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ABSTRACT- This paper presents a novel control framework integrating the Beluga Whale Optimization (BWO)
algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems driving an Open-End Winding Induction
Motor (OEWIM) using a Model Predictive Control-Space Vector Modulation (MPC-SVM) strategy. The BWO algorithm,
inspired by the intelligent hunting behaviour of beluga whales, is employed to dynamically extract the global maximum power
point under varying irradiance and temperature conditions, enhancing PV efficiency. The extracted power feeds a dual-inverter
OEWIM drive, which offers greater voltage flexibility and fault tolerance compared to conventional topologies. To ensure optimal
current quality and torque performance, the MPC—SVM scheme predicts future motor states and applies an optimized voltage
vector synthesized via space vector modulation. The system also incorporates discrete-time current modelling, delay
compensation, virtual voltage vector generation, and dead-time compensation to address practical implementation challenges.
Simulation results validate the superiority of the proposed BWO-MPPT and MPC—SVM-driven OEWIM architecture in achieving
rapid MPPT convergence, reduced current ripple, improved torque stability, and high system efficiency under dynamic operating
conditions. This integrated approach is highly suitable for renewable energy-based electric drive applications in smart grid and
industrial automation environments.
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“ 1. INTRODUCTION

The integration of photovoltaic (PV) systems with motor drives
is critical for energy efficiency, but the nonlinear nature of PV
sources necessitates robust maximum power point tracking
(MPPT) to maximize energy harvest [1, 2]. For the motor drive,
the open-end winding induction motor (OEWIM) offers a
superior voltage envelope and fault tolerance but requires
advanced modulation techniques [3, 4]. Model Predictive
Control (MPC) coupled with Space Vector Modulation (SVM)
has emerged as a powerful solution for OEWIMs, enabling
high-fidelity control with minimized current ripple [5]. A
significant challenge, however, is the computational burden of

traditional MPC, which can limit real-time implementation [6].
This creates a critical gap for a computationally efficient control
scheme that does not compromise the dynamic performance of
the PV-fed OEWIM system, which this work aims to address.

For PV energy extraction under partial shading, metaheuristic
algorithms are essential to avoid local optima [7]. The Beluga
Whale Optimization (BWO) algorithm is particularly noted for
its effective balance between global exploration and local
exploitation, leading to fast convergence on the global maximum
power point [8]. Recent research has focused on enhancing such
algorithms through adaptation and hybridization. For instance,
modified versions of established optimizers have been
developed to dynamically adjust parameters based on real-time
PV curve conditions, improving both speed and accuracy [9, 10].
Furthermore, a prominent trend involves embedding these
algorithms within artificial neural networks for forecasting or
hybridizing them with conventional methods [11, 12]. These
hybrid bio-inspired strategies are now considered state-of-the-
art for complex shading scenarios, as they achieve rapid
transients and minimal steady-state oscillation [13].

Recent advancements have significantly enhanced the Beluga
Whale Optimization (BWO) algorithm, reinforcing its potential
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for engineering applications. Its capabilities have been extended
through hybridization with other metaheuristics, resulting in
superior performance against multiple benchmarks [ 14]. Further
modifications, incorporating adaptive learning and Lévy flight
strategies, have demonstrated statistically superior results on
standardized test suites and engineering problems [15].
Moreover, embedding an enhanced BWO within an extreme
learning machine for PV forecasting has proven effective for
managing weather variability, confirming its robustness and
adaptability [16]. These developments collectively affirm BWO
as a versatile and powerful optimizer, well-suited for the
complex MPPT task in this study.

Concurrently, significant progress has been made in predictive
control for motor drives. For Open-End Winding Induction
Motors (OEWIMs), Model Predictive Control (MPC) is now an
established high-performance strategy. Research has yielded
model-free predictive controllers that substantially reduce
computational load [17] and successfully extended these
methods to medium-voltage applications with integrated
harmonic suppression [18]. Studies have confirmed that
predictive torque control for dual-inverter systems can achieve
dynamic performance rivaling multilevel converters [19].
However, these approaches still face real-time computational
constraints, highlighting a need for more efficient formulations.
A parallel research focus addresses the challenge of dead-time
effects, which remain a critical bottleneck for precision torque
control, especially with continuous modulation schemes like
SVM. Recent solutions include adaptive notch filters for
harmonic cancellation [20] and refined dead-time models
leveraging fast-switching semiconductors [21]. Earlier
compensation techniques using Kalman filters also provide a
foundation for seamless integration with SVM [22].
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A systematic review confirms that whale-family optimizers like
BWO offer superior convergence and balance but require
application-specific adaptation [23]. Critically, a clear research
gap persists: no existing work integrates an intelligent, adaptive
BWO-based MPPT with a computationally efficient, predictive
control scheme for an OEWIM drive. Furthermore, existing
dead-time compensation methods are not co-designed with such
a unified virtual-vector MPC framework. This study aims to
bridge this gap by proposing a cohesive system that
synergistically combines these advanced elements to optimize
overall performance.

This paper proposes an integrated control architecture that unites
BWO-based MPPT and an MPC-SVM scheme for driving an
OEWIM from a PV source. The major contributions are
fourfold: (i) a discrete-time BWO algorithm tailored for MPPT
that delivers rapid and robust convergence under stochastic
irradiance profiles; (i) a delay-compensated MPC predictor and
cost  function  customized for the  dual-inverter,
open-end-winding topology; (iii) a virtual-vector, dead-beat
SVM routine that slashes computational complexity while
preserving optimality; and (iv) a practical dead-time
compensation layer that mitigates nonlinear voltage errors.
Comprehensive simulations demonstrate that the proposed
framework yields superior tracking efficiency, reduced torque
ripple and improved dynamic performance compared with
state-of-the-art MPPT and control strategies. Figure [ illustrates
the detailed system incorporating the proposed BWO-based
MPPT algorithm for the PV system alongside a MPC-SVM
modulation for OEWIM drives. The findings highlight the
feasibility and advantages of deploying intelligent optimization
and predictive modulation in renewable-powered industrial
drive systems, thereby advancing the vision of sustainable and
high-performance electrification.

Siq S13 S1s Sas Sz Sa1
& - = OEWIM - =
|

Sl4— 316
=i =i

SlZ
-

L2 BWO based |
P, MPPT s,
2
Ibat Ly rb;l-t|
m— ‘\rf -
Battery Spart

L ]

b
|1
L
=
=
To DC bus

Vacre Ibatref
@ ®

I bat |~
Vdcbat

to Sbatl
PI PWM I——>
H and Spqp

Figure 1. PV fed OEWIM with proposed MPPT and MPC-SVM
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#2. SYSTEM MODELLING
2.1. Mathematical model of Open-end winding IM

Figure 2. Vector representation of OEWIM Model

An Open-End Winding Induction Motor (OEWIM) is
physically realized by ensuring that the stator windings remain
unshorted, resulting in Six stator terminals:
al’,‘a?,'bY,'b?,'cl’,and ‘c} ‘c¥,and ‘c¥’, as depicted in
figure 2. Meanwhile, the rotor windings remain shorted and
unchanged, represented by the‘a,’, ‘b,’, and ‘c,.axes. The rotor
is positioned at an angular offset, denoted as ‘a,.’, relative to the

‘al’ reference axis, as illustrated in figure 2.

Vas s 0 07[las Aas
Vos| =0 7 O |ins|+p | s (1)
Ves 0 0 Ts ics /165

Here, A4, Aps and A represent the flux linkages of the
respective stator phase windings, while 7; denotes the per-phase
stator winding resistance. The corresponding stator phase
currents are given by iy, ips and i.

In an OEWIM, the three-phase stator voltages can be
transformed into the dq reference frame using a power-invariant
transformation. This conversion shifts the voltages from a
stationary to a rotating reference frame, simplifying the analysis
and control of the motor. The relationship between the three-
phase stator voltages v, Vs, and v, and the dg components
Vg and vy is expressed through the following power-invariant

transformation:
21 21
cos (u — —) cos (u + —)
Ugs 3 3 Vas
2
[vdsl =3 sin(u) sin (u - %ﬂ) sin (u + 2?") [Ubs] 2)
Vo Ves

1 1 1

cos (u)

2

In this transformation, v,, denotes the quadrature-axis voltage
component, while vy, represents the direct-axis voltage
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component. The term wvycorresponds to the zero-sequence
component, which is generally zero in a balanced three-phase
system. The angle u = a represents the electrical angular
position of the reference frame. Here, a defines the angle
between the stator reference axis agand the g-axis, while f
denotes the angle between the rotor reference axis a, and the g-
axis. Similarly, S represents the angle between the rotor
reference axis a,and the g-axis. The relative displacement
between the stator and rotor reference axes is given by @, = a —
B, where «, defines the angular difference between the stator
and rotor frames. This d—g transformation simplifies motor
analysis by enabling decoupled control of flux and torque
components, which is essential for achieving efficient and
precise motor operation.

dlgs

Vgs = lgsTs + WAgs + — 3)
! .y I ! dz’&r
vqr = lqrrr + (w - wr)ldr + dt (4)
. dig
Vgs = lgsTs — wlqs + 75 )
o e ! AI dl,dr 6
Var = larTr — (w - wr) qr + dt ( )

The rotor's angular velocity, denoted as w, , represents the
instantaneous speed of the motor shaft in radians per second,
while @ denotes the synchronous speed of the machine. The
synchronous speed of the machine is denoted by w. In the case
of a squirrel-cage induction motor, which is commonly used in
simulations, the rotor-side voltages in the d—¢ frame, specifically
Vgr and Vg,, are considered zero. This is because the rotor
terminals are shorted, preventing any external voltage supply to
the rotor windings.

The flux linkage equations for the OEWIM are stated as

Ags] [Lm+Ls O L, 0 1[igs

Ads| | 0 Lm+Ls 0 L ||ias]

PV Il I 0 Ln+L, o |||
;ir 0 Lm 0 Lm + Lllr l.;ir

Here, L,,denotes the magnetizing inductance, L;; represents the
stator winding leakage inductance, and L}, corresponds to the
rotor winding leakage inductance referred to the stator.

These inductances play a crucial role in defining the flux linkage
between the stator and rotor windings, directly impacting the
motor's overall performance. The interaction between the stator
and rotor flux linkages is governed by these inductances,
influencing key operational characteristics such as torque
production and efficiency. The electromagnetic torque T,
developed in the OEWIM is stated as;

3pLm y iy
T, = EgL_S (Aqsldr - /ldslqr) ®
p is the number of poles of the machine. The mechanical
equation governing the OEWIM-pump drive, which models the
dynamics of the motor's rotational movement, is stated as:
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dwy
dt

J&r 4 Bw, + T, =T,

)
J represents the moment of inertia of the OEWIM (measured in
kg-m?), indicating the motor's resistance to changes in rotational
motion. The parameter B denotes the centrifugal load torque
coefficient, accounting for friction and other opposing forces
that resist the motor shaft's movement. The torque T}, represents
the external load torque applied to the system, while the right-
hand side of the equation corresponds to the developed
electromagnetic torque T,, which drives the motor's motion.
These equations collectively define the dynamic behaviour of
the OEWIM, incorporating both its electrical and mechanical
characteristics.

2.2. Mathematical Model of PV Array Power Loss
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Figure 3. Equivalent circuit of PV Panel

The single-diode model of a PV panel is illustrated in figure 3.
The photocurrent’s relationship with solar irradiance is
expressed as follows:

G

Ly =1, X—
ph sc Gref

(10)

Here, I;. represents the short-circuit current under standard test
conditions, GGG is the instantaneous solar irradiance, and G,.f
denotes the reference irradiance (typically 1000 W/m?). The
equivalent circuit of a PV cell consists of a current source in
parallel with a diode, along with a series resistance Rg,, which
accounts for internal losses caused by the semiconductor
material's resistance. The diode represents the p-n junction of
the solar cell and models the recombination of charge carriers.
The output current [, from the solar cell is determined by the
Shockley diode equation, which is modified to incorporate the
photocurrent.

Ipv= ph_ID_ISh (1)
_ va+RSeIpv _
Ip =1y (exp( ANgV; ) 1) (12)
Vyp+Rselny
Iop, = Lrtiselm) (13)
Sh
v, = (14)
q
Here, V,,,, represents the PV cell voltage, while I,,,, denotes the

generated current. Rg, and Rg;, correspond to the series and
parallel resistances, respectively. Ngindicates the number of
cells connected in series within a module. Additionally, V; is the
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thermal voltage, ¢ represents the electron charge, and I, denotes
the diode saturation current.

The power output of a PV system is strongly influenced by
environmental factors, particularly solar irradiance and
temperature. Due to the nonlinear characteristics of a PV panel,
its output varies with changing conditions. At any given time,
the maximum power that can be extracted occurs at a specific
operating point, referred to as the Maximum Power Point (MPP).
The location of the Maximum Power Point (MPP) continuously
shifts with variations in sunlight intensity and temperature.
Without an effective tracking mechanism, the PV system would
operate at a suboptimal point, leading to reduced energy
conversion efficiency. Maximum Power Point Tracking (MPPT)
algorithms are employed to dynamically adjust the operating
point of the PV system, ensuring it consistently operates at the
MPP despite fluctuations in solar irradiance or temperature.

2.3. Battery with Bidirectional Converter

In the proposed HBWO-based MPPT algorithm for PV systems
and the improved DTC strategy for OEWIM drives, a battery
with a bidirectional converter is integrated into the system. The
primary purpose of this battery is to ensure a continuous and
stable power supply to the motor, even under fluctuating solar
power conditions. Since PV systems inherently exhibit
intermittent power generation due to variations in solar
irradiance and temperature, the battery plays a crucial role in
maintaining the DC link voltage stability and ensuring
uninterrupted motor operation. The bidirectional converter
facilitates both charging and discharging of the battery,
effectively managing energy flow between the PV system,
battery, and the motor drive system.

The bidirectional converter enables controlled power exchange
between the battery and the DC link. During excess PV power
generation, the surplus energy is stored in the battery by
operating the converter in buck mode, reducing the voltage to
match the battery's charging requirements. Conversely, when the
PV power is insufficient to meet the motor’s demand, the stored
energy in the battery is supplied to the DC link through the
converter operating in boost mode, ensuring continuous power
availability. This dynamic energy management enhances system
reliability and efficiency, preventing voltage fluctuations that
could affect motor performance. Figure 4 presents the battery
energy storage system with bidirectional converter and its
control strategy.
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Figure 4. Battery energy storage system with bidirectional converter
and its control strategy
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To regulate the DC link voltage and ensure efficient power
exchange, a dual-loop control strategy is implemented in the
bidirectional converter. This control strategy consists of an
outer voltage control loop and an inner current control loop,
working together to maintain the desired power flow and system
stability as presented in equation (15) and (16);

Ibatref = va (Vdcref (t) - Vdcbat (t)) + Kiv f (Vdcref (t) -
Vacbar (@) dt  (15)

K, and K;,, are PI controller gains, Vyerep DC link reference
voltage, Vjcpq:r actual DC link voltage,

dbat = Kpi (Ibatref(t) - [bat(t)) + Kii f (Ibatref(t) -
Iat (£)) dt (16)

K,; and K;; are PI controller gains, Ip.ref battery reference
current, I, actual battery current, The outer voltage control
loop is responsible for regulating the DC link voltage. A
reference DC link voltage is set, and the actual DC link voltage
is continuously monitored. The error between the reference and
actual voltage is processed by a PI controller, which generates a
reference current for the inner current control loop. This ensures
that the DC link voltage remains stable regardless of
fluctuations in PV power or load demand, thereby maintaining
steady operation of the OEWIM drive.

The inner loop regulates the battery current to ensure smooth
power transfer. The reference current obtained from the outer
loop is compared with the actual current flowing through the
bidirectional converter. A PI controller processes this error and
generates the required duty cycle for PWM control. The PWM
signals are used to switch the bidirectional converter, adjusting
its operation mode (buck or boost) based on power demand.

During motor acceleration or increased load conditions, the
inner loop allows the battery to supply power to the DC link by
boosting the voltage. Conversely, when the PV system
generates excess power, the converter operates in buck mode,
transferring surplus energy to charge the battery efficiently. The
coordinated control of these loops ensures that power flow is
dynamically adjusted, preventing voltage instability and
improving overall system performance.

#: 3. BELUGA WHALE OPTIMIZATION
(BWO)

3.1. Mathematical Model of Beluga Whale
Optimization

The BWO algorithm is inspired by the natural behaviours of
beluga whales, such as swimming, preying, and the
phenomenon of whale fall. In a manner like other metaheuristic
algorithms, BWO operates with two main phases: the
exploration phase and the exploitation phase. The exploration
phase ensures a global search capability within the design space
by randomly selecting beluga whales, which allows the
algorithm to explore a wide range of potential solutions. The
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exploitation phase focuses on a local search within the design
space, optimizing the identified potential solutions. This two-
phase structure is essential for the algorithm’s efficiency, as it
combines the ability to search broadly (exploration) with the
ability to fine-tune solutions (exploitation).

The population-based nature of the BWO algorithm considers
the group of beluga whales as a population of search agents.
Each individual whale represents a candidate solution, and its
position in the search space corresponds to a potential solution
to the optimization problem at hand. The positions of the beluga
whales are represented as a matrix, where each row corresponds
to a beluga whale, and each column corresponds to a design
variable. The matrix is formulated as;

X11 X122 X1,d
X21 X222 X2,d

X= : : : (17)
xn,l xn,z xn,d

In this matrix, n represents the population size of the beluga
whales, and d denotes the dimension of the design variables.
Each element in the matrix, x; ;, indicates the position of the i-
th beluga whale in the j-th dimension of the design space. The
corresponding fitness values of these beluga whales (or
candidate solutions) are stored in a vector, Fy, where each
element represents the fitness of the corresponding solution:

J(X1,1, %12, s X1.)

F o= f (X1, %22 e X2,0)
x = :

(18)
f(xn,li xn,Z' R xn,d)

The fitness values are evaluated based on the specific
optimization problem and guide the algorithm in determining
which positions are more optimal.

A key feature of the BWO algorithm is its ability to switch
between the exploration and exploitation phases, which is
controlled by a balance factor By. This balance factor governs
the probability of the algorithm being in either phase. It is
modelled as:

B; = B, (1—%) (19)
Here, T represents the current iteration number, T4, is the
maximum number of iterations, and B, is a random value
between 0 and 1 that changes at each iteration. The balance
factor By decreases as the algorithm progresses, starting from a
value between 0 and 1 and gradually shifting towards 0.5. When
By is greater than 0.5, the algorithm is in the exploration phase,
which encourages broad searching across the solution space.
When By becomes less than or equal to 0.5, the algorithm
transitions into the exploitation phase, which focuses on refining
the solutions locally. As the iterations progress, the fluctuation
range of By shrinks from (0, 1) to (0, 0.5), signifying that the
algorithm increasingly focuses on exploitation rather than
exploration. This transition is a dynamic process that balances
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the need to explore new regions of the search space with the
necessity to exploit the promising regions already discovered.
The gradual reduction in the exploration phase allows the
algorithm to fine-tune its solutions, optimizing the search
process over time.

3.1.1. Exploration Phase

The exploration phase in the BWO algorithm is modelled after
the swimming behaviour of beluga whales, particularly the
synchronized movements they exhibit during pair swimming.
Beluga whales, especially those in human care, have been
observed to engage in social-sexual behaviours under various
postures, such as swimming closely together in pairs, often
moving in a synchronized or mirrored manner. This behaviour
serves as an inspiration for the BWO algorithm, where the
positions of the search agents (beluga whales) are determined
by this pair swimming dynamic. This synchronized or mirrored
movement allows the algorithm to explore the solution space by
adjusting the position of the whales in a way that mimics these
natural behaviours. To mathematically model this behaviour,
the algorithm updates the position of each search agent using
the following equation;

X,;(T +1)
Xip, T+ (Xm,l(T) —Xrp, (T)) (1 4 ry) sin(2xr,) ,when j is even

Xip, (1) + (XTVPI(T) —Xep, (T)) (1 +7,) cos(2ar,), when j is odd
(20

In these equations, X; ;(T + 1) represents the updated position
of the i-th beluga whale on the j-th dimension of the search
space at the Tth iteration. The position update is based on the
current position X;,;(T) of the whale in the jth dimension, as
well as the position of another randomly selected whale,
denoted as X, 1 (T), where 7 is a randomly chosen whale from
the population. The variables r; and r, are random numbers
between 0 and 1, which are used to introduce randomness and
variability in the movement. These random numbers ensure that
the search is not deterministic, allowing the algorithm to explore
a broader range of the solution space.

3.1.2. Exploitation Phase

The exploitation phase of BWO is inspired by the cooperative
foraging behaviour of beluga whales. In this phase, the whales
share information about their positions to aid in their search for
prey. This allows them to converge on the best positions by
using a strategy called Levy flight, which improves the
efficiency of their movement and prey capture. The
mathematical formulation of this phase involves several key
components:

The position update for a given whale iii during the exploitation
phase is given by:

Xi(T + 1) = 13Xpeqe (T) = 1X,(T) + €y X Lp X (X,(T) —
Xi(1)) @1
Where X;(T) is the current position of the ith beluga whale,

X,.(T) is the position of a randomly selected whale., X, (T) is
the best position found among all the whales, X;(T + 1)
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represents the updated position of the ith whale after the
iteration. r3 and r, are random numbers generated between 0 and
1, C; is the random jump strength, defined as C; = 2r,(1 —

T . . . .
m), which decreases as the number of iterations increases,

reflecting diminishing intensity of the Levy flight. L is the Levy
flight function, which introduces random jumps into the search
process to escape local optima. The Levy flight function (LF) is
defined as:

uxo

Lp = 0.05 x =7 (22)
[v|B
1/B
. (B
r‘ =
o= (1+[)’)><sm( 5_1 (23)
r(SE)xpxa e

Where I' is the Gamma function, which generalizes the factorial
function. Levy flight is a random walk process where the step
sizes follow a power-law distribution, which allows the
optimization algorithm to make large jumps with small
probabilities. This enhances exploration during the exploitation
phase. The introduction of Levy flight enables the beluga whales
to efficiently search for prey by making random but strategically
strong movements that help them avoid being stuck in local
optima. The random jump strength C; varies throughout the
iterations, becoming smaller as the process progresses, which
reflects the balance between exploration (global search) and
exploitation (local search).

3.1.3. Whale Fall

The phenomenon of whale fall refers to the process in which a
beluga whale, having fallen to the deep seabed, becomes a
source of nourishment for numerous marine creatures. To model
the behaviour of whale fall in a computational environment, we
introduce a method to simulate the changes in the population of
beluga whales over time. The mathematical model used to
update the position of each whale in the population is expressed
as follows:

Xi (T + 1) = Tin (T) - rGXT(T) + r7Xstep) (24)
In this equation, 15, 74 and r; are random numbers between 0 and
1, and X, represents the step size of the whale fall, which
determines how much the position of each whale changes in the
next iteration. The step size itself is calculated using the
following formula;

Xstep = (ub — Ib) exp (— Tf:;) (25)

Here, C, is a step factor that is influenced by both the probability
of whale fall and the size of the population. Specifically, C, =
2W; X n, where W is the probability of whale fall and n is the
population size. ub and lb represent the upper and lower
boundaries of the design variables, respectively. This step size
function ensures that as the simulation progresses, the change in
the positions of the whales gradually decreases, reflecting the
diminishing likelihood of whale fall over time. The probability

Website: www.ijeer.forexjournal.co.in

Beluga Whale Optimization (BWO) Algorithm for Maximum

761


http://www.ijeer.forexjournal.co.in/

FOREX

International Journal of

Publication Electrical and Electronics Research (IJEER)
Open Access | Rapid and quality publishing Research Article | Volume 13, Issue 4 | Pages 756-771 | e-ISSN: 2347-470X

of whale fall, W, is modelled as a linear function of the iteration
number, decreasing from an initial value of 0.1 at the start of the
simulation to 0.05 at the final iteration. This is given by the
formula;

0.05T

W =01- (26)

Tmax

The decreasing probability indicates that, as the whales
approach the food source in the optimization process, the danger
to their survival reduces.

3.1.4. Pseudocode for BWO Algorithm

% Step 1: Initialization

Initialize population size n (number of beluga whales)
Initialize maximum number of iterations Tmax

Initialize upper and lower bounds of the search space (ub, Ib)
Initialize the positions of all beluga whales randomly within
the search space

Calculate the fitness values of all whales based on the
objective function

% Step 2: Main Loop for Optimization
for T = 1:Tmax
% Step 2.1: Update on Exploration and Exploitation Phase
fori=1:n % lIterate over each whale
% Step 2.1.1: Calculate balance factor Bf for each
whale
Bf'=rand(); % Randomly generate Bf (between 0 and

1)

% Step 2.1.2: Determine which phase (exploration or
exploitation) the whale enters
if Bf > 0.5
% Exploration Phase
% Update whale position using exploration equation
X new(i,:;) = X(i,:) + rand() * (X best - X(i,:)); %
Exploration formula

else
% Exploitation Phase
% Update whale position using exploitation equation
X new(i,;) = X(i,;) + rand() * (X best - X(i,:)) +
rand() * (X _random - X(i,:)); % Exploitation formula
end

% Step 2.1.3: Calculate fitness of new position
fitness_new = objective_function(X new(i,:));

% Step 2.1.4: Compare fitness and update if new
position is better
if fitness_new < fitness(i)
X(i,:) = X _new(i,.);
fitness(i) = fitness_new,
end
end

% Step 2.2: Update on the Whale Fall Phase
fori=1:n

% Step 2.2.1: Calculate probability of whale fall (Wf)
for each iteration

Wf=0.1-0.05%*T/Tmax); % Linearly decreasing
probability

% Step 2.2.2: Check if whale will fall (if randomly
chosen)
if rand() < Wf
% Whale falls to the deep seabed
% Update whale position using whale fall equation
X new(i,:) = r5 * X(i,:) - r6 * X random + r7 *
X step;

% Step 2.2.3: Calculate fitness of new position after
whale fall
fitness_new = objective_function(X new(i,:));

% Step 2.2.4: Update whale position if new fitness is
better
if fitness _new < fitness(i)
X(i,:) =X new(i,:);
fitness(i) = fitness_new;
end
end
end

% Step 3: Find the best solution in the current iteration
[best_fitness, best_index] = min(fitness);
X best = X(best_index, :);

% Step 4. Check the termination condition (maximum
iterations reached)
if T == Tmax
break; % Exit the loop if the maximum number of
iterations is reached
end
end

% Output the final best solution found
disp('Best solution found:');
disp(X_best);

disp('Best fitness value:');
disp(best_fitness);

4. CONVENTIONAL MPC

Model Predictive Control (MPC) determines the optimal output
value for the upcoming control period by evaluating a set of
candidate input values based on the system’s model equations.
In order to accurately forecast the electrical torque and stator
flux over each control interval, the stator voltage model must be
converted into a discrete-time current model that aligns with the
system's sampling interval. This transformation involves
converting the continuous-time current equations, originally
defined in terms of time ¢, into a discrete-time format that
operates with respect to the sampling period T . To achieve this,
the time derivatives present in the continuous model are
approximated using finite difference expressions that estimate
the rate of change between discrete sampling instances.
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Z(Vdcl + Vch)

Figure 5. Voltage vector diagram of the dual inverter

For a short prediction horizon, it is customary to treat the rotor
fluxes as state variables because they evolve more slowly than
stator currents.

X = [ids Igs Aar Aqr] (27)
T
U = [vgs Vs (28)
Using a forward Euler hold over the sampling period T
_ Y+ 1)y (29)

Ts

By substituting eq. (9) in (8), the discrete-time state update is
given as

x(k+1) = Agx(k) + Bju(k + 1) (30)
with constant coefficient matrices
Ag =1+ A.Ts 31)
B; = B.T; (32)
where the continuous-time matrices are given as
olLg oLgLy
Rs Rslm
TWe T oLs 0 oLgLy
Ac =\ 1r, Ry (33)
Ly 0 - E Wg;
LRy Ry
0 T —Wgy - E
10
_ 110 1
Be=2lo o 3
00
Then the stator currents are predicted as
RsTs
fas (ke + 1) = (1= 22) g5 () + Tewpiqg () + ;=g (e +
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LinTs 1 -
1) - rererdr(k) (35)
igs(k + 1) = (1- ﬂ) g () = Tyelas () + 7245 (k +
Lst
1) - R‘r qr(k) (36)

In a practical implementation, it is essential to incorporate a
delay compensation mechanism to address errors caused by
signal transmission delays and the timing of switching signal
application to power electronic devices in simulations, the next
switching state is calculated, and the corresponding voltage
vector is applied almost instantaneously. However, in real-time
systems, there is a finite computation delay before the next
control action can be applied, resulting in a one-sampling-period
delay in the MPC loop. To accurately estimate the actual current
in the k + 2 control cycle, it becomes necessary to first predict
the current for the k + 1 cycle based on the voltage vector
applied during the k cycle. This predicted current is then used as
the current value for the k+ 1 cycle during the next
computation. Consequently, equation (7) must be adapted with
a delay compensation strategy to reflect the dynamics of the
actual system and ensure accurate current prediction in the
presence of control and actuation delays.

Two-step current prediction is given as

ids(k +2) = (1= 28) f4 (e + 1) + Towplgs (e + D) +
vds(k +2) -k > Reigr(k +1) (37)

lqs(k+2) = (1—@) igs(k + 1) = Tywgigs(k + 1) +
vqs(k +2) -k *Reigr(k +1) (38)

Letwg(k+ 1) =w,(k +1) —w,.(k+1)
Then rotor flux is predicted as
Aar(k +2) = Agr(k + 1) + T, (—?adr(k +1) + wg(k +

LmRr

DAk +1) + lds(k + 1)) 39

Agr(k +2) = Age(k + 1) + T, (—?aqr(k +1) —wylk +

D) Agy e + 1) + 250 i (ke + 1)> (40)
Stator flux magnitude at k + 2 is given as

Aas(k +2) = Lgigs(k +2) + Lyig - (k + 2) 41)
Ags(k +2) = Lgigs(k + 2) + Lpigr(k + 2) (42)

Electromagnetic torque at k + 2 is given as

T,(k +2) = 32 [Aar (ke + 2)igs(k +2) — A4 (k + 2)igs(k +

2)] (43)

Website: www.ijeer.forexjournal.co.in

Beluga Whale Optimization (BWO) Algorithm for Maximum


http://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

In finite-set current-model predictive control (CMPC) of an
open-end-winding induction motor (OEW-IM), the two
three-phase inverters are treated as a single “virtual” converter
whose output is the difference between their pole voltages. With
equal and independent DC-link voltages V;. , this virtual
converter can generate 19 distinct space-vector positions (18
active plus the zero vector) in the stationary d — q reference
frame, as illustrated in figure 5. Each point in that hexagon
corresponds to one unique combination of the six switch states

(Sal' Sblf Sclﬂ Saz' sz' SCZ)'

During every sampling step the controller assembles the set

v={wp}” (44)
v = [Zgn] (45)

and inserts each candidate vg, into the two-step prediction
model to obtain the corresponding predicted stator-flux
magnitude AT*(k + 2) and predicted electromagnetic torque
T, (k + 2).

The quality of every candidate is quantified by a quadratic cost
function

C™ = Fy|As — AT (k + 2)| + F7|T; — TM(k + 2)]
(46)
Where
o 1; — reference stator-flux magnitude (or indirectly, desired
stator-current magnitude),

o T, —reference electromagnetic torque,

e F,, Fr — non-negative weighting factors that balance
flux-tracking versus torque-tracking priorities and
normalize the two error terms.

The voltage vector v;';m"“ that minimizes eq. (11)

Mpypin = argmin C™ 47)

is selected as the reference voltage for the virtual OEW
converter, and the corresponding pair of inverter switch states is
queued. After the inherent computation-and-PWM delay, those
switches are applied in the next control period, ensuring that the
machine receives precisely the voltage for which currents,
fluxes and torque were predicted two steps earlier.

This procedure simultaneously exploits the enlarged voltage set
of the OEW topology and compensates one-step hardware
delay, enabling fast, high-accuracy torque and flux control of
the induction motor.

5. PROPOSED MPC-SVM SCHEME

To embed space-vector modulation (SVM) inside the finite-set
MPC loop of an open-end-winding induction motor (OEW-IM),
the controller must first estimate the angle of the stator-voltage
vector that will be required one sampling period ahead. Starting
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from the discrete-time stator-voltage model and using the
already-predicted currents at instant k + 1, the components of
the voltage vector to be applied at k + 2 are

Das = (R +52) tas (e + 1) = 0Lowpige(k + 1) + 2 [ig, (k +
D — igr ()] (43)

N Ls\ . , L.
Dgs = (RS + JT—S) lgs(k +1) — oLsweiqs(k + 1) + T [zqr(k +

Then the voltage angle can be predicted as
_ -1 (Pgs
6, = tan (%s) (50)

In the proposed MPC—SVM strategy for driving the Open-End
Winding Induction Motor (OEWIM), a significant reduction in
computational burden is achieved by restricting the number of
voltage vectors evaluated during each control cycle. Traditional
finite-set MPC methods that rely on evaluating a large set of pre-
defined candidate switching vectors often impose a high
computational load on microcontrollers, especially when
operating at high sampling rates. To address this issue, the
proposed method utilizes virtual voltage vector generation,
guided by the predicted voltage angle, thereby eliminating the
need to evaluate all possible vectors across the full 360° space.

Instead of using all possible switching combinations, the
algorithm first estimates the required voltage angle (6,) based
on the predicted stator current in the next control interval.
Around this voltage angle, only three angular sectors are
considered: the central angle (6,) and two neighboring angles
(6, + 8,), where 8 is a user-defined angular deviation. Within
each of these three sectors, N equally spaced virtual voltage
vectors are generated, significantly narrowing the search space.
Without applying this deadbeat restriction, the number of
vectors that would be generated over the full circle is computed
as:
360°

G(N)=9—(N—1)+1 (51
d

where the additional 1 account for the inclusion of the zero
vector. However, by limiting the search to just the three angular
sectors, the number of vectors becomes:

For example, with 8; = 15° and N = 7, the required number
of vector evaluations drops from 337 to just 19, reducing the
computational effort even below that of a conventional MPC.

Each virtual vector is mathematically constructed using its
position index x € {1,2,..., N} and is scaled based on the sum
of the two inverter DC-link voltages V., and V,. The virtual
voltage components in the stationary reference frame are
calculated using:

1 Vac1tV
vir _ Vdc1 dc2 Cx - COS(GV i gd)

vplr = e (53)
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vir

_VacitVdc2 .
vgy = =" x-sin(6, £ 6,)

— (54)
where only one instance of the zero vector (x = 0) is included
to prevent redundancy. These virtual vectors are treated as
candidates for input voltages in the MPC cost function,
replacing the need to simulate all physical switching states.

The proposed MPC-SVM approach retains the same current
prediction model and cost function formulation as the
conventional finite-set MPC developed for the OEWIM.
However, by focusing only on a small, intelligently chosen
subset of virtual voltage vectors, the method achieves a near-
optimal control action with much lower computational
complexity. This makes the method highly suitable for real-time
embedded control systems with limited processing power while
ensuring fast dynamic response and accurate torque and flux
tracking in OEWIM drives.

In the dual-inverter open-end-winding induction-motor
(OEWIM) configuration, each three-phase bridge is a
voltage-source inverter (VSI). To avoid shoot-through during
commutation, every VSI inserts a dead time between the
turn-off of one device and the turn-on of its complementary
switch. Although indispensable for reliability, this delay distorts
the commanded phase voltages, introducing a nonlinear error
that degrades current quality and, ultimately, torque accuracy.
Even with modern fast-switching devices, compensating for
dead-time effects remains essential in high-performance
torque-controlled drives.

+
DC Link

SYM Vapern | abe
Modulation dq
‘ Vag(z)
Cost Function,
Evaluation
Eq.

] Ak +2)f 7k +2)
igpe |abe ia Delay _ Current |— Ao Te
e 4 [~ Compensation ig(k + 1] prediction| La(k + 2)|Prediction

l ik +1 — ik +2

- -

-

Voltage Angle + +
Prediction - 2
= =

a B

Virtual

Figure 6. Control strategy of the MPC-SVM for OEWIM

In the proposed MPC-SVM scheme the optimal reference
voltage obtained from the prediction stage is synthesized with
space-vector modulation (SVM): two adjacent active vectors
and the zero vector are time-weighted within the sampling
period to reproduce the desired magnitude and phase. Compared
with the finite-set CMPC approach, the continuous freedom of
SVM yields a smoother voltage waveform, lower current ripple
and hence steadier electromagnetic torque.
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A simple feed-forward dead-time compensation corrects the
reference before it is fed to the PWM modulators:

T
vdead(z) = d].'fsad vdc(z) (55)
v;bcld = Vape1 + ﬁahcvdead(l) (56)
v;bczd = Vapez + ﬁahcvdead(z) (57
(41, Qg >0
Bave = {—1, iabc < 0 (58)

Figure 6 summarizes the complete control structure: the
discrete-time  current  predictor  supplies the MPC
cost-minimization block, whose optimal voltage vector is
angle-tracked by the SVM routine; reference-splitting and
dead-time compensation follow, after which the corrected
three-phase voltages are compared with high-frequency carriers
to generate the dual-inverter gating signals. Together, these
stages ensure that delay-compensated model prediction, smooth
SVM synthesis, and precise dead-time correction cooperate to
deliver high-fidelity torque control of the OEW induction motor.

6. SIMULATION RESULTS

To assess the performance and effectiveness of the proposed
Beluga Whale Optimization (BWO) algorithm-based Maximum
Power Point Tracking (MPPT) strategy for a photovoltaic (PV)
system feeding an Open-End Winding Induction Motor
(OEWIM) drive with improved Model Predictive Control-Space
Vector Modulation (MPC-SVM), a comprehensive simulation
study was conducted. The system configuration used for the
simulation is illustrated in figure I, encompassing all the
essential components of the proposed control architecture. This
setup facilitates a holistic evaluation of the system's behavior
under various dynamic and steady-state operating conditions.

The control strategy implemented for the improved MPC-SVM
of the OEWIM is detailed in figure 6. This advanced predictive
modulation framework is critical in enhancing the dynamic
response and significantly minimizing torque ripple across the
full range of motor operation. By effectively determining the
optimal voltage vectors using space vector modulation
principles and predictive current control, the drive achieves
smoother torque output and improved transient performance.

The proposed BWO algorithm is seamlessly integrated into the
PV-side MPPT module. Its operational steps are delineated in
the pseudo-code presented in sub-section 3.1.4 , which outlines
the iterative search mechanism employed to locate the global
maximum power point (MPP) of the PV system under varying
irradiance and temperature conditions. The BWO’s efficient
exploration-exploitation balance ensures rapid convergence to
the MPP with minimal oscillation, enhancing the stability and
responsiveness of the power conversion chain.

Through the use of this BWO-based MPPT algorithm, the PV
system is continuously operated at its optimal power generation
point. This ensures that the OEWIM drive receives the
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maximum available electrical energy, thereby improving
overall drive efficiency. Moreover, the combination of BWO
and MPC-SVM creates a synergistic effect—optimizing both
power extraction and motor performance simultaneously.

The electrical and mechanical parameters of the OEWIM used
in the simulation are summarized in table 1. These parameters
are selected to reflect typical industrial motor characteristics,
providing a realistic basis for evaluating the control scheme’s
applicability in practical deployments.

The simulation outcomes demonstrate the effectiveness of the
proposed strategy in achieving superior performance across
several metrics including torque ripple reduction, dynamic
response improvement, and maximum power tracking
efficiency. Overall, the integration of the BWO-based MPPT
with an improved MPC-SVM control for the OEWIM drive
results in a robust, efficient, and adaptable system suitable for
modern solar-powered electric drive applications.

Table 1. Simulation Parameters

OEWIM

Nominal power, voltage (line-
line), and frequency

6 HP, 230 V, 50 Hz

Stator resistance and inductance 0.466 Q, 3.03 mH

Rotor resistance and inductance 0.2873 Q, 2.02 mH

Mutual inductance 47 mH

Inertia, friction factor, pole pairs 0.0279, 6.41x10%,2

PV Array
Module E&H EHS3-238
Maximum Power 238.091 W
Cells per module 60
Open circuit voltage 373V
Short-circuit current 853 A
Voltage at maximum power point 301V
Current at maximum power point 791 A

Temperature coefficient of open
circuit voltage

-0.3481 %/deg.C

Temperature coefficient of short 0.042204 %/deg.C
circuit current

Parallel strings 2

Series-connected modules per 10
string
BWO Optimization

Maximum Iterations 100
Population Size 50

Problem Dimension (dim) 1
Lower and Upper Bound (Ib, ub) 0,1

Case 1: Performance Analysis Under Constant Irradiance
and Reference Speed
This case investigates steady-state behaviour when the PV array
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is illuminated at 1000 W /m? and the OEWIM is commanded to
maintain 1500 RPM while delivering a 5 Nm mechanical load.
The aim is to benchmark the BWO MPPT against three widely
cited algorithms—~Perturb-and-Observe (P&O), Particle Swarm
Optimization (PSO) and Cuckoo Optimization Algorithm
(COA).

Figure 7 plots the PV terminal voltage. With BWO, the voltage
settles rapidly to its reference with negligible ripple, whereas
P&0O, PSO and COA suffer pronounced overshoot, larger
oscillatory envelopes and longer settling times, all of which
penalize conversion efficiency. The corresponding DC-link
profiles in figure 8 confirm this tendency. The BWO-controlled
link exhibits a short rise time and minimal steady-state ripple;
the conventional methods display sluggish voltage build-up and
persistent ripple, signaling poorer energy transfer and greater
stress on capacitive components.

Figures 9 and 10 compare the PV power output and the power
delivered to the voltage-source converter (VSC). Due to accurate
global-peak tracking, the BWO strategy extracts a consistently
higher wattage and transfers it to the VSC with lower loss,
whereas the reference algorithms lose power because they drift
away from the true MPP even under constant irradiance.

Figure 11 shows the motor-speed trajectory. Under BWO the
OEWIM reaches 1500 RPM sooner, with a shorter settling
period and almost imperceptible speed ripple. PSO, COA and
P&O exhibit delayed acceleration, extended settling and
noticeable speed wavering. The corresponding
electromagnetic-torque waveforms in figure 12 reveal that BWO
also suppresses torque ripple more effectively throughout the
transient.

Table 2 consolidates these findings by listing the rise time ¢, ,
peak overshoot M,, settling time t, steady-state ripple R,
steady-state error e;; and overall efficiency 1 for the DC-link
voltage, motor speed and torque. Across every metric the
proposed BWO algorithm delivers superior or comparable
performance—shorter t,. and t, lower My, reduced R, and e,
and the highest conversion -efficiency—demonstrating its
robustness and suitability for PV-fed OEWIM drives operating
under fixed environmental conditions. To statistically validate
the performance of the BWO algorithm, 30 independent
simulation runs under varying initial conditions or conducted.
The results are now presented in the table 3. This table provides
the mean and standard deviation for all key performance indices,
including the Mean Absolute Error (MAE).

400 T T T T
—P&0O
—PSO
e —COA
—BWO

PV Terminal Voltage (V)

| L | I
1 1.2 1.4 1.6 1.8 2
Time (sec)

Figure 7. PV terminal voltage at 1000 w/m? irradiance
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Figure 9. PV generated power at 1000 w/m? irradiance
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P&O PSO COA BWO
DC Link t, 0.29 0.238 0.216 0.148
Voltage
M, 7.36 6.52 2.96 2.05
ts 1.35 091 0.68 0.31
Rys | 5.11 4.13 2.68 1.45
€5 1.15 0.74 0.58 0.26
Speed t, 0.26 0.25 0.225 0.154
M, 7.02 6.95 3.4 2.15
ts 1.1 0.85 0.7 0.48
Ry | 4.85 432 3.56 1.25
€ss 1.02 0.86 0.42 0.23
Torque Rgs 5.6 4.2 2.2 1.5
Efficiency n 97.25 98.36 98.75 99.02

Table 3. Statistical performance comparison of
algorithms over 30 simulation runs. (Mean + Standard
Deviation)

z P&O PSO COA BWO | %
X improv
E ement
of BWO
over
4 ' ‘ : : ‘ : ' COA
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec) DC t, | 0295+ | 0.242+ | 0.221+ | 0.151+ | 31.7%
Figure 10. Power transferred to VSC’s from PV system Link 0.021 0.018 0.015 0.008
Voltagq t; | 1.3840. | 0.94+0. | 0.71+0. | 0.32+0. | 54.9 %
2000 . . - . - ' e 11 09 07 04
— P50 Reg | 5.15+0. | 4.18+0. | 2.72+0. | 1.48+0. | 45.6 %
DO —COA
g 1500 ki —BWO 32 28 21 12
% | MAHR 1.42+0. | 0.89+0. | 0.71+0. | 0.2940. | 59.2 %
i 15 11 09 05
% o | Speed | Ry | 4.91£0. | 4.3840. | 3.61+0. | 1.28+0. | 64.5 %
35 31 25 10
0 . . . . ‘ ess | 1.05£0. | 0.88+0. | 0.45+0. | 0.24+0. | 46.7 %
] 0.2 0.4 0.6 0.8 T-lm;(sec) 1.2 1.4 1.6 1.8 2 08 07 06 03
_ , MAH 1.28+0. | 0.95+0. | 0.62+0. | 0.31+0. | 50.0 %
Figure 11. Speed of OEWIM with conventional and proposed 13 10 08 04
algorithm at 1500RPM reference speed and 1000 w/m? irradiance Torque| Ry, | 5.65+0. | 4.25+0. | 2.25+0. | 1.52+0. | 32.4 %
, ‘ , 40 33 20 15
—Fso Effici | n | 9720+ | 9831+ | 98.72+ | 98.98+ | 0.26 %
- e ency 0.25 0.22 0.18 0.15
& = ———————
2 Case 2: Performance Analysis Under Variable Irradiance
£ | and Constant Reference Speed
In the second study the Open-End Winding Induction Motor
_20 [I:Z 0.4 0.6 U:H ;l 1.2 ll4 l:(i 1.8 2

Time (sec)
Figure 12. Torque of OEWIM with conventional and proposed
algorithm at 1500RPM reference speed and 1000 w/m? irradiance

i Table 2. Transient behaviour of DC link voltage, speed,
and torque ripples with proposed and conventional
algorithms in terms of Rise Time (t,) in seconds, peak
Overshoot (M) in %, Settling Time (t;) in seconds, Steady
State Ripples (R) in %, Steady State Error (eg) in % and
efficiency (1) in %.

(OEWIM) drive is evaluated while the solar input follows a
deliberately aggressive irradiance profile (figure 13) and the
mechanical reference speed is held at 1470 RPM with a constant
5 N m load. Irradiance starts at 300 W /m?2, steps to 500 W /m?
at1.5s, 700 W/m? at3.5s, 900 W/m? at5.5s, and finally
peaks at 1000 W /m? before settling to 800 W /m? after 8s.
This sequence imposes rapid, wide-range power fluctuations that
test both the BWO MPPT and the delay-compensated MPC—
SVM current controller.
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Figures 14 and 15 show the PV terminal voltage and the
DC-link voltage, respectively. Despite the steep irradiance
transitions, the BWO MPPT keeps the PV operating point on
the instantaneous maximum-power locus, so both voltages
remain tightly regulated with scant overshoot and negligible
ripple. In earlier simulations with Perturb-and-Observe, Particle
Swarm and Cuckoo-based trackers, each step-in irradiance
produced pronounced voltage sag-and-recover cycles; those
artefacts are virtually absent under BWO, demonstrating its
superior tracking agility.

The corresponding power waveforms in figure 16 underlines
this advantage. PV output power rises and falls in proportion to
solar input, yet the BWO algorithm extracts the available energy
with high fidelity, while the battery seamlessly covers any
shortfall. Figure 17 details this dual-mode behaviour: between
1.5 s and 6.5 s the battery discharges to support the motor, then
switches to charging when irradiance exceeds the mechanical
demand, efficiently banking surplus energy for later use.

Mechanical responses are plotted in figures 18 and 19. The
motor speed tracks its 1470 RPM reference with sub-1%
deviation throughout the entire irradiance sweep, and torque
shows only minor oscillations, attesting to the robustness of the
MPC-SVM scheme. Stator current waveforms (figure 20)
remain sinusoidal and well balanced, indicating that the
predictive controller and space-vector modulator continue to
supply clean three-phase excitation even as the available DC
power fluctuates.

Collectively, the results confirm that the proposed BWO-driven
MPPT, together with the improved MPC-SVM control of the
OEWIM, forms a resilient and efficient energy-conversion
chain. The architecture successfully reconciles abrupt
solar-power  variability =~ with  stringent  motor-drive
requirements, maintaining voltage stability, suppressing torque
ripple, and ensuring precise speed regulation—all while
optimally managing battery charge and discharge events.
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Figure 14. PV terminal voltage for irradiance variation
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Figure 18. Speed of OEWIM with proposed algorithm at 1470RPM
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Figure 19. Torque of OEWIM with proposed algorithm at 1500RPM
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Figure 20. Stator winding current of OEWIM with proposed
algorithm at 1500RPM reference speed and irradiance variation

Case 3: Performance Analysis Under Constant Irradiance
and Variable Reference Speed

In the final scenario the photovoltaic array is held at
1000 W /m? while the OEWIM is driven through an aggressive
speed schedule that mirrors real-world load fluctuations. The
reference speed begins at 1500 RPM (0-1.5s), steps down
successively to 1200, 900 and 700 RPM, plunges to 500 RPM
at 4.5s, drifts to 400 RPM and holds until 7.5s, rises to 600 RPM
(7.5-9s) and finally jumps to 1200 RPM. As presented in figure
20, throughout these abrupt transitions the proposed MPC—
SVM drive, supplied by the Beluga-Whale-optimized MPPT,
maintains excellent tracking: steady-state speed ripple is limited
to 0.95 %, peak overshoot to 0.83 %, the fastest step exhibits a
140ms rise time, and all steps settle within 280ms.

Torque waveforms (figure 21) remain smooth thanks to the
five-level hysteresis band embedded in the direct-torque layer
of the controller, while stator currents recorded between 1s
and 3s (figure 22) stay balanced and nearly sinusoidal,
evidencing sound flux orientation even during rapid
deceleration.

Because irradiance is constant the PV array delivers a stable
electrical output (figure 23). Motor power demand, however,
swings with the speed commands (figure 24). Whenever
demand exceeds PV supply, the battery shifts seamlessly into
discharge mode; when demand falls, the surplus energy is
diverted to recharge the battery. This bidirectional power
exchange showcases the tight coordination among the BWO
MPPT, predictive motor control, and energy-storage
management, yielding optimal utilization of solar energy while
ensuring uninterrupted drive operation.

Overall, Case3 demonstrates that the proposed hybrid
architecture combines precise speed regulation, low torque
ripple, and efficient energy balancing, confirming its suitability
for renewable-powered drives subject to highly variable load
conditions.
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Figure 20. Speed of OEWIM with proposed algorithm with variable
reference speed and constant irradiance
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Figure 21. Torque of OEWIM with proposed algorithm with variable
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10 T T T T T T T T

. Bf ]
)
= /
g 0 }
3
O gl
-5
10 . . . . : 4 4 .
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Time (sec)
Figure 22. Stator winding current of OEWIM with proposed
algorithm between 3 to 4 seconds
4
g2
g
A lr
ol
o . ‘ ‘ ‘ ‘

0 1 2 3 4 5 6 7 8 9

E 10
Time (sec)

Figure 23. Power transferred to VSC’s from PV system with variable
reference speed and constant irradiance
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Figure 24. Battery terminal power with proposed algorithm with
variable reference speed and constant irradiance

A primary limitation of this study is its validation through
simulation software without experimental or Hardware-in-the-
Loop (HIL) testing. This approach was selected to enable a
controlled, comprehensive, and cost-effective proof-of-concept
for the complex multi-algorithmic system. While the simulation
environment provides valuable insights, it inherently idealizes
certain aspects, such as sensor noise, component tolerances, and
communication delays in a real-time controller. The
computational load of the combined BWO and MPC-SVM
algorithms, while designed for efficiency, has not been
benchmarked on a physical digital signal processor (DSP).

Despite these limitations, the practical feasibility of the proposed
framework is strongly supported by its structure, which is
composed of deterministic mathematical operations well-suited
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for implementation on modern DSPs or FPGAs. The results thus
provide a high-confidence foundation for the system's viability.
Therefore, the immediate and critical future work is the real-
time HIL implementation of this co-designed framework to
experimentally validate its performance and computational
requirements. Subsequent research will explore the
incorporation of online parameter estimation to enhance
robustness and extend the approach with machine learning for
proactive fault prediction and system health management.

:7. CONCLUSION

This paper presents an efficient control framework for
photovoltaic (PV)-fed Open-End Winding Induction Motor
(OEWIM) drives using a novel Beluga Whale Optimization
(BWO)-based Maximum Power Point Tracking (MPPT)
technique, integrated with an improved Model Predictive
Control — Space Vector Modulation (MPC-SVM) strategy. The
proposed system addresses key challenges in renewable-
powered motor drives, such as maximizing solar energy
extraction, ensuring dynamic speed tracking, and maintaining
power stability under varying operating conditions. Through
extensive simulations conducted in MATLAB/Simulink, the
performance of the BWO-based MPPT under diverse operating
scenarios was rigorously validated and compared with
conventional MPPT algorithms like Perturb and Observe
(P&0O), Particle Swarm Optimization (PSO), and Cuckoo
Optimization Algorithm (COA). Across all test cases, including
constant irradiance with fixed speed, variable irradiance with
constant speed, and constant irradiance with dynamic speed
profiles, the proposed method consistently outperformed
conventional approaches in terms of Enhanced MPPT accuracy,
Superior voltage and power stability, Improved dynamic motor
response, Reduced torque ripples and smooth stator current
waveforms, and Effective power balancing. Battery with a
bidirectional converter that seamlessly transitions between
charging and discharging, ensuring continuous operation even
during PV power fluctuations. The BWO algorithm proved
highly effective at identifying the global optimum operating
point of the PV system, resulting in more consistent energy
transfer to the OEWIM drive. Meanwhile, the predictive control
mechanism ensured fast and precise response to speed
variations, making the system highly adaptable for real-time
industrial applications. The integration of BWO-based MPPT
with MPC-SVM motor control and energy storage creates a
robust and intelligent drive system, capable of handling both
environmental and load-induced disturbances. The proposed
architecture is especially well-suited for applications such as
solar-powered electric drives, sustainable transportation
systems, and smart industrial automation where efficiency,
adaptability, and reliability are critical. Future work may extend
this approach to incorporate machine learning-based fault
prediction and real-time hardware-in-the-loop implementation
for experimental validation.
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