PV surface fault types
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Figure 8. Multi-class ROC curves for (a) MobileNetV3Small and (b)
DenseNet121 across six PV surface fault types

3.5. Real-World Case Testing Using GUI-Based

Interface

To demonstrate practical deployment and model
interpretability, a custom multi-model GUI was developed to
enable real-time PV fault prediction and visual benchmarking
across all four CNN architectures—ResNet50, EfficientNetBO,
MobileNetV3Small, and DenseNet121. As illustrated in figure
9, the interface allows users to upload a solar panel image and
instantly view comparative predictions through synchronized
bar charts and per-model summaries. In the presented example,
DenseNet121 achieved the highest confidence (82%) for the
“Dusty” fault, followed by ResNet50 (72%), EfficientNetB0
(68%), and MobileNetV3Small (61%), reflecting clear trade-
offs between model depth, computational efficiency, and
classification precision. This runtime-aware GUI not only
enhances accessibility for non-experts but also validates the
scalability and deployment feasibility of the proposed models in
real-world PV systems and mobile diagnostic platforms.

'SOLAR PANEL ANOMALY COMPARISON (ResNetS0 | EfficientNet80 |
1|

MobileNetv3Small | DenseNet121)

LAR PANEL ANOMALY COMPARISON (ResNet50 |

MobileNetV3Small | DenseNet121)

o Upload image

(b)

!

EfficientNetB0

o 83 8 8 8 B

o

g
H
8 8 8 B

(c) A

Figure 9. (a) GUI displaying the uploaded solar panel image with
detected anomaly, (b) reset interface ready for new input, and (c)
comparison window showing multi-model predictions for the same
panel image

= 4, DISCUSSION

This study systematically investigated and compared four
advanced CNN architectures—ResNet50, EfficientNetBO,
MobileNetV3Small, and DenseNet121—for automated surface-
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level PV fault classification using RGB imagery. The results
reaffirm that all models can effectively automate visual
inspection tasks while highlighting specific performance—
efficiency trade-offs that guide real-world deployment.

4.1. Interpretation and Comparison with Previous

Studies

The experimental results revealed that DenseNetl121 achieved
the highest overall accuracy (96%) and Fl-score (0.96),
surpassing ResNet50 (93.68%), EfficientNetB0 (92.63%), and
MobileNetV3Small.(92%)  ResNet50 maintained superior
discrimination of complex anomalies such as Bird-drop and
Physical damage, while EfficientNetBO achieved faster
convergence with reduced computational cost .This observation
aligns with the results of Abdelsattar et al. [5], who showed
deeper residual networks exhibit higher sensitivity to subtle
defects, and with Tan and Le [8], who reported EfficientNet’s
strong accuracy-to-computation trade-off. Our comparative
multi-model framework advances prior works such as Ledmaoui
et al. [7] by providing a reproducible evaluation under identical
experimental settings—bridging the gap between academic
benchmarking and operational deployment .Hence, the study
contributes novel insight into how architecture depth and
compound scaling distinctly affect PV fault discrimination
accuracy, particularly under real-world imagery conditions.

4.2. Strengths of the Study

Employs a curated real-world RGB dataset covering six
representative PV fault types, ensuring diversity and realism.
Implements a 5-Fold Cross-Validation procedure to enhance
statistical reliability and minimize variance. Introduces a
standardized benchmarking framework across four CNN models
with unified preprocessing, identical training settings, and
runtime analysis. Integrates a user-oriented real-time GUI that
demonstrates model explain ability and immediate deployment
potential in field environments.

4.3. Limitations

Although data augmentation expanded the dataset fivefold, the
base dataset (1,574 images) remains relatively moderate,
potentially limiting generalization to unseen environmental
conditions. Only RGB imagery was utilized; future inclusion of
IR or EL modalities could uncover internal faults beyond surface
anomalies. The current work did not explore robustness under
noise, motion blur, or varied illumination, which should be
analyzed in extended testing campaigns.

4.4. Future Research Directions

Expand the dataset with samples from diverse climates and panel
technologies to improve model adaptability. Investigate hybrid
or ensemble CNN approaches (e.g., ResNet + EfficientNet
feature fusion) for enhanced accuracy—speed balance. Deploy
lightweight variants on embedded systems or UAVs for field
diagnostics and integrate explainable AI modules to interpret
model behavior. Combine RGB with IR/EL inputs to achieve
unified detection of surface and internal PV faults—thus
bridging the gap between imaging modalities and real-time
reliability assurance.
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“ Table 7. Summary of Related Works Using ResNet Architectures for PV Fault Detection

Ref. Application Domain Input Features Target Output Accuracy Dataset Source
. 010 ~ 1
Precise crack detection in EL images of solar cells Binary classification 91% accuracy 2,000 EL fmages of
[7] PV modules (cell-level) (mono- & (cracked vs. healthy cell) (ResNet-50; F1 PV cells (public
polycrystalline) ) Y ~87.37%) datasets, curated)
85.37% F1
Hotspot localization & . Binary fault detection + (ResNet-50 ~837 IR images of
. . . Infrared thermal images . . .
[12] multi-fault classification in f solar panels (drone- multi-class fault classification) and field PV modules
PV panels (UAV of solar panc’s {drone identification (5 fault 67% mAP (five fault
based) .
thermography) types) (hotspot categories)
detection)
Aut_omated defect detection Electroluminescence Semantic segmentation 95.4% defect 1,968 EL 1mages of
[13] in solar cells (lab EL . . . . monocrystalline cells
. . (EL) images of PV cells (defective cell regions) | detection accuracy
imaging) (custom lab dataset)
YA —
Surface anomaly Multi-class classification 5% (bl.n ary fault Field images Of PV
. L RGB photographs of detection) and panels (RGB); 2-
[14] classification in PV modules 1 Is (field (no fault, dust, crack, 0% (f ) ) 4ol
(outdoor visible-light) solar panels (field) shadow) 70% (four-class class vs 4-class
fault ID) datasets
. . Thermal & visual images Multi-class fault 83% macro F1 IR and RGB 1mages
PV farm fault diagnosis . . . from an operational
[15] . . of PV modules (plant classification (various (ResNet-18 .
(real-world inspection) . . PV plant (multiple
inspection) module defects) model)
fault types)
. . . 0 .
This | Surface fault classification Visible-light RGB MLI‘“‘ class classification | 93.68% test 1,574 images from
Study | in PV modules (RGB-based) images of solar pancls (clean, c_lust, blrd,.snow, accuracy (ResNet- | open-source datasets
electrical, physical) 50); F1=0.93 (Kaggle).

Table 8. Summary of Related Works Using EfficientNet Architectures for PV Surface Fault Analysis

Dataset Source

Ref Application Domain Input Features Target Output Accuracy
2,262 solar panel
o images (Kaggle
Hybrid CNN ensemble for Visible-light images of Multi-class classification 8%:6581/3:;%?2:_0}/ dataset: clean,
[8] surface anomalies (transfer solar panels (online . . dust, snow, bird
learni (6 surface conditions) EfficientNet-B1
earning) dataset) drop,
ensemble) . .
physical/electrical
damage)
Custom IR image
PV module fault diagnosis Thermal IR images of PV Multi-class defect 95.72% accuracy rgzt;s]eetsoirﬁi\ér
[10] (mixed climate con dgi;tions) panels (drone & classification (hotspot, (EfficientNet-BO diverse conditions
handheld) crack, PID, etc.) model)
(several fault
types)
8-class public EL
o image dataset
PV cell defect identification EL images of solar cells Binary classification 93'59/) accuracy (with defects like
[13] . - . . . (EfficientNet with
(EL imaging) (high noise) (defective vs normal cell) . cracks, breaks,
attention modules)
etc.), augmented
for training
1,200+ field
Surface fault classification in Visible-light RGB images Multi-class classification 97.24% (au ll;n:ie:d) of
modules (environmenta soiling, damage, classification :
[16] PV modules (envi : of pa%lel surfaces ¢ (soiling, d lassificati clea%l Vs various
soiling) shading, etc.) accuracy surface faults
(balanced dataset)
. . . 92.63% test .
This Surface fault classification in | Visible-light RGB images l\(/lclllézr_ldgsz tclgisrs(;ﬁsc;lélon accuracy 1,514;$:§ei£0m
Study PV modules (RGB-based) of solar panels » CUSh, > SOW, (EfficientNet-B0); P hy
electrical, physical) F1 =092 datasets (Kaggle)
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S. CONCLUSIONS

This study conducted a comprehensive comparative analysis
across four convolutional neural network (CNN) architectures
ResNet50, EfficientNetBO, MobileNetV3Small, and
DenseNetl121 for the automated detection and classification of
surface-level faults in photovoltaic (PV) modules using visible-
light RGB imagery. The experimental findings demonstrate that
DenseNet121 achieved the highest classification accuracy (96%)
and Fl-score (0.96), outperforming the other models while
maintaining stable convergence. ResNet50 exhibited superior
feature discrimination, particularly in visually complex faults
such as Bird-drop and Physical damage, whereas EfficientNetB0
provided faster training and lower computational load,
confirming its suitability for lightweight and real-time PV
inspection systems. The MobileNetV3Small model, although
slightly less accurate, demonstrated notable efficiency for
embedded and edge-level applications reinforcing the trade-off
between model depth and deployment feasibility. The novelty of
this research lies in its reproducible benchmarking framework,
which integrates multiple CNN architectures under identical
preprocessing, training, and validation protocols. This unified
approach ensures methodological transparency, fair comparison,
and replicability addressing prior literature gaps where model
evaluations often relied on disparate datasets or inconsistent
conditions. Furthermore, the inclusion of a 5-Fold Cross-
Validation scheme and extensive data augmentation (x5)
enhanced the statistical robustness of the results and mitigated
overfitting risks despite the moderate dataset size (1,574 images).
The integration of a real-time GUI with computation-efficiency
metrics provides a tangible bridge between algorithmic design
and field-level PV diagnostics, enabling intuitive visualization
and multi-model interpretability for end-users. Such integration
demonstrates how deep learning outputs can be operationalized
for on-site decision support thus moving beyond theoretical
validation toward applied sustainability. In summary, the study
contributes a holistic performance efficiency analysis of CNN
architectures for PV fault detection, establishing a standardized
benchmark that links experimental accuracy with deploy ability.
These findings serve as a foundation for future development of
hybrid or ensemble PV fault detection frameworks, combining
the precision of deep residual networks with the scalability of
efficient models. Ultimately, the proposed approach supports the
transition toward intelligent, automated, and cost-effective solar
monitoring infrastructures, essential for maximizing energy yield,
ensuring reliability, and minimizing operational costs in large-
scale solar farms.

Conflicts of Interest: The authors declare no conflict of
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