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░ ABSTRACT- This paper presents a novel control framework integrating the Beluga Whale Optimization (BWO) 

algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems driving an Open-End Winding Induction 

Motor (OEWIM) using a Model Predictive Control–Space Vector Modulation (MPC–SVM) strategy. The BWO algorithm, 

inspired by the intelligent hunting behaviour of beluga whales, is employed to dynamically extract the global maximum power 

point under varying irradiance and temperature conditions, enhancing PV efficiency. The extracted power feeds a dual-inverter 

OEWIM drive, which offers greater voltage flexibility and fault tolerance compared to conventional topologies. To ensure optimal 

current quality and torque performance, the MPC–SVM scheme predicts future motor states and applies an optimized voltage 

vector synthesized via space vector modulation. The system also incorporates discrete-time current modelling, delay 

compensation, virtual voltage vector generation, and dead-time compensation to address practical implementation challenges. 

Simulation results validate the superiority of the proposed BWO-MPPT and MPC–SVM-driven OEWIM architecture in achieving 

rapid MPPT convergence, reduced current ripple, improved torque stability, and high system efficiency under dynamic operating 

conditions. This integrated approach is highly suitable for renewable energy-based electric drive applications in smart grid and 

industrial automation environments. 

 

Keywords: Beluga Whale Optimization (BWO), Maximum Power Point Tracking (MPPT), Open-End Winding Induction 

Motor (OEWIM), Model Predictive Control (MPC), Space Vector Modulation (SVM), Photovoltaic (PV) System. 
 

 

░ 1. INTRODUCTION 
The integration of photovoltaic (PV) systems with motor drives 

is critical for energy efficiency, but the nonlinear nature of PV 

sources necessitates robust maximum power point tracking 

(MPPT) to maximize energy harvest [1, 2]. For the motor drive, 

the open-end winding induction motor (OEWIM) offers a 

superior voltage envelope and fault tolerance but requires 

advanced modulation techniques [3, 4]. Model Predictive 

Control (MPC) coupled with Space Vector Modulation (SVM) 

has emerged as a powerful solution for OEWIMs, enabling 

high-fidelity control with minimized current ripple [5]. A 

significant challenge, however, is the computational burden of 

traditional MPC, which can limit real-time implementation [6]. 

This creates a critical gap for a computationally efficient control 

scheme that does not compromise the dynamic performance of 

the PV-fed OEWIM system, which this work aims to address. 
 

For PV energy extraction under partial shading, metaheuristic 

algorithms are essential to avoid local optima [7]. The Beluga 

Whale Optimization (BWO) algorithm is particularly noted for 

its effective balance between global exploration and local 

exploitation, leading to fast convergence on the global maximum 

power point [8]. Recent research has focused on enhancing such 

algorithms through adaptation and hybridization. For instance, 

modified versions of established optimizers have been 

developed to dynamically adjust parameters based on real-time 

PV curve conditions, improving both speed and accuracy [9, 10]. 

Furthermore, a prominent trend involves embedding these 

algorithms within artificial neural networks for forecasting or 

hybridizing them with conventional methods [11, 12]. These 

hybrid bio-inspired strategies are now considered state-of-the-

art for complex shading scenarios, as they achieve rapid 

transients and minimal steady-state oscillation [13]. 
 

Recent advancements have significantly enhanced the Beluga 

Whale Optimization (BWO) algorithm, reinforcing its potential 
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for engineering applications. Its capabilities have been extended 

through hybridization with other metaheuristics, resulting in 

superior performance against multiple benchmarks [14]. Further 

modifications, incorporating adaptive learning and Lévy flight 

strategies, have demonstrated statistically superior results on 

standardized test suites and engineering problems [15]. 

Moreover, embedding an enhanced BWO within an extreme 

learning machine for PV forecasting has proven effective for 

managing weather variability, confirming its robustness and 

adaptability [16]. These developments collectively affirm BWO 

as a versatile and powerful optimizer, well-suited for the 

complex MPPT task in this study. 
 

Concurrently, significant progress has been made in predictive 

control for motor drives. For Open-End Winding Induction 

Motors (OEWIMs), Model Predictive Control (MPC) is now an 

established high-performance strategy. Research has yielded 

model-free predictive controllers that substantially reduce 

computational load [17] and successfully extended these 

methods to medium-voltage applications with integrated 

harmonic suppression [18]. Studies have confirmed that 

predictive torque control for dual-inverter systems can achieve 

dynamic performance rivaling multilevel converters [19]. 

However, these approaches still face real-time computational 

constraints, highlighting a need for more efficient formulations. 

A parallel research focus addresses the challenge of dead-time 

effects, which remain a critical bottleneck for precision torque 

control, especially with continuous modulation schemes like 

SVM. Recent solutions include adaptive notch filters for 

harmonic cancellation [20] and refined dead-time models 

leveraging fast-switching semiconductors [21]. Earlier 

compensation techniques using Kalman filters also provide a 

foundation for seamless integration with SVM [22]. 
 

 

A systematic review confirms that whale-family optimizers like 

BWO offer superior convergence and balance but require 

application-specific adaptation [23]. Critically, a clear research 

gap persists: no existing work integrates an intelligent, adaptive 

BWO-based MPPT with a computationally efficient, predictive 

control scheme for an OEWIM drive. Furthermore, existing 

dead-time compensation methods are not co-designed with such 

a unified virtual-vector MPC framework. This study aims to 

bridge this gap by proposing a cohesive system that 

synergistically combines these advanced elements to optimize 

overall performance. 
 

This paper proposes an integrated control architecture that unites 

BWO-based MPPT and an MPC–SVM scheme for driving an 

OEWIM from a PV source. The major contributions are 

fourfold: (i) a discrete-time BWO algorithm tailored for MPPT 

that delivers rapid and robust convergence under stochastic 

irradiance profiles; (ii) a delay-compensated MPC predictor and 

cost function customized for the dual-inverter, 

open-end-winding topology; (iii) a virtual-vector, dead-beat 

SVM routine that slashes computational complexity while 

preserving optimality; and (iv) a practical dead-time 

compensation layer that mitigates nonlinear voltage errors. 

Comprehensive simulations demonstrate that the proposed 

framework yields superior tracking efficiency, reduced torque 

ripple and improved dynamic performance compared with 

state-of-the-art MPPT and control strategies. Figure 1 illustrates 

the detailed system incorporating the proposed BWO-based 

MPPT algorithm for the PV system alongside a MPC-SVM 

modulation for OEWIM drives. The findings highlight the 

feasibility and advantages of deploying intelligent optimization 

and predictive modulation in renewable-powered industrial 

drive systems, thereby advancing the vision of sustainable and 

high-performance electrification. 

 

 
Figure 1. PV fed OEWIM with proposed MPPT and MPC-SVM 

http://www.ijeer.forexjournal.co.in/
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░ 2. SYSTEM MODELLING 
2.1. Mathematical model of Open-end winding IM 
 

 
Figure 2. Vector representation of OEWIM Model 

 

An Open-End Winding Induction Motor (OEWIM) is 

physically realized by ensuring that the stator windings remain 

unshorted, resulting in six stator terminals: 

𝑎𝑠
1’, ‘𝑎𝑠

2’, ‘𝑏𝑠
1’, ‘𝑏𝑠

2’, ‘𝑐𝑠
1’, 𝑎𝑛𝑑 ‘𝑐𝑠

1 ‘𝑐𝑠
2’, 𝑎𝑛𝑑 ‘𝑐𝑠

3’, as depicted in 

figure 2. Meanwhile, the rotor windings remain shorted and 

unchanged, represented by the‘𝑎𝑟 ’, ‘𝑏𝑟 ’, 𝑎𝑛𝑑 ‘𝑐𝑟axes. The rotor 

is positioned at an angular offset, denoted as ‘𝛼𝑟’, relative to the 

‘𝑎𝑠
1’ reference axis, as illustrated in figure 2. 

 

[

𝑣𝑎𝑠

𝑣𝑏𝑠

𝑣𝑐𝑠

] = [

𝑟𝑠 0 0
0 𝑟𝑠 0
0 0 𝑟𝑠

] [

𝑖𝑎𝑠

𝑖𝑏𝑠

𝑖𝑐𝑠

] + 𝑝 [

𝜆𝑎𝑠

𝜆𝑏𝑠

𝜆𝑐𝑠

]          (1) 

   

Here, 𝜆𝑎𝑠,  𝜆𝑏𝑠 and 𝜆𝑐𝑠 represent the flux linkages of the 

respective stator phase windings, while 𝑟𝑠 denotes the per-phase 

stator winding resistance. The corresponding stator phase 

currents are given by 𝑖𝑎𝑠 , 𝑖𝑏𝑠 and 𝑖𝑐𝑠. 
 

In an OEWIM, the three-phase stator voltages can be 

transformed into the dq reference frame using a power-invariant 

transformation. This conversion shifts the voltages from a 

stationary to a rotating reference frame, simplifying the analysis 

and control of the motor. The relationship between the three-

phase stator voltages 𝑣𝑎𝑠 , 𝑣𝑏𝑠, 𝑎𝑛𝑑 𝑣𝑐𝑠 and the dq components 

𝑣𝑑𝑠 and 𝑣𝑞𝑠 is expressed through the following power-invariant 

transformation: 

[

𝑣𝑞𝑠

𝑣𝑑𝑠

𝑣0

] =
2

3

[
 
 
 
 cos (𝑢) cos (𝑢 −

2𝜋

3
) cos (𝑢 +

2𝜋

3
)

sin(𝑢) sin (𝑢 −
2𝜋

3
) sin (𝑢 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 

[

𝑣𝑎𝑠

𝑣𝑏𝑠

𝑣𝑐𝑠

]     (2)  

   

In this transformation, 𝑣𝑞𝑠 denotes the quadrature-axis voltage 

component, while 𝑣𝑑𝑠 represents the direct-axis voltage 

component. The term 𝑣0corresponds to the zero-sequence 

component, which is generally zero in a balanced three-phase 

system. The angle 𝑢 = 𝛼 represents the electrical angular 

position of the reference frame. Here, α defines the angle 

between the stator reference axis 𝑎𝑠and the q-axis, while β 

denotes the angle between the rotor reference axis 𝑎𝑟  and the q-

axis. Similarly, β represents the angle between the rotor 

reference axis 𝑎𝑟and the q-axis. The relative displacement 

between the stator and rotor reference axes is given by 𝛼𝑟 = 𝛼 −
𝛽, where 𝛼𝑟  defines the angular difference between the stator 

and rotor frames. This d–q transformation simplifies motor 

analysis by enabling decoupled control of flux and torque 

components, which is essential for achieving efficient and 

precise motor operation. 
 

𝑣𝑞𝑠 = 𝑖𝑞𝑠𝑟𝑠 + 𝜔𝜆𝑑𝑠 +
𝑑𝜆𝑞𝑠

𝑑𝑡
           (3) 

   

𝑣𝑞𝑟
′ = 𝑖𝑞𝑟

′ 𝑟𝑟
′ + (𝜔 − 𝜔𝑟)𝜆𝑑𝑟

′ +
𝑑𝜆𝑞𝑟

′

𝑑𝑡
          (4) 

   

𝑣𝑑𝑠 = 𝑖𝑑𝑠𝑟𝑠 − 𝜔𝜆𝑞𝑠 +
𝑑𝜆𝑑𝑠

𝑑𝑡
           (5) 

   

𝑣𝑑𝑟
′ = 𝑖𝑑𝑟

′ 𝑟𝑟
′ − (𝜔 − 𝜔𝑟)𝜆𝑞𝑟

′ +
𝑑𝜆𝑑𝑟

′

𝑑𝑡
          (6) 

   

The rotor's angular velocity, denoted as 𝜔𝑟 , represents the 

instantaneous speed of the motor shaft in radians per second, 

while ω denotes the synchronous speed of the machine. The 

synchronous speed of the machine is denoted by ω. In the case 

of a squirrel-cage induction motor, which is commonly used in 

simulations, the rotor-side voltages in the d–q frame, specifically 

𝑣𝑑𝑟  𝑎𝑛𝑑 𝑣𝑞𝑟, are considered zero. This is because the rotor 

terminals are shorted, preventing any external voltage supply to 

the rotor windings. 
 

The flux linkage equations for the OEWIM are stated as 

[
 
 
 
𝜆𝑞𝑠

𝜆𝑑𝑠

𝜆𝑞𝑟
′

𝜆𝑑𝑟
′ ]

 
 
 

= [

𝐿𝑚 + 𝐿𝑙𝑠 0 𝐿𝑚 0
0 𝐿𝑚 + 𝐿𝑙𝑠 0 𝐿𝑚

𝐿𝑚 0 𝐿𝑚 + 𝐿𝑙𝑟
′ 0

0 𝐿𝑚 0 𝐿𝑚 + 𝐿𝑙𝑟
′

]

[
 
 
 
𝑖𝑞𝑠

𝑖𝑑𝑠

𝑖𝑞𝑟
′

𝑖𝑑𝑟
′ ]

 
 
 

  (7)

    

Here, 𝐿𝑚denotes the magnetizing inductance, 𝐿𝑙𝑠 represents the 

stator winding leakage inductance, and 𝐿𝑙𝑟
′  corresponds to the 

rotor winding leakage inductance referred to the stator. 
 

These inductances play a crucial role in defining the flux linkage 

between the stator and rotor windings, directly impacting the 

motor's overall performance. The interaction between the stator 

and rotor flux linkages is governed by these inductances, 

influencing key operational characteristics such as torque 

production and efficiency. The electromagnetic torque 𝑇𝑚 

developed in the OEWIM is stated as; 
 

𝑇𝑒 =
3

2

𝑝

2

𝐿𝑚

𝐿𝑠
(𝜆𝑞𝑠𝑖𝑑𝑟

′ − 𝜆𝑑𝑠𝑖𝑞𝑟
′ )          (8) 

 

𝑝 is the number of poles of the machine. The mechanical 

equation governing the OEWIM-pump drive, which models the 

dynamics of the motor's rotational movement, is stated as: 

http://www.ijeer.forexjournal.co.in/


 

                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 756-771 | e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                            Beluga Whale Optimization (BWO) Algorithm for Maximum 759 

 

  𝐽
𝑑𝜔𝑟

𝑑𝑡
+ 𝐵𝜔𝑟 + 𝑇𝐿 = 𝑇𝑒             (9)  

 

J represents the moment of inertia of the OEWIM (measured in 

kg·m²), indicating the motor's resistance to changes in rotational 

motion. The parameter B denotes the centrifugal load torque 

coefficient, accounting for friction and other opposing forces 

that resist the motor shaft's movement. The torque 𝑇𝐿  represents 

the external load torque applied to the system, while the right-

hand side of the equation corresponds to the developed 

electromagnetic torque 𝑇𝑒, which drives the motor's motion. 

These equations collectively define the dynamic behaviour of 

the OEWIM, incorporating both its electrical and mechanical 

characteristics. 
 

2.2. Mathematical Model of PV Array Power Loss  

 
 

Figure 3. Equivalent circuit of PV Panel 

 

The single-diode model of a PV panel is illustrated in figure 3. 

The photocurrent’s relationship with solar irradiance is 

expressed as follows: 
 

𝐼𝑝ℎ = 𝐼𝑠𝑐 ×
𝐺

𝐺𝑟𝑒𝑓
           (10) 

 

Here, 𝐼𝑠𝑐   represents the short-circuit current under standard test 

conditions, GGG is the instantaneous solar irradiance, and 𝐺𝑟𝑒𝑓  

denotes the reference irradiance (typically 1000 W/m²). The 

equivalent circuit of a PV cell consists of a current source in 

parallel with a diode, along with a series resistance 𝑅𝑆𝑒, which 

accounts for internal losses caused by the semiconductor 

material's resistance. The diode represents the p-n junction of 

the solar cell and models the recombination of charge carriers. 

The output current 𝐼𝑝𝑣 from the solar cell is determined by the 

Shockley diode equation, which is modified to incorporate the 

photocurrent. 
 

                      𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑆ℎ                                      (11)

  

𝐼𝐷 = 𝐼0 (exp (
𝑉𝑝𝑣+𝑅𝑆𝑒𝐼𝑝𝑣

𝐴𝑁𝑠𝑉𝑡
) − 1)                          (12) 

 

𝐼𝑆ℎ =
(𝑉𝑝𝑣+𝑅𝑆𝑒𝐼𝑝𝑣)

𝑅𝑆ℎ
                                             (13) 

 

𝑉𝑡 =
𝑘×𝑉𝑝𝑣

𝑞
                                           (14) 

 

Here, 𝑉𝑝𝑣 represents the PV cell voltage, while 𝐼𝑝𝑣 denotes the 

generated current. 𝑅𝑆𝑒 and 𝑅𝑆ℎ correspond to the series and 

parallel resistances, respectively. 𝑁𝑠indicates the number of 

cells connected in series within a module. Additionally, 𝑉𝑡 is the 

thermal voltage, q represents the electron charge, and 𝐼0 denotes 

the diode saturation current. 
 

The power output of a PV system is strongly influenced by 

environmental factors, particularly solar irradiance and 

temperature. Due to the nonlinear characteristics of a PV panel, 

its output varies with changing conditions. At any given time, 

the maximum power that can be extracted occurs at a specific 

operating point, referred to as the Maximum Power Point (MPP). 

The location of the Maximum Power Point (MPP) continuously 

shifts with variations in sunlight intensity and temperature. 

Without an effective tracking mechanism, the PV system would 

operate at a suboptimal point, leading to reduced energy 

conversion efficiency. Maximum Power Point Tracking (MPPT) 

algorithms are employed to dynamically adjust the operating 

point of the PV system, ensuring it consistently operates at the 

MPP despite fluctuations in solar irradiance or temperature.  
 

2.3. Battery with Bidirectional Converter 
In the proposed HBWO-based MPPT algorithm for PV systems 

and the improved DTC strategy for OEWIM drives, a battery 

with a bidirectional converter is integrated into the system. The 

primary purpose of this battery is to ensure a continuous and 

stable power supply to the motor, even under fluctuating solar 

power conditions. Since PV systems inherently exhibit 

intermittent power generation due to variations in solar 

irradiance and temperature, the battery plays a crucial role in 

maintaining the DC link voltage stability and ensuring 

uninterrupted motor operation. The bidirectional converter 

facilitates both charging and discharging of the battery, 

effectively managing energy flow between the PV system, 

battery, and the motor drive system. 

 

The bidirectional converter enables controlled power exchange 

between the battery and the DC link. During excess PV power 

generation, the surplus energy is stored in the battery by 

operating the converter in buck mode, reducing the voltage to 

match the battery's charging requirements. Conversely, when the 

PV power is insufficient to meet the motor’s demand, the stored 

energy in the battery is supplied to the DC link through the 

converter operating in boost mode, ensuring continuous power 

availability. This dynamic energy management enhances system 

reliability and efficiency, preventing voltage fluctuations that 

could affect motor performance. Figure 4 presents the battery 

energy storage system with bidirectional converter and its 

control strategy. 
 

 
 

Figure 4. Battery energy storage system with bidirectional converter 

and its control strategy 

http://www.ijeer.forexjournal.co.in/
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To regulate the DC link voltage and ensure efficient power 

exchange, a dual-loop control strategy is implemented in the 

bidirectional converter. This control strategy consists of an 

outer voltage control loop and an inner current control loop, 

working together to maintain the desired power flow and system 

stability as presented in equation (15) and (16); 
 

𝐼𝑏𝑎𝑡𝑟𝑒𝑓 = 𝐾𝑝𝑣 (𝑉𝑑𝑐𝑟𝑒𝑓(𝑡) − 𝑉𝑑𝑐𝑏𝑎𝑡(𝑡)) + 𝐾𝑖𝑣 ∫ (𝑉𝑑𝑐𝑟𝑒𝑓(𝑡) −

𝑉𝑑𝑐𝑏𝑎𝑡(𝑡)) 𝑑𝑡 (15) 

 

𝐾𝑝𝑣 and 𝐾𝑖𝑣  are PI controller gains, 𝑉𝑑𝑐𝑟𝑒𝑓  DC link reference 

voltage, 𝑉𝑑𝑐𝑏𝑎𝑡  actual DC link voltage,  
 

𝑑𝑏𝑎𝑡 = 𝐾𝑝𝑖 (𝐼𝑏𝑎𝑡𝑟𝑒𝑓(𝑡) − 𝐼𝑏𝑎𝑡(𝑡)) + 𝐾𝑖𝑖 ∫ (𝐼𝑏𝑎𝑡𝑟𝑒𝑓(𝑡) −

𝐼𝑏𝑎𝑡(𝑡)) 𝑑𝑡  (16) 

 

𝐾𝑝𝑖 and 𝐾𝑖𝑖  are PI controller gains, 𝐼𝑏𝑎𝑡𝑟𝑒𝑓  battery reference 

current, 𝐼𝑏𝑎𝑡  actual battery current, The outer voltage control 

loop is responsible for regulating the DC link voltage. A 

reference DC link voltage is set, and the actual DC link voltage 

is continuously monitored. The error between the reference and 

actual voltage is processed by a PI controller, which generates a 

reference current for the inner current control loop. This ensures 

that the DC link voltage remains stable regardless of 

fluctuations in PV power or load demand, thereby maintaining 

steady operation of the OEWIM drive. 
 

The inner loop regulates the battery current to ensure smooth 

power transfer. The reference current obtained from the outer 

loop is compared with the actual current flowing through the 

bidirectional converter. A PI controller processes this error and 

generates the required duty cycle for PWM control. The PWM 

signals are used to switch the bidirectional converter, adjusting 

its operation mode (buck or boost) based on power demand. 
 

During motor acceleration or increased load conditions, the 

inner loop allows the battery to supply power to the DC link by 

boosting the voltage. Conversely, when the PV system 

generates excess power, the converter operates in buck mode, 

transferring surplus energy to charge the battery efficiently. The 

coordinated control of these loops ensures that power flow is 

dynamically adjusted, preventing voltage instability and 

improving overall system performance. 

 

░ 3. BELUGA WHALE OPTIMIZATION 

(BWO) 
3.1. Mathematical Model of Beluga Whale 

Optimization 
The BWO algorithm is inspired by the natural behaviours of 

beluga whales, such as swimming, preying, and the 

phenomenon of whale fall. In a manner like other metaheuristic 

algorithms, BWO operates with two main phases: the 

exploration phase and the exploitation phase. The exploration 

phase ensures a global search capability within the design space 

by randomly selecting beluga whales, which allows the 

algorithm to explore a wide range of potential solutions. The 

exploitation phase focuses on a local search within the design 

space, optimizing the identified potential solutions. This two-

phase structure is essential for the algorithm’s efficiency, as it 

combines the ability to search broadly (exploration) with the 

ability to fine-tune solutions (exploitation). 
 

The population-based nature of the BWO algorithm considers 

the group of beluga whales as a population of search agents. 

Each individual whale represents a candidate solution, and its 

position in the search space corresponds to a potential solution 

to the optimization problem at hand. The positions of the beluga 

whales are represented as a matrix, where each row corresponds 

to a beluga whale, and each column corresponds to a design 

variable. The matrix is formulated as; 

 

𝑋 = [

𝑥1,1 𝑥1,2 … 𝑥1,𝑑 
𝑥2,1 𝑥2,2 … 𝑥2,𝑑

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑑

]         (17) 

  

In this matrix, 𝑛 represents the population size of the beluga 

whales, and 𝑑 denotes the dimension of the design variables. 

Each element in the matrix, 𝑥𝑖,𝑗, indicates the position of the 𝑖-

th beluga whale in the 𝑗-th dimension of the design space. The 

corresponding fitness values of these beluga whales (or 

candidate solutions) are stored in a vector, 𝐹𝑋, where each 

element represents the fitness of the corresponding solution: 
 

𝐹𝑥 =

[
 
 
 
𝑓(𝑥1,1, 𝑥1,2, … , 𝑥1,𝑑)

𝑓(𝑥2,1, 𝑥2,2 … , 𝑥2,𝑑)

⋮
𝑓(𝑥𝑛,1, 𝑥𝑛,2, … , 𝑥𝑛,𝑑)]

 
 
 

                   (18)  

 

The fitness values are evaluated based on the specific 

optimization problem and guide the algorithm in determining 

which positions are more optimal. 
 

A key feature of the BWO algorithm is its ability to switch 

between the exploration and exploitation phases, which is 

controlled by a balance factor 𝐵𝑓. This balance factor governs 

the probability of the algorithm being in either phase. It is 

modelled as: 
 

𝐵𝑓 = 𝐵0 (1 −
𝑇

2𝑇𝑚𝑎𝑥
)         (19)  

 

Here, 𝑇 represents the current iteration number, 𝑇𝑚𝑎𝑥  is the 

maximum number of iterations, and 𝐵0 is a random value 

between 0 and 1 that changes at each iteration. The balance 

factor 𝐵𝑓  decreases as the algorithm progresses, starting from a 

value between 0 and 1 and gradually shifting towards 0.5. When 

𝐵𝑓 is greater than 0.5, the algorithm is in the exploration phase, 

which encourages broad searching across the solution space. 

When 𝐵𝑓 becomes less than or equal to 0.5, the algorithm 

transitions into the exploitation phase, which focuses on refining 

the solutions locally. As the iterations progress, the fluctuation 

range of 𝐵𝑓 shrinks from (0, 1) to (0, 0.5), signifying that the 

algorithm increasingly focuses on exploitation rather than 

exploration. This transition is a dynamic process that balances 
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the need to explore new regions of the search space with the 

necessity to exploit the promising regions already discovered. 

The gradual reduction in the exploration phase allows the 

algorithm to fine-tune its solutions, optimizing the search 

process over time. 
 

3.1.1. Exploration Phase 

The exploration phase in the BWO algorithm is modelled after 

the swimming behaviour of beluga whales, particularly the 

synchronized movements they exhibit during pair swimming. 

Beluga whales, especially those in human care, have been 

observed to engage in social-sexual behaviours under various 

postures, such as swimming closely together in pairs, often 

moving in a synchronized or mirrored manner. This behaviour 

serves as an inspiration for the BWO algorithm, where the 

positions of the search agents (beluga whales) are determined 

by this pair swimming dynamic. This synchronized or mirrored 

movement allows the algorithm to explore the solution space by 

adjusting the position of the whales in a way that mimics these 

natural behaviours. To mathematically model this behaviour, 

the algorithm updates the position of each search agent using 

the following equation; 
 

𝑋𝑖,𝑗(𝑇 + 1)

= {
𝑋𝑖,𝑝𝑗

(𝑇) + (𝑋𝑟,𝑝1
(𝑇) − 𝑋𝑟,𝑝𝑗

(𝑇)) (1 + 𝑟1) sin(2𝜋𝑟2) , 𝑤ℎ𝑒𝑛 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑋𝑖,𝑝𝑗
(𝑇) + (𝑋𝑟,𝑝1

(𝑇) − 𝑋𝑟,𝑝𝑗
(𝑇)) (1 + 𝑟1) cos(2𝜋𝑟2) ,𝑤ℎ𝑒𝑛 𝑗 𝑖𝑠 𝑜𝑑𝑑 

 

(20) 
   

In these equations, 𝑋𝑖,𝑗(𝑇 + 1) represents the updated position 

of the 𝑖-th beluga whale on the 𝑗-th dimension of the search 

space at the 𝑇th iteration. The position update is based on the 

current position 𝑋𝑖,𝑝𝑗(𝑇) of the whale in the 𝑗th dimension, as 

well as the position of another randomly selected whale, 

denoted as 𝑋𝑟,𝑝1(𝑇), where 𝑟 is a randomly chosen whale from 

the population. The variables 𝑟1 and 𝑟2 are random numbers 

between 0 and 1, which are used to introduce randomness and 

variability in the movement. These random numbers ensure that 

the search is not deterministic, allowing the algorithm to explore 

a broader range of the solution space. 
  

3.1.2. Exploitation Phase 

The exploitation phase of BWO is inspired by the cooperative 

foraging behaviour of beluga whales. In this phase, the whales 

share information about their positions to aid in their search for 

prey. This allows them to converge on the best positions by 

using a strategy called Levy flight, which improves the 

efficiency of their movement and prey capture. The 

mathematical formulation of this phase involves several key 

components: 
 

The position update for a given whale iii during the exploitation 

phase is given by: 
 

𝑋𝑖(𝑇 + 1) = 𝑟3𝑋𝑏𝑒𝑠𝑡(𝑇) − 𝑟4𝑋𝑖(𝑇) + 𝐶1 × 𝐿𝐹 × (𝑋𝑟(𝑇) −

𝑋𝑖(𝑇))   (21) 
 

Where 𝑋𝑖(𝑇) is the current position of the 𝑖th beluga whale, 

𝑋𝑟(𝑇) is the position of a randomly selected whale., 𝑋𝑏𝑒𝑠𝑡(𝑇) is 

the best position found among all the whales, 𝑋𝑖(𝑇 + 1) 

represents the updated position of the 𝑖th whale after the 

iteration. 𝑟3 and 𝑟4 are random numbers generated between 0 and 

1, 𝐶1 is the random jump strength, defined as 𝐶1 = 2𝑟4(1 −
𝑇

𝑇𝑚𝑎𝑥
), which decreases as the number of iterations increases, 

reflecting diminishing intensity of the Levy flight. 𝐿𝐹 is the Levy 

flight function, which introduces random jumps into the search 

process to escape local optima. The Levy flight function (LF) is 

defined as: 
 

  𝐿𝐹 = 0.05 ×
𝑢×𝜎

|𝜐|
1
𝛽

             (22)

   

 𝜎 = (
Γ(1+𝛽)×sin(

𝜋𝛽

2
)

Γ(
(1+𝛽)

2
)×𝛽×2

𝛽−1
2  

)

1/𝛽

          (23)  

 

Where 𝛤 is the Gamma function, which generalizes the factorial 

function. Levy flight is a random walk process where the step 

sizes follow a power-law distribution, which allows the 

optimization algorithm to make large jumps with small 

probabilities. This enhances exploration during the exploitation 

phase. The introduction of Levy flight enables the beluga whales 

to efficiently search for prey by making random but strategically 

strong movements that help them avoid being stuck in local 

optima. The random jump strength 𝐶1 varies throughout the 

iterations, becoming smaller as the process progresses, which 

reflects the balance between exploration (global search) and 

exploitation (local search). 
 

3.1.3. Whale Fall 

The phenomenon of whale fall refers to the process in which a 

beluga whale, having fallen to the deep seabed, becomes a 

source of nourishment for numerous marine creatures. To model 

the behaviour of whale fall in a computational environment, we 

introduce a method to simulate the changes in the population of 

beluga whales over time. The mathematical model used to 

update the position of each whale in the population is expressed 

as follows: 
 

  𝑋𝑖(𝑇 + 1) = 𝑟5𝑋𝑖(𝑇) − 𝑟6𝑋𝑟(𝑇) + 𝑟7𝑋𝑠𝑡𝑒𝑝)        (24)  
 

In this equation, 𝑟5, 𝑟6 and 𝑟7 are random numbers between 0 and 

1, and 𝑋𝑠𝑡𝑒𝑝 represents the step size of the whale fall, which 

determines how much the position of each whale changes in the 

next iteration. The step size itself is calculated using the 

following formula; 
 

       𝑋𝑠𝑡𝑒𝑝 = (𝑢𝑏 − 𝑙𝑏) exp (−
𝐶2𝑇

𝑇𝑚𝑎𝑥
)        (25)  

 

Here, 𝐶2 is a step factor that is influenced by both the probability 

of whale fall and the size of the population. Specifically, 𝐶2 =
2𝑊𝑓 × 𝑛, where 𝑊𝑓 is the probability of whale fall and 𝑛 is the 

population size. 𝑢𝑏 and 𝑙𝑏 represent the upper and lower 

boundaries of the design variables, respectively. This step size 

function ensures that as the simulation progresses, the change in 

the positions of the whales gradually decreases, reflecting the 

diminishing likelihood of whale fall over time. The probability 
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of whale fall, 𝑊𝑓, is modelled as a linear function of the iteration 

number, decreasing from an initial value of 0.1 at the start of the 

simulation to 0.05 at the final iteration. This is given by the 

formula; 
 

𝑊𝑓 = 0.1 −
0.05𝑇

𝑇𝑚𝑎𝑥
           (26) 

   

The decreasing probability indicates that, as the whales 

approach the food source in the optimization process, the danger 

to their survival reduces. 
 

3.1.4. Pseudocode for BWO Algorithm  
 

% Step 1: Initialization 

Initialize population size n (number of beluga whales) 

Initialize maximum number of iterations Tmax 

Initialize upper and lower bounds of the search space (ub, lb) 

Initialize the positions of all beluga whales randomly within 

the search space 

Calculate the fitness values of all whales based on the 

objective function 

 

% Step 2: Main Loop for Optimization 

for T = 1:Tmax 

    % Step 2.1: Update on Exploration and Exploitation Phase 

    for i = 1:n  % Iterate over each whale 

        % Step 2.1.1: Calculate balance factor Bf for each 

whale 

        Bf = rand();  % Randomly generate Bf (between 0 and 

1) 

         

        % Step 2.1.2: Determine which phase (exploration or 

exploitation) the whale enters 

        if Bf > 0.5 

            % Exploration Phase 

            % Update whale position using exploration equation 

            X_new(i,:) = X(i,:) + rand() * (X_best - X(i,:));  % 

Exploration formula 

             

        else 

            % Exploitation Phase 

            % Update whale position using exploitation equation 

            X_new(i,:) = X(i,:) + rand() * (X_best - X(i,:)) + 

rand() * (X_random - X(i,:));  % Exploitation formula 

        end 

         

        % Step 2.1.3: Calculate fitness of new position 

        fitness_new = objective_function(X_new(i,:)); 

         

        % Step 2.1.4: Compare fitness and update if new 

position is better 

        if fitness_new < fitness(i) 

            X(i,:) = X_new(i,:); 

            fitness(i) = fitness_new; 

        end 

    end 

     

    % Step 2.2: Update on the Whale Fall Phase 

    for i = 1:n 

        % Step 2.2.1: Calculate probability of whale fall (Wf) 

for each iteration 

        Wf = 0.1 - (0.05 * T / Tmax);  % Linearly decreasing 

probability 

         

        % Step 2.2.2: Check if whale will fall (if randomly 

chosen) 

        if rand() < Wf 

            % Whale falls to the deep seabed 

            % Update whale position using whale fall equation 

            X_new(i,:) = r5 * X(i,:) - r6 * X_random + r7 * 

X_step; 

             

            % Step 2.2.3: Calculate fitness of new position after 

whale fall 

            fitness_new = objective_function(X_new(i,:)); 

             

            % Step 2.2.4: Update whale position if new fitness is 

better 

            if fitness_new < fitness(i) 

                X(i,:) = X_new(i,:); 

                fitness(i) = fitness_new; 

            end 

        end 

    end 

     

    % Step 3: Find the best solution in the current iteration 

    [best_fitness, best_index] = min(fitness); 

    X_best = X(best_index, :); 

     

    % Step 4: Check the termination condition (maximum 

iterations reached) 

    if T == Tmax 

        break;  % Exit the loop if the maximum number of 

iterations is reached 

    end 

end 

 

% Output the final best solution found 

disp('Best solution found:'); 

disp(X_best); 

disp('Best fitness value:'); 

disp(best_fitness); 

 

░ 4. CONVENTIONAL MPC  
Model Predictive Control (MPC) determines the optimal output 

value for the upcoming control period by evaluating a set of 

candidate input values based on the system’s model equations. 

In order to accurately forecast the electrical torque and stator 

flux over each control interval, the stator voltage model must be 

converted into a discrete-time current model that aligns with the 

system's sampling interval. This transformation involves 

converting the continuous-time current equations, originally 

defined in terms of time 𝑡, into a discrete-time format that 

operates with respect to the sampling period 𝑇𝑠 . To achieve this, 

the time derivatives present in the continuous model are 

approximated using finite difference expressions that estimate 

the rate of change between discrete sampling instances. 
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Figure 5. Voltage vector diagram of the dual inverter 

 

For a short prediction horizon, it is customary to treat the rotor 

fluxes as state variables because they evolve more slowly than 

stator currents. 
 

𝑥 = [𝑖𝑑𝑠  𝑖𝑞𝑠 𝜆𝑑𝑟 𝜆𝑞𝑟]
𝑇
         (27) 

   

𝑢 = [𝑣𝑑𝑠  𝑣𝑞𝑠]
𝑇
          (28) 

   

Using a forward Euler hold over the sampling period 𝑇𝑠 
 

𝑦̇ =
𝑦(𝑘+1)−𝑦(𝑘)

𝑇𝑠
          (29) 

  

By substituting eq. (9) in (8), the discrete-time state update is 

given as 
 

𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘 + 1)        (30) 

  

with constant coefficient matrices 
 

𝐴𝑑 = 𝐼 + 𝐴𝑐𝑇𝑆          (31) 

  

𝐵𝑑 = 𝐵𝑐𝑇𝑠          (32) 

  

where the continuous-time matrices are given as 
 

𝐴𝑐 =

[
 
 
 
 
 
 −

𝑅𝑠

𝜎𝐿𝑠
𝜔𝑒

𝑅𝑠𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
0

−𝜔𝑒 −
𝑅𝑠

𝜎𝐿𝑠
0

𝑅𝑠𝐿𝑚

𝜎𝐿𝑠𝐿𝑟

𝐿𝑚𝑅𝑟

𝐿𝑟
0 −

𝑅𝑟

𝐿𝑟
𝜔𝑠𝑙

0
𝐿𝑚𝑅𝑟

𝐿𝑟
−𝜔𝑠𝑙 −

𝑅𝑟

𝐿𝑟 ]
 
 
 
 
 
 

        (33) 

   

𝐵𝑐 =
1

𝜎𝐿𝑠
[

1 0
0 1
0 0
0 0

]          (34) 

   

Then the stator currents are predicted as 
 

𝑖𝑑𝑠(𝑘 + 1) = (1 −
𝑅𝑠𝑇𝑠

𝜎𝐿𝑠
) 𝑖𝑑𝑠(𝑘) + 𝑇𝑠𝜔𝑒𝑖𝑞𝑠(𝑘) +

𝑇𝑠

𝜎𝐿𝑠
𝑣𝑑𝑠(𝑘 +

1) −
𝐿𝑚𝑇𝑠

𝜎𝐿𝑠𝐿𝑟
𝑅𝑟𝑖𝑑𝑟(𝑘)   (35) 

 

𝑖𝑞𝑠(𝑘 + 1) = (1 −
𝑅𝑠𝑇𝑠

𝜎𝐿𝑠
) 𝑖𝑞𝑠(𝑘) − 𝑇𝑠𝜔𝑒𝑖𝑑𝑠(𝑘) +

𝑇𝑠

𝜎𝐿𝑠
𝑣𝑞𝑠(𝑘 +

1) −
𝐿𝑚𝑇𝑠

𝜎𝐿𝑠𝐿𝑟
𝑅𝑟𝑖𝑞𝑟(𝑘)   (36) 

 

In a practical implementation, it is essential to incorporate a 

delay compensation mechanism to address errors caused by 

signal transmission delays and the timing of switching signal 

application to power electronic devices in simulations, the next 

switching state is calculated, and the corresponding voltage 

vector is applied almost instantaneously. However, in real-time 

systems, there is a finite computation delay before the next 

control action can be applied, resulting in a one-sampling-period 

delay in the MPC loop. To accurately estimate the actual current 

in the 𝑘 + 2 control cycle, it becomes necessary to first predict 

the current for the 𝑘 + 1 cycle based on the voltage vector 

applied during the 𝑘 cycle. This predicted current is then used as 

the current value for the 𝑘 + 1 cycle during the next 

computation. Consequently, equation (7) must be adapted with 

a delay compensation strategy to reflect the dynamics of the 

actual system and ensure accurate current prediction in the 

presence of control and actuation delays. 
 

Two-step current prediction is given as 
 

𝑖𝑑𝑠(𝑘 + 2) = (1 −
𝑅𝑠𝑇𝑠

𝜎𝐿𝑠
) 𝑖𝑑𝑠(𝑘 + 1) + 𝑇𝑠𝜔𝑒𝑖𝑞𝑠(𝑘 + 1) +

𝑇𝑠

𝜎𝐿𝑠
𝑣𝑑𝑠(𝑘 + 2) −

𝐿𝑚𝑇𝑠

𝜎𝐿𝑠𝐿𝑟
𝑅𝑟𝑖𝑑𝑟(𝑘 + 1)                        (37) 

 

𝑖𝑞𝑠(𝑘 + 2) = (1 −
𝑅𝑠𝑇𝑠

𝜎𝐿𝑠
) 𝑖𝑞𝑠(𝑘 + 1) − 𝑇𝑠𝜔𝑒𝑖𝑑𝑠(𝑘 + 1) +

𝑇𝑠

𝜎𝐿𝑠
𝑣𝑞𝑠(𝑘 + 2) −

𝐿𝑚𝑇𝑠

𝜎𝐿𝑠𝐿𝑟
𝑅𝑟𝑖𝑞𝑟(𝑘 + 1)                        (38) 

 

Let 𝜔𝑠𝑙(𝑘 + 1) = 𝜔𝑒(𝑘 + 1) − 𝜔𝑟(𝑘 + 1)  
 

Then rotor flux is predicted as 

𝜆𝑑𝑟(𝑘 + 2) = 𝜆𝑑𝑟(𝑘 + 1) + 𝑇𝑠 (−
𝑅𝑟

𝐿𝑟
𝜆𝑑𝑟(𝑘 + 1) + 𝜔𝑠𝑙(𝑘 +

1)𝜆𝑞𝑟(𝑘 + 1) +
𝐿𝑚𝑅𝑟

𝐿𝑟
𝑖𝑑𝑠(𝑘 + 1))                                     (39) 

 

𝜆𝑞𝑟(𝑘 + 2) = 𝜆𝑞𝑟(𝑘 + 1) + 𝑇𝑠 (−
𝑅𝑟

𝐿𝑟
𝜆𝑞𝑟(𝑘 + 1) − 𝜔𝑠𝑙(𝑘 +

1)𝜆𝑑𝑟(𝑘 + 1) +
𝐿𝑚𝑅𝑟

𝐿𝑟
𝑖𝑞𝑠(𝑘 + 1))                                     (40) 

 

Stator flux magnitude at 𝑘 + 2 is given as 
 

𝜆𝑑𝑠(𝑘 + 2) = 𝐿𝑠𝑖𝑑𝑠(𝑘 + 2) + 𝐿𝑚𝑖𝑑𝑟(𝑘 + 2)        (41) 

   

𝜆𝑞𝑠(𝑘 + 2) = 𝐿𝑠𝑖𝑞𝑠(𝑘 + 2) + 𝐿𝑚𝑖𝑞𝑟(𝑘 + 2)        (42) 

   

Electromagnetic torque at 𝑘 + 2 is given as 
 

𝑇𝑒(𝑘 + 2) =
3

2

𝑃

2
 [𝜆𝑑𝑟(𝑘 + 2)𝑖𝑞𝑠(𝑘 + 2) − 𝜆𝑞𝑟(𝑘 + 2)𝑖𝑑𝑠(𝑘 +

2)]        (43)  
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In finite-set current-model predictive control (CMPC) of an 

open-end-winding induction motor (OEW-IM), the two 

three-phase inverters are treated as a single “virtual” converter 

whose output is the difference between their pole voltages. With 

equal and independent DC-link voltages 𝑉𝑑𝑐 , this virtual 

converter can generate 19 distinct space-vector positions (18 

active plus the zero vector) in the stationary 𝑑 − 𝑞 reference 

frame, as illustrated in figure 5. Each point in that hexagon 

corresponds to one unique combination of the six switch states 

(𝑆𝑎1, 𝑆𝑏1, 𝑆𝑐1, 𝑆𝑎2, 𝑆𝑏2, 𝑆𝑐2). 
 

During every sampling step the controller assembles the set 
 

𝜈 = {𝑣𝑑𝑞
𝑚 }

𝑚=1

19
    (44) 

   

𝑣𝑑𝑞
𝑚 = [

𝑣𝑑
𝑚

𝑣𝑞
𝑚]    (45) 

   

and inserts each candidate 𝑣𝑑𝑞
𝑚  into the two-step prediction 

model to obtain the corresponding predicted stator-flux 

magnitude 𝜆𝑠
𝑚(𝑘 + 2) and predicted electromagnetic torque 

𝑇𝑒
𝑚(𝑘 + 2). 

 

The quality of every candidate is quantified by a quadratic cost 

function 
 

𝐶𝑚 = 𝐹𝜆|𝜆𝑠
∗ − 𝜆𝑠

𝑚(𝑘 + 2)| + 𝐹𝑇|𝑇𝑒
∗ − 𝑇𝑒

𝑚(𝑘 + 2)|  

 (46) 

Where 

• 𝜆𝑠
∗ – reference stator-flux magnitude (or indirectly, desired 

stator-current magnitude), 

• 𝑇𝑒
∗ – reference electromagnetic torque, 

• 𝐹𝜆, 𝐹𝑇  – non-negative weighting factors that balance 

flux-tracking versus torque-tracking priorities and 

normalize the two error terms. 

The voltage vector 𝑣𝑑𝑞
𝑚𝑚𝑖𝑛  that minimizes eq. (11) 

 

𝑚𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐶𝑚   (47) 

   

is selected as the reference voltage for the virtual OEW 

converter, and the corresponding pair of inverter switch states is 

queued. After the inherent computation-and-PWM delay, those 

switches are applied in the next control period, ensuring that the 

machine receives precisely the voltage for which currents, 

fluxes and torque were predicted two steps earlier. 
 

This procedure simultaneously exploits the enlarged voltage set 

of the OEW topology and compensates one-step hardware 

delay, enabling fast, high-accuracy torque and flux control of 

the induction motor. 
 

░ 5.  PROPOSED MPC–SVM SCHEME  
To embed space-vector modulation (SVM) inside the finite-set 

MPC loop of an open-end-winding induction motor (OEW-IM), 

the controller must first estimate the angle of the stator-voltage 

vector that will be required one sampling period ahead. Starting 

from the discrete-time stator-voltage model and using the 

already-predicted currents at instant 𝑘 + 1, the components of 

the voltage vector to be applied at 𝑘 + 2 are 
 

𝑣̂𝑑𝑠 = (𝑅𝑠 +
𝜎𝐿𝑠

𝑇𝑠
) 𝑖𝑑𝑠(𝑘 + 1) − 𝜎𝐿𝑠𝜔𝑒𝑖𝑞𝑠(𝑘 + 1) +

𝐿𝑚

𝑇𝑠
[𝑖𝑑𝑟(𝑘 +

1) − 𝑖𝑑𝑟(𝑘)]                                                                          (48)
   

𝑣̂𝑞𝑠 = (𝑅𝑠 +
𝜎𝐿𝑠

𝑇𝑠
) 𝑖𝑞𝑠(𝑘 + 1) − 𝜎𝐿𝑠𝜔𝑒𝑖𝑑𝑠(𝑘 + 1) +

𝐿𝑚

𝑇𝑠
[𝑖𝑞𝑟(𝑘 +

1) − 𝑖𝑞𝑟(𝑘)]                                                                           (49)
   

Then the voltage angle can be predicted as 
 

𝜃𝑣 = tan−1 (
𝑣̂𝑞𝑠

𝑣̂𝑑𝑠
)            (50) 

 

In the proposed MPC–SVM strategy for driving the Open-End 

Winding Induction Motor (OEWIM), a significant reduction in 

computational burden is achieved by restricting the number of 

voltage vectors evaluated during each control cycle. Traditional 

finite-set MPC methods that rely on evaluating a large set of pre-

defined candidate switching vectors often impose a high 

computational load on microcontrollers, especially when 

operating at high sampling rates. To address this issue, the 

proposed method utilizes virtual voltage vector generation, 

guided by the predicted voltage angle, thereby eliminating the 

need to evaluate all possible vectors across the full 360° space. 
 

Instead of using all possible switching combinations, the 

algorithm first estimates the required voltage angle (𝜃𝑣) based 

on the predicted stator current in the next control interval. 

Around this voltage angle, only three angular sectors are 

considered: the central angle (𝜃𝑣) and two neighboring angles 

(𝜃𝑣 ± 𝜃𝑑), where 𝜃𝑑 is a user-defined angular deviation. Within 

each of these three sectors, N equally spaced virtual voltage 

vectors are generated, significantly narrowing the search space. 

Without applying this deadbeat restriction, the number of 

vectors that would be generated over the full circle is computed 

as: 
 

𝐺(𝑁) =
360𝑜

𝜃𝑑
(𝑁 − 1) + 1             (51)

    

where the additional 1 account for the inclusion of the zero 

vector. However, by limiting the search to just the three angular 

sectors, the number of vectors becomes: 
 

 𝐺𝐷𝐵(𝑁) = 3(𝑁 − 1) + 1                        (52) 

    

For example, with 𝜃𝑑 = 15𝑜 and 𝑁 =  7, the required number 

of vector evaluations drops from 337 to just 19, reducing the 

computational effort even below that of a conventional MPC. 
 

Each virtual vector is mathematically constructed using its 

position index 𝑥 ∈ {1, 2, . . . , 𝑁} and is scaled based on the sum 

of the two inverter DC-link voltages 𝑉𝑑𝑐1 and 𝑉𝑑𝑐2. The virtual 

voltage components in the stationary reference frame are 

calculated using: 
 

𝑣𝑑𝑠
𝑣𝑖𝑟 =

𝑉𝑑𝑐1+𝑉𝑑𝑐2

√3
⋅ 𝑥 ⋅ cos(𝜃𝑣 ± 𝜃𝑑)         (53)  
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𝑣𝑞𝑠
𝑣𝑖𝑟 =

𝑉𝑑𝑐1+𝑉𝑑𝑐2

√3
⋅ 𝑥 ⋅ sin(𝜃𝑣 ± 𝜃𝑑)        (54) 

  

where only one instance of the zero vector (𝑥 =  0) is included 

to prevent redundancy. These virtual vectors are treated as 

candidates for input voltages in the MPC cost function, 

replacing the need to simulate all physical switching states. 
 

The proposed MPC–SVM approach retains the same current 

prediction model and cost function formulation as the 

conventional finite-set MPC developed for the OEWIM. 

However, by focusing only on a small, intelligently chosen 

subset of virtual voltage vectors, the method achieves a near-

optimal control action with much lower computational 

complexity. This makes the method highly suitable for real-time 

embedded control systems with limited processing power while 

ensuring fast dynamic response and accurate torque and flux 

tracking in OEWIM drives. 
 

In the dual-inverter open-end-winding induction-motor 

(OEWIM) configuration, each three-phase bridge is a 

voltage-source inverter (VSI). To avoid shoot-through during 

commutation, every VSI inserts a dead time between the 

turn-off of one device and the turn-on of its complementary 

switch. Although indispensable for reliability, this delay distorts 

the commanded phase voltages, introducing a nonlinear error 

that degrades current quality and, ultimately, torque accuracy. 

Even with modern fast-switching devices, compensating for 

dead-time effects remains essential in high-performance 

torque-controlled drives. 

 

 
 

Figure 6. Control strategy of the MPC-SVM for OEWIM 

 

In the proposed MPC–SVM scheme the optimal reference 

voltage obtained from the prediction stage is synthesized with 

space-vector modulation (SVM): two adjacent active vectors 

and the zero vector are time-weighted within the sampling 

period to reproduce the desired magnitude and phase. Compared 

with the finite-set CMPC approach, the continuous freedom of 

SVM yields a smoother voltage waveform, lower current ripple 

and hence steadier electromagnetic torque. 

A simple feed-forward dead-time compensation corrects the 

reference before it is fed to the PWM modulators: 
 

𝑣𝑑𝑒𝑎𝑑(𝑧) =
𝑇𝑑𝑒𝑎𝑑

𝑇𝑠
𝑣𝑑𝑐(𝑧)    (55) 

  

𝑣𝑎𝑏𝑐1𝑑

∗ = 𝑣𝑎𝑏𝑐1 + 𝛽𝑎𝑏𝑐𝑣𝑑𝑒𝑎𝑑(1)   (56) 

  

𝑣𝑎𝑏𝑐2𝑑

∗ = 𝑣𝑎𝑏𝑐2 + 𝛽𝑎𝑏𝑐𝑣𝑑𝑒𝑎𝑑(2)   (57) 

  

𝛽𝑎𝑏𝑐 = {
+1,    𝑖𝑎𝑏𝑐 > 0
−1,    𝑖𝑎𝑏𝑐 < 0

    (58) 

  

Figure 6 summarizes the complete control structure: the 

discrete-time current predictor supplies the MPC 

cost-minimization block, whose optimal voltage vector is 

angle-tracked by the SVM routine; reference-splitting and 

dead-time compensation follow, after which the corrected 

three-phase voltages are compared with high-frequency carriers 

to generate the dual-inverter gating signals. Together, these 

stages ensure that delay-compensated model prediction, smooth 

SVM synthesis, and precise dead-time correction cooperate to 

deliver high-fidelity torque control of the OEW induction motor. 

 

░ 6. SIMULATION RESULTS 
To assess the performance and effectiveness of the proposed 

Beluga Whale Optimization (BWO) algorithm-based Maximum 

Power Point Tracking (MPPT) strategy for a photovoltaic (PV) 

system feeding an Open-End Winding Induction Motor 

(OEWIM) drive with improved Model Predictive Control–Space 

Vector Modulation (MPC-SVM), a comprehensive simulation 

study was conducted. The system configuration used for the 

simulation is illustrated in figure 1, encompassing all the 

essential components of the proposed control architecture. This 

setup facilitates a holistic evaluation of the system's behavior 

under various dynamic and steady-state operating conditions. 
 

The control strategy implemented for the improved MPC-SVM 

of the OEWIM is detailed in figure 6. This advanced predictive 

modulation framework is critical in enhancing the dynamic 

response and significantly minimizing torque ripple across the 

full range of motor operation. By effectively determining the 

optimal voltage vectors using space vector modulation 

principles and predictive current control, the drive achieves 

smoother torque output and improved transient performance. 
 

The proposed BWO algorithm is seamlessly integrated into the 

PV-side MPPT module. Its operational steps are delineated in 

the pseudo-code presented in sub-section 3.1.4 , which outlines 

the iterative search mechanism employed to locate the global 

maximum power point (MPP) of the PV system under varying 

irradiance and temperature conditions. The BWO’s efficient 

exploration-exploitation balance ensures rapid convergence to 

the MPP with minimal oscillation, enhancing the stability and 

responsiveness of the power conversion chain. 
 

Through the use of this BWO-based MPPT algorithm, the PV 

system is continuously operated at its optimal power generation 

point. This ensures that the OEWIM drive receives the 
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maximum available electrical energy, thereby improving 

overall drive efficiency. Moreover, the combination of BWO 

and MPC-SVM creates a synergistic effect—optimizing both 

power extraction and motor performance simultaneously. 
 

The electrical and mechanical parameters of the OEWIM used 

in the simulation are summarized in table 1. These parameters 

are selected to reflect typical industrial motor characteristics, 

providing a realistic basis for evaluating the control scheme’s 

applicability in practical deployments. 
 

The simulation outcomes demonstrate the effectiveness of the 

proposed strategy in achieving superior performance across 

several metrics including torque ripple reduction, dynamic 

response improvement, and maximum power tracking 

efficiency. Overall, the integration of the BWO-based MPPT 

with an improved MPC-SVM control for the OEWIM drive 

results in a robust, efficient, and adaptable system suitable for 

modern solar-powered electric drive applications. 
 

░ Table 1. Simulation Parameters 
 

OEWIM 

Nominal power, voltage (line-

line), and frequency 

6 HP, 230 V, 50 Hz 

Stator resistance and inductance 0.466 Ω, 3.03 mH 

Rotor resistance and inductance 0.2873 Ω,  2.02 mH 

Mutual inductance 47 mH 

Inertia, friction factor, pole pairs 0.0279,  6.41×10-4, 2 

PV Array 

Module E&H EHS3-238 

Maximum Power 238.091 W 

Cells per module 60 

Open circuit voltage 37.3 V 

Short-circuit current 8.53 A 

Voltage at maximum power point 30.1 V 

Current at maximum power point 7.91 A 

Temperature coefficient of open 

circuit voltage 

-0.3481 %/deg.C 

Temperature coefficient of short 

circuit current 

0.042204 %/deg.C 

Parallel strings 2 

Series-connected modules per 

string 

10 

BWO Optimization 

Maximum Iterations 100 

Population Size  50 

Problem Dimension (𝑑𝑖𝑚) 1 

Lower and Upper Bound (𝑙𝑏, 𝑢𝑏) 0, 1 

 

Case 1: Performance Analysis Under Constant Irradiance 

and Reference Speed 

This case investigates steady-state behaviour when the PV array 

is illuminated at 1000 𝑊/𝑚2 and the OEWIM is commanded to 

maintain 1500 𝑅𝑃𝑀 while delivering a 5 𝑁𝑚 mechanical load. 

The aim is to benchmark the BWO MPPT against three widely 

cited algorithms—Perturb-and-Observe (P&O), Particle Swarm 

Optimization (PSO) and Cuckoo Optimization Algorithm 

(COA). 
 

Figure 7 plots the PV terminal voltage. With BWO, the voltage 

settles rapidly to its reference with negligible ripple, whereas 

P&O, PSO and COA suffer pronounced overshoot, larger 

oscillatory envelopes and longer settling times, all of which 

penalize conversion efficiency. The corresponding DC-link 

profiles in figure 8 confirm this tendency. The BWO-controlled 

link exhibits a short rise time and minimal steady-state ripple; 

the conventional methods display sluggish voltage build-up and 

persistent ripple, signaling poorer energy transfer and greater 

stress on capacitive components. 
 

Figures 9 and 10 compare the PV power output and the power 

delivered to the voltage-source converter (VSC). Due to accurate 

global-peak tracking, the BWO strategy extracts a consistently 

higher wattage and transfers it to the VSC with lower loss, 

whereas the reference algorithms lose power because they drift 

away from the true MPP even under constant irradiance. 
 

Figure 11 shows the motor-speed trajectory. Under BWO the 

OEWIM reaches 1500 RPM sooner, with a shorter settling 

period and almost imperceptible speed ripple. PSO, COA and 

P&O exhibit delayed acceleration, extended settling and 

noticeable speed wavering. The corresponding 

electromagnetic-torque waveforms in figure 12 reveal that BWO 

also suppresses torque ripple more effectively throughout the 

transient. 

 

Table 2 consolidates these findings by listing the rise time 𝑡𝑟 , 

peak overshoot 𝑀𝑝, settling time 𝑡𝑠, steady-state ripple 𝑅𝑠𝑠, 

steady-state error 𝑒𝑠𝑠  and overall efficiency 𝜂 for the DC-link 

voltage, motor speed and torque. Across every metric the 

proposed BWO algorithm delivers superior or comparable 

performance—shorter 𝑡𝑟 and 𝑡𝑠, lower 𝑀𝑝, reduced 𝑅𝑠𝑠 and 𝑒𝑠𝑠, 

and the highest conversion efficiency—demonstrating its 

robustness and suitability for PV-fed OEWIM drives operating 

under fixed environmental conditions. To statistically validate 

the performance of the BWO algorithm, 30 independent 

simulation runs under varying initial conditions or conducted. 

The results are now presented in the table 3. This table provides 

the mean and standard deviation for all key performance indices, 

including the Mean Absolute Error (MAE).  

 

 
 

Figure 7. PV terminal voltage at 1000 𝑤/𝑚2 irradiance 
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Figure 8. DC link voltage 
 

 
 

Figure 9. PV generated power at 1000 𝑤/𝑚2 irradiance 
 

 
 

Figure 10. Power transferred to VSC’s from PV system 
 

 
 

Figure 11. Speed of OEWIM with conventional and proposed 

algorithm at 1500RPM reference speed and 1000 𝑤/𝑚2 irradiance 
 

 
Figure 12. Torque of OEWIM with conventional and proposed 

algorithm at 1500RPM reference speed and 1000 𝑤/𝑚2 irradiance 
 

░ Table 2. Transient behaviour of DC link voltage, speed, 

and torque ripples with proposed and conventional 

algorithms in terms of Rise Time (𝒕𝒓) in seconds, peak 

Overshoot (𝑴𝒑) in %, Settling Time (𝒕𝒔) in seconds, Steady 

State Ripples (𝑹𝒔𝒔) in %, Steady State Error (𝒆𝒔𝒔) in % and 

efficiency (𝜼) in %. 

  P&O PSO COA BWO 

DC Link 

Voltage 

𝑡𝑟 0.29 0.238 0.216 0.148 

𝑀𝑝 7.36 6.52 2.96 2.05 

𝑡𝑠 1.35 0.91 0.68 0.31 

𝑅𝑠𝑠 5.11 4.13 2.68 1.45 

𝑒𝑠𝑠 1.15 0.74 0.58 0.26 

Speed 𝑡𝑟 0.26 0.25 0.225 0.154 

𝑀𝑝 7.02 6.95 3.4 2.15 

𝑡𝑠 1.1 0.85 0.7 0.48 

𝑅𝑠𝑠 4.85 4.32 3.56 1.25 

𝑒𝑠𝑠 1.02 0.86 0.42 0.23 

Torque 𝑅𝑠𝑠 5.6 4.2 2.2 1.5 

Efficiency 𝜼 97.25 98.36 98.75 99.02 

 

░ Table 3. Statistical performance comparison of 

algorithms over 30 simulation runs. (Mean ± Standard 

Deviation) 
 

  P&O PSO COA BWO % 

improv

ement 

of BWO 

over 

COA 

DC 

Link 

Voltage 

𝑡𝑟 0.295±

0.021 

0.242±

0.018 

0.221±

0.015 

0.151±

0.008 

31.7 % 

𝑡𝑠 1.38±0.

11 

0.94±0.

09 

0.71±0.

07 

0.32±0.

04 

54.9 % 

𝑅𝑠𝑠 5.15±0.

32 

4.18±0.

28 

2.72±0.

21 

1.48±0.

12 

45.6 % 

𝑀𝐴𝐸 1.42±0.

15 

0.89±0.

11 

0.71±0.

09 

0.29±0.

05 

59.2 % 

Speed 𝑅𝑠𝑠 4.91±0.

35 

4.38±0.

31 

3.61±0.

25 

1.28±0.

10 

64.5 % 

𝑒𝑠𝑠 1.05±0.

08 

0.88±0.

07 

0.45±0.

06 

0.24±0.

03 

46.7 % 

𝑀𝐴𝐸 1.28±0.

13 

0.95±0.

10 

0.62±0.

08 

0.31±0.

04 

50.0 % 

Torque 𝑅𝑠𝑠 5.65±0.

40 

4.25±0.

33 

2.25±0.

20 

1.52±0.

15 

32.4 % 

Effici

ency 

𝜼 97.20±

0.25 

98.31±

0.22 

98.72±

0.18 

98.98±

0.15 

0.26 % 

 

Case 2: Performance Analysis Under Variable Irradiance 

and Constant Reference Speed 

In the second study the Open-End Winding Induction Motor 

(OEWIM) drive is evaluated while the solar input follows a 

deliberately aggressive irradiance profile (figure 13) and the 

mechanical reference speed is held at 1470 RPM with a constant 

5 N m load. Irradiance starts at 300 𝑊/𝑚2, steps to 500  𝑊/𝑚2 

at 1.5 s, 700  𝑊/𝑚2 at 3.5 s, 900  𝑊/𝑚2 at 5.5 s, and finally 

peaks at 1000  𝑊/𝑚2 before settling to 800  𝑊/𝑚2 after 8 s. 

This sequence imposes rapid, wide-range power fluctuations that 

test both the BWO MPPT and the delay-compensated MPC–

SVM current controller. 
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Figures 14 and 15 show the PV terminal voltage and the 

DC-link voltage, respectively. Despite the steep irradiance 

transitions, the BWO MPPT keeps the PV operating point on 

the instantaneous maximum-power locus, so both voltages 

remain tightly regulated with scant overshoot and negligible 

ripple. In earlier simulations with Perturb-and-Observe, Particle 

Swarm and Cuckoo-based trackers, each step-in irradiance 

produced pronounced voltage sag-and-recover cycles; those 

artefacts are virtually absent under BWO, demonstrating its 

superior tracking agility. 
 

The corresponding power waveforms in figure 16 underlines 

this advantage. PV output power rises and falls in proportion to 

solar input, yet the BWO algorithm extracts the available energy 

with high fidelity, while the battery seamlessly covers any 

shortfall. Figure 17 details this dual-mode behaviour: between 

1.5 s and 6.5 s the battery discharges to support the motor, then 

switches to charging when irradiance exceeds the mechanical 

demand, efficiently banking surplus energy for later use. 
 

Mechanical responses are plotted in figures  18 and 19. The 

motor speed tracks its 1470 RPM reference with sub-1 % 

deviation throughout the entire irradiance sweep, and torque 

shows only minor oscillations, attesting to the robustness of the 

MPC–SVM scheme. Stator current waveforms (figure 20) 

remain sinusoidal and well balanced, indicating that the 

predictive controller and space-vector modulator continue to 

supply clean three-phase excitation even as the available DC 

power fluctuates. 
 

Collectively, the results confirm that the proposed BWO-driven 

MPPT, together with the improved MPC-SVM control of the 

OEWIM, forms a resilient and efficient energy-conversion 

chain. The architecture successfully reconciles abrupt 

solar-power variability with stringent motor-drive 

requirements, maintaining voltage stability, suppressing torque 

ripple, and ensuring precise speed regulation—all while 

optimally managing battery charge and discharge events. 
 

 
 

Figure 13. Variation of irradiance 
 

 
 

Figure 14. PV terminal voltage for irradiance variation 

 
 

Figure 15. DC link voltage for irradiance variation 
 

 
 

Figure 16. Power transferred to VSC’s from PV system for irradiance 

variation 
 

 
 

Figure 17. Battery power transfer 
 

 
 

Figure 18. Speed of OEWIM with proposed algorithm at 1470RPM 

reference speed and irradiance variation 
 

 
 

Figure 19. Torque of OEWIM with proposed algorithm at 1500RPM 

reference speed and irradiance variation 
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Figure 20. Stator winding current of OEWIM with proposed 

algorithm at 1500RPM reference speed and irradiance variation 
 

Case 3: Performance Analysis Under Constant Irradiance 

and Variable Reference Speed 

In the final scenario the photovoltaic array is held at 

1000 𝑊/𝑚2 while the OEWIM is driven through an aggressive 

speed schedule that mirrors real-world load fluctuations. The 

reference speed begins at 1500 RPM (0–1.5s), steps down 

successively to 1200, 900 and 700  RPM, plunges to 500  RPM 

at 4.5s, drifts to 400 RPM and holds until 7.5s, rises to 600  RPM 

(7.5–9s) and finally jumps to 1200  RPM. As presented in figure 

20, throughout these abrupt transitions the proposed MPC–

SVM drive, supplied by the Beluga-Whale-optimized MPPT, 

maintains excellent tracking: steady-state speed ripple is limited 

to 0.95 %, peak overshoot to 0.83 %, the fastest step exhibits a 

140ms rise time, and all steps settle within 280ms.  
 

Torque waveforms (figure 21) remain smooth thanks to the 

five-level hysteresis band embedded in the direct-torque layer 

of the controller, while stator currents recorded between 1s 

and 3s (figure 22) stay balanced and nearly sinusoidal, 

evidencing sound flux orientation even during rapid 

deceleration. 
 

Because irradiance is constant the PV array delivers a stable 

electrical output (figure 23). Motor power demand, however, 

swings with the speed commands (figure 24). Whenever 

demand exceeds PV supply, the battery shifts seamlessly into 

discharge mode; when demand falls, the surplus energy is 

diverted to recharge the battery. This bidirectional power 

exchange showcases the tight coordination among the BWO 

MPPT, predictive motor control, and energy-storage 

management, yielding optimal utilization of solar energy while 

ensuring uninterrupted drive operation. 
 

Overall, Case 3 demonstrates that the proposed hybrid 

architecture combines precise speed regulation, low torque 

ripple, and efficient energy balancing, confirming its suitability 

for renewable-powered drives subject to highly variable load 

conditions. 
 

 
Figure 20. Speed of OEWIM with proposed algorithm with variable 

reference speed and constant irradiance  

 
 

Figure 21. Torque of OEWIM with proposed algorithm with variable 

reference speed and constant irradiance 
 

 
 

Figure 22. Stator winding current of OEWIM with proposed 

algorithm between 3 to 4 seconds 
 

 
 

Figure 23. Power transferred to VSC’s from PV system with variable 

reference speed and constant irradiance 
 

 
 

Figure 24. Battery terminal power with proposed algorithm with 

variable reference speed and constant irradiance 

 

A primary limitation of this study is its validation through 

simulation software without experimental or Hardware-in-the-

Loop (HIL) testing. This approach was selected to enable a 

controlled, comprehensive, and cost-effective proof-of-concept 

for the complex multi-algorithmic system. While the simulation 

environment provides valuable insights, it inherently idealizes 

certain aspects, such as sensor noise, component tolerances, and 

communication delays in a real-time controller. The 

computational load of the combined BWO and MPC-SVM 

algorithms, while designed for efficiency, has not been 

benchmarked on a physical digital signal processor (DSP). 
 

Despite these limitations, the practical feasibility of the proposed 

framework is strongly supported by its structure, which is 

composed of deterministic mathematical operations well-suited 
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for implementation on modern DSPs or FPGAs. The results thus 

provide a high-confidence foundation for the system's viability. 

Therefore, the immediate and critical future work is the real-

time HIL implementation of this co-designed framework to 

experimentally validate its performance and computational 

requirements. Subsequent research will explore the 

incorporation of online parameter estimation to enhance 

robustness and extend the approach with machine learning for 

proactive fault prediction and system health management. 

 

░ 7. CONCLUSION  
This paper presents an efficient control framework for 

photovoltaic (PV)-fed Open-End Winding Induction Motor 

(OEWIM) drives using a novel Beluga Whale Optimization 

(BWO)-based Maximum Power Point Tracking (MPPT) 

technique, integrated with an improved Model Predictive 

Control – Space Vector Modulation (MPC–SVM) strategy. The 

proposed system addresses key challenges in renewable-

powered motor drives, such as maximizing solar energy 

extraction, ensuring dynamic speed tracking, and maintaining 

power stability under varying operating conditions. Through 

extensive simulations conducted in MATLAB/Simulink, the 

performance of the BWO-based MPPT under diverse operating 

scenarios was rigorously validated and compared with 

conventional MPPT algorithms like Perturb and Observe 

(P&O), Particle Swarm Optimization (PSO), and Cuckoo 

Optimization Algorithm (COA). Across all test cases, including 

constant irradiance with fixed speed, variable irradiance with 

constant speed, and constant irradiance with dynamic speed 

profiles, the proposed method consistently outperformed 

conventional approaches in terms of Enhanced MPPT accuracy, 

Superior voltage and power stability, Improved dynamic motor 

response, Reduced torque ripples and smooth stator current 

waveforms, and Effective power balancing. Battery with a 

bidirectional converter that seamlessly transitions between 

charging and discharging, ensuring continuous operation even 

during PV power fluctuations. The BWO algorithm proved 

highly effective at identifying the global optimum operating 

point of the PV system, resulting in more consistent energy 

transfer to the OEWIM drive. Meanwhile, the predictive control 

mechanism ensured fast and precise response to speed 

variations, making the system highly adaptable for real-time 

industrial applications. The integration of BWO-based MPPT 

with MPC–SVM motor control and energy storage creates a 

robust and intelligent drive system, capable of handling both 

environmental and load-induced disturbances. The proposed 

architecture is especially well-suited for applications such as 

solar-powered electric drives, sustainable transportation 

systems, and smart industrial automation where efficiency, 

adaptability, and reliability are critical. Future work may extend 

this approach to incorporate machine learning-based fault 

prediction and real-time hardware-in-the-loop implementation 

for experimental validation. 
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