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ABSTRACT- Speech is the audible acoustic signal generated by the articulatory system (lungs, vocal folds, vocal tract,
tongue, lips) to communicate language. The fundamental frequency (F,) is the lowest frequency component of a speech waveform
and corresponds to the vibration rate of the vocal folds during voiced speech. It also determines the pitch of the speaker’s voice.
In speech signal processing, this acoustic waveform is captured and analyzed to extract information about what is being said, how
it is being said and who is saying it. In various speech processing applications such as voice synthesis, speaker recognition and
emotion analysis accurate extraction of the fundamental frequency (Fy) is a vital task. However, the vocal tract’s formants can
sometimes significantly alter the glottal waveform’s shape, making it difficult to identify the true pitch. Additionally, in the
presence of background noise, traditional pitch detection techniques often experience a considerable decline in performance. This
work proposes a robust method for extracting the fundamental frequency by utilizing the complementary advantages of the power
spectrum and logarithmic spectrum in noisy speech environments. The power spectrum mitigates noise effects, while the
logarithmic operation effectively separates vocal tract characteristics from the source excitation. The proposed approach integrates
autocorrelation-based power spectral analysis with cepstral techniques derived from the log spectrum to improve pitch estimation
accuracy under adverse conditions. Experimental results on noisy speech datasets show that the proposed hybrid method achieves
lower gross pitch error and greater robustness than traditional methods such as BaNa, autocorrelation and cepstral techniques.
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and consonants that are shaped by the vocal tract. The
fundamental frequency (Fo), perceived as pitch, reflects the rate
of vocal fold vibration and varies across speakers and contexts
[1, 2]. Pitch also fluctuates with emotional and intonational cues.
Accurate Fo estimation is essential for applications in cochlear
implants, hearing aids, speech recognition and human-computer
interaction (HCI). Robust extraction in noisy conditions remains
a challenge, as most existing approaches target clean speech.
However, with the effect of vocal tract and external noise,
speech signal gets distorted and it becomes complicated to
uphold the accuracy and dependability of pitch extraction
procedures. This work proposes an efficient, frequency-domain—
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1, INTRODUCTION

Human conversation, an innate form of communication,
depends on coordinated activity of respiratory and articulatory
organs to generate speech sounds. Air from the lungs passes
through the vocal folds, glottis and oral tract, emerging as
acoustic waves. Voiced sounds arise from vocal fold vibration,
while unvoiced sounds result from constrictions without
vibration. Linguistically, speech is built from phonemes vowels

based pitch extraction technique designed for real-world noisy
environments. The method avoids complex post-processing,
mitigates vocal tract effects and offers time efficiency for
practical applications, including IoT-based speech systems.

2. LITERATURE REVIEW

.F';i-tch detection methods are broadly categorized into time-
domain, frequency-domain and hybrid approaches [3].
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Time-domain methods analyze periodicity in the waveform
using zero-crossings, autocorrelation and related measures [4—
7]. The Autocorrelation Function (ACF) [8] is effective in clean
speech but degrades under colored or non-stationary noise. The
Average Magnitude Difference Function (AMDF) [9] offers
lower complexity but suffers from pitch doubling and poor
resolution. Weighted ACF (WAF) [10] reduces side-lobes using
AMDF weighting, improving clarity. YIN [11] enhances the
difference function with cumulative mean normalization,
achieving higher accuracy but at higher computational cost and
limited noise robustness. Frequency-domain methods exploit
periodicity in the spectrum [12-14]. Speech is divided into
frames, windowed and transformed via STFT. The Cepstrum
(CEP) [15] identifies pitch from the inverse Fourier transform
of the log spectrum but is noise-sensitive. Modified Cepstrum
(MCEP) [16] applies liftering and clipping to reduce vocal tract
and noise effects. Windowless ACF Cepstrum (WLACF-CEP)
[17] avoids windowing artifacts, though still challenged by
highly dynamic noise. Hybrid methods combine both domains
for improved robustness. BaNa [18] estimates pitch from
harmonic peaks but struggles in low-pitch or noisy speech.
PEFAC [19] uses a harmonic comb filter in the log-frequency
spectrum and performs well at low SNR, but is computationally
heavy. YAAPT [20] blends time and frequency analyses with
dynamic programming to smooth contours, requiring careful
tuning. MBSC [21] aggregates subband correlograms for better
noise robustness but at higher complexity.

While these methods achieve varying trade-offs, many rely on
multi-band analysis, complex filtering, or heavy post-
processing. Our proposed method is a purely frequency-domain
approach, avoiding parameter tuning and computationally
expensive steps, while retaining robustness under noisy
conditions.

# 3, PROPOSED METHOD

A clean speech waveform by nature is extremely nonstationary
and quasi-periodic rather than really periodic. Let us assume, an
additive noise signal, u[m], contaminates the clean speech signal,
w[m], resulting in the noisy speech signal, z[m]. The step-by-step
process of the proposed algorithm for fundamental frequency
extraction is outlined in the pseudocode below.

Algorithm 1: Proposed Hybrid Spectrum Method for Fo
Extraction

Input: A frame of the noisy speech signal, z[m].
Output: Estimated fundamental frequency, F.
BEGIN
Step 1: Apply Window Function
Let R,ec[/m] be the Rectangular window function.
zrfm]<—z[m] Ryec[m] // Apply window to the signal
frame
Step 2: Transform to Frequency Domain
Z[k]«—FFT(z,[m]) // Compute the Fast Fourier
Transform
Step 3: Compute Power and Logarithmic Spectra in parallel
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Branch A: Power Spectrum to mitigate noise effects
Plk]—[Z[k] 2
Branch B: Logarithmic Spectrum to separate vocal
tract effects L[k]—log(/Z[k] )
Step 4: Combine the Spectra to emphasize key spectral
components
C[k]—P[k] -L[k] // Element-wise multiplication to
create the combined spectrum
Step 5: Transform back to Time-like Domain
c[n]—IFFT(C[k]) // Compute the Inverse FFT
Step 6: Find the Fundamental Frequency
Npeak—argmax(c[n]) // Find the index of the most
prominent peak in the valid pitch range
FO«—npear/Sampling Rate // Convert the peak's index to

frequency
RETURN Fy
END

Windowing divides the speech signal into number of periodic
segments, essentially uses smoothing functions that taper to zero
at the edges and reduce spectral leakage. When a speech signal is
multiplied by a window function, the segment naturally decays at
the edges, making the boundary irregularities less perceptible.
Although windowing modifies the original signal, the
transformation is carefully designed to preserve its spectral
characteristics as much as possible. In our method, rectangular
window function is applied on the noisy speech signal. The
Rectangular window can be mathematically expressed as follows:

_(Lfor0sm<M-1
Rreclm] = {0, otherwise M
Rectangular window provides notable benefits in noisy
conditions. Its narrower main-lobe bandwidth enhances the
precision of pitch estimation by minimizing spectral leakage and
concentrating energy on the primary frequency components. This
makes it particularly effective when dealing with signals affected
by noise. In figure 1, the block diagram of our proposed approach
for extracting the (F;y) of speech signals is shown which is a pitch
extraction method by combining the power spectrum and
logarithm spectrum.

Noisy Input Signal

[ Window Function ]

log| FFT |

|FFT|?

Figure 1. Block diagram of Proposed Method
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In figure 2 we see that, in power spectrum, clean speech is
affected by noise. As shown in figure 3, the logarithmic spectrum
of clean speech becomes highly distorted when noise is
introduced. We don’t get proper pitch information as a
consequence.
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Figure 2. The Spectral Magnitude (Amplitude) vs Frequency (Hz)
representation of the Power spectrum of a clean speech frame (female
speaker, KEELE database) and the same frame corrupted by White
Noise at an SNR of 5 dB (figure 4, we can find the accurate harmonics
by reducing the both noise and effect of vocal tract)
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Figure 3. The Spectral Magnitude (Amplitude) vs Frequency (Hz)
representation of the Log-magnitude spectrum of a clean speech
frame from a female speaker (KEELE database) and the same frame
corrupted by Babble Noise at 5 dB SNR
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Figure 4. The Spectral Magnitude (Amplitude) vs Frequency (Hz)
representation of the output spectrum of the Proposed Method for the
same clean and noisy speech frames used in figures I and 2 (female
speaker, Babble Noise at 5 dB SNR)

#14. RESULTS AND DISCUSSION

4.1. Experimental Conditions

The proposed pitch extraction technique is implemented using
voice signals that were taken from the NTT and KEELE
databases. The NTT database [22], developed by NTT Advanced
Technology Corporation, includes recordings of four male and
four female Japanese speakers. Each speech sample in the
database has a duration of 11 seconds. A 10 kHz sampling rate
was used for the voice signals. The KEELE database’s [23] voice
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signals were produced by total of ten speakers, comprising five
males and five females with a total duration of approximately 6
minutes across all speakers. The sampling rate for these voice
sounds was 16 [kHz]. To validate our proposed method, we used
five real-world noise types that simulate realistic acoustic
environments: White Noise, Babble Noise, Train Noise, HF
Channel Noise and Car Interior Noise [24]. Each type of noise was
added to the clean speech signals according to their respective
sampling rates. The experiments were conducted at varying SNR
levels: 0, 5, 10, 15 and 20 dB under the following trial conditions:

* Frame length: 50ms except for BaNa;

* Frame shift: 10ms;

» Window functions: Rectangular;

* DFT (IDFT) points: 2048 for KEELE and 1024 for NTT.

4.2. Evaluation Criteria
Based on Rabiner’s rule[8], the accuracy of the fundamental
frequency extraction was assessed using the following equation:

e(l) =Fese() — Frrue(D 2

Here e(l) is the extraction error, F,g; (1) and Fiu. (1) denote the
estimated and true fundamental frequencies at the [-th frame,
respectively, where [ representing frame number. A gross pitch
error (GPE) is identified if |e(l)| exceeds 10% of the true
fundamental frequencies. The GPE rate, expressed as a
percentage, is then calculated over all voiced segments in the
speeched data. Figures 5 to 14 present the experimental results
of GPE across different SNR levels for both KEELE and NTT
databases under various noise conditions. From the figures, we
observe that the proposed method consistently provides lower
average GPE rates than ACF, CEP and BaNa across almost all
SNR levels and noise types in the both KEELE and NTT
databases. Overall, the proposed method demonstrates higher
robustness to noise, as indicated by its consistently lower Gross
Pitch Error (GPE). Our proposed method reduces the effect of
vocal tract characteristics as well as suppresses the non-pitch
peaks in the frequency domain, enhancing the pitch peak in the
wide-band noise. Through experiments, we have confirmed that
the proposed method is efficient and effective in extracting the
pitch in a wide range of noise types.
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Figure 5. Average GPE Comparison for both Female Speakers and
Male Speakers with White Noise across various SNR levels within
KEELE database
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Figure 6. Average GPE Comparison for both Female Speakers and Male
Speakers with Babble Noise across various SNR levels within KEELE
database
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Figure 10. Average GPE Comparison for both Female Speakers and
Male Speakers with White Noise across various SNR levels within
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Figure 7. Average GPE Comparison for both Female Speakers and Male
Speakers with HF Channel Noise across various SNR levels within
KEELE database
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Figure 8. Average GPE Comparison for both Female Speakers and
Male Speakers with Train Noise across various SNR levels within
KEELE database
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Figure 9. Average GPE Comparison for both Female Speakers and
Male Speakers with Pink Noise across various SNR levels within
KEELE database
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Figure 11. Average GPE Comparison for both Female Speakers and
Male Speakers with Babble Noise across various SNR levels within

NTT database
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Figure 12. Average GPE Comparison for both Female Speakers and
Male Speakers with HF Channel Noise across various SNR levels

within NTT database
Train Noise

80

70
_ 60
s
= 50
< 40 gl
% CEP
5 30 —~BaNa
Z 20 ” ~Proposed

10 \

0 —
0 5 10 15 20
SNR (dB)

Figure 13. Average GPE Comparison for both Female Speakers and
Male Speakers with Train Noise across various SNR levels within
NTT database
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Figure 14. Average GPE Comparison for both Female Speakers and
Male Speakers with Pink Noise across various SNR levels within
NTT database

5, CONCLUSIONS

This paper introduced a novel method for extracting the
fundamental frequency (F_0) from noisy speech by combining
features from both the power and logarithmic spectra. The
method captures periodicity more effectively by enhancing
harmonic structures through spectral multiplication, thereby
minimizing the influence of noise and vocal tract effects. The
proposed algorithm was evaluated on the KEELE and NTT
databases across various noise types and SNR levels.
Experimental results confirmed its superiority in reducing Gross
Pitch Error (GPE) compared to established techniques (ACF,
Cepstrum and BaNa). The method showed particularly strong
performance in challenging environments with low signal-to-
noise ratios and overlapping background noise. In conclusion, the
approach offers a simple yet effective solution for accurate pitch
estimation in noisy speech and outperforms existing methods
without relying on complex post-processing or learning-based
noise compensation.
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