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░ ABSTRACT- Accurate prediction of battery State-of-Health (SoH) is crucial for ensuring safety, reliability, and 

longevity in energy storage systems. This study evaluates the utilization of Reservoir Spiking Neural Networks (RSNN) for battery 

SoH prediction, focusing on how network configuration affects prediction performance. Various RSNN architectures are analyzed 

by varying reservoir neuron number, connection density, inhibitory ratio, time step window, and readout network configuration. 

The findings show that a simple RSNN structure is sufficient to achieve high prediction accuracy, provided that the network is 

carefully configured to produce diversity in the spike count patterns within the reservoir layer. For the SoH dataset used, the 

original input features alone do not yield sufficient diversity, highlighting the importance of structural tuning in the reservoir. In 

the optimized network model, the prediction accuracy achieved a lowest error of 0.029 ± 0.011 RMSE, demonstrating strong 

accuracy and generalization across different battery datasets, with an energy consumption of approximately 150 nJ. Furthermore, 

this work provides a framework for implementing RSNN models on embedded platforms, including neuromorphic devices such 

as Intel Loihi and SoC-FPGA platforms with customized hardware circuits. The results demonstrate the potential of RSNNs as 

lightweight, efficient, and hardware-friendly models for practical battery SoH prediction. 

 

Keywords: Reservoir Spiking Neural Network, State-of-Health Prediction, Neuromorphic Computing, Battery Management 

System. 
 

 

░ 1. INTRODUCTION 
Battery technology is one of the most crucial components to the 

development of electric vehicles (EV), storage of renewable 

energy and uninterruptable power supply (UPS) systems [1-3]. 

To manage the battery, most systems rely on Battery 

Management Systems (BMS) which consist of multiple 

important modules; one of them is the State of Health (SoH) 

module [4,5]. The purpose of SoH is to measure the battery's 

health or lifespan relative to the health state of a new battery. 

Over time, the battery’s health will degrade. The degradation 

rate depends on many factors mainly because of usage 

conditions, storage temperature, and charge/discharge rate [1,4]. 

SoH can easily be measured by using equation 1 which indicates 

capacity and power fade as internal resistance increases. Here, 

Cnow denotes the maximum allowable discharge capacity, and C0 

denotes the battery's nominal capacity. 

 

𝑆𝑜𝐻 =
𝐶𝑛𝑜𝑤

𝐶0
× 100%   (1) 

Currently, various techniques are available to monitor and 

estimate the health state of a battery. These include: (i) direct 

measurement, (ii) internal state modeling, and (iii) data-driven 

methods [6]. The data-driven technique offers advantages over 

other approaches, particularly in terms of implementation 

practicality and real-time adaptability. The main reason is that 

the data-driven method relies on machine learning techniques to 

estimate the battery’s health state according to historical data [6]. 

The current trend in data-driven techniques mostly uses deep 

learning algorithms such as Convolutional Neural Network 

(CNN) [6-10] and Long Short-Term Memory (LSTM) models 

[11-14] to produce good estimation of battery SoH. Deep 

learning techniques rely on the high quantity and quality of the 

acquired data to produce accurate estimation. However, current 

battery degradation data are mostly recorded in controlled and 
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ideal environments [15]. In real applications, battery 

degradation is a complex process in which monitoring and 

estimating the battery’s state in real-time is challenging, as it 

usually relies on incomplete and low-quality data. Furthermore, 

the computational burden increases rapidly when the data 

increase, especially for complex deep-learning models [1,2] that 

hinder on-situ learning. Recently, a few research works [16,17] 

have utilized the concept of Spiking Neural Network (SNN) to 

resolve the limitations posed by deep learning techniques. SNN, 

also well-known as the 3rd generation of neural networks, is 

theoretically more power-efficient and promising than current 

deep learning techniques [18-20]. Therefore, this work explores 

the suitability of the Reservoir Spiking Neural Network (RSNN) 

model for predicting battery State of Health (SoH) by evaluating 

both prediction accuracy and computational cost. The main 

contributions of this work are summarized as follows:  

• A detailed evaluation of RSNN performance in battery SoH 

prediction is provided, considering different network 

configurations such as reservoir size, connection density, 

inhibitory ratio, spike encoding methods, and readout 

structures. 

• It is demonstrated that a simple RSNN structure, when 

properly configured to generate spike pattern diversity, can 

achieve high prediction accuracy with low computational 

cost. 

The rest of this article is organized as follows: Section 2 reviews 

related work on SoC estimation and spiking neural networks. 

Section 3 describes the experimental setup, while section 4 

presents the results and discussion. Finally, section 5 concludes 

the study and outlines future research directions. 

 

░ 2. RELATED WORK 
2.1. Current Techniques on Estimating Battery’s 

State of Health (SoH) 
Battery SoH can be estimated using various techniques. In direct 

measurement technique, the capacity and the internal resistance 

is measured within a test lab environment. The coulomb counting 

method, open-circuit voltage (OCV) method, and internal 

resistance-based estimating method are all common ways in this 

technique. These approaches are applicable to a variety of 

batteries and are simple to execute. However, the accuracy of the 

estimation is strongly dependent on the measuring procedure. 

Furthermore, this type of technique is only relevant for off-line 

SoH measurement in a test lab environment [4]. 
 

Meanwhile, internal modeling approaches are techniques that use 

prior knowledge to represent the internal battery's condition as an 

electrochemical model. The model parameters, which include the 

aging characteristics of the lithium battery, are found using the 

least squares approach or the observer method, and the SoH is 

estimated using the model parameters. However, selecting the 

correct model to achieve a trade-off between SoH estimation 

accuracy and computing cost is difficult, limiting its 

implementation in practice [1]. In the data-driven method, the 

idea is to extract available aspects of battery degradation from 

battery characterisation data and then use machine learning 

algorithms to build a link between these features and SOH. For 

instance, the cycle number, incremental capacity, differential 

voltage, and candidate features in the voltage response under the 

current pulse test are chosen as features to represent battery 

degradation. Then, machine learning methods such as Support 

Vector Machine (SVM), Gaussian Process Regression (GPR), 

Grey Relational Analysis, and artificial neural networks (ANN) 

[2,5] are used to learn the nonlinear mapping from characteristics 

to SoH. Compared with these three techniques, the data-driven 

approach has advantages in terms of prediction accuracy on real-

life situation because it is based on historical data. Additionally, 

this technique is easier to deploy in real application [2,3]. 
 

Recently, there has been significant progress on data driven 

methods for SoH estimation using Deep Learning techniques. 

Deep learning techniques for SoH estimation have gained 

significant interest as they produce higher prediction accuracy 

compared to other machine learning techniques [2]. For instance, 

the research work in [6] uses Convolutional Neural Network 

(CNN) for local features with transformer-based global variables 

to estimate battery state with higher accuracy. Although previous 

research has employed various data preprocessing methods to 

reduce model complexity, these approaches still suffer from high 

computational demands and are typically optimised for a single 

type of battery. Similarly, the research work in [10] also utilizes 

modified CNN with explicit preprocessing techniques to reduce 

noise on an offline dataset, resulting higher and more robust 

battery state estimation. However, the model also suffers from a 

high computational process and was only tested on a limited 

number of battery offline datasets. In another approach, Long 

Short-Term Memory (LSTM), also known as a recurrent neural 

network, has also been widely used in this research area. For 

example, the research work in [11] uses LSTM to predict battery 

state of health with high accuracy although there is a specific 

limitation where the model is designed with only a limited input 

parameter. This reflects the scalability problem if the same 

estimator design is to be used on multiple battery cells for a large 

scale storage system. There are also other techniques [7-9] that 

combine different neural network models (CNN and LSTM) to 

achieve higher and more robust estimation accuracy that work 

with variant battery dataset. However, these models still suffer 

from computational complexity and are not suitable to be 

implemented on low-powered edge computing platform. 
 

2.2. Spiking Neural Network as an Alternative 

Approach 
The Spiking Neural Network (SNN), known as the third 

generation of neural networks, is a promising alternative to 

address the high computational demands of deep neural networks. 

Unlike previous generations of ANN, information transfer in 

SNNs is based on discrete spikes, which significantly reduces 

power consumption. This is achieved because neurons within the 

network are only active when they receive a spike carrying 

information from other connected neurons. Hence, it removes the 

necessity to continuously update their internal state at every single 

simulation time-step. 
 

Theoretically, SNN has several advantages as compared to 

conventional artificial neural network. Firstly, when compared to 

traditional ANN, SNN has the potential to be more efficient and 

have lower latency. They can achieve cutting-edge accuracy while 

http://www.ijeer.forexjournal.co.in/
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reducing fire rates and increasing energy efficiency. Secondly, 

SNN is event-driven, which means it computes only when there 

is information to process. This results in extremely energy-

efficient processing, particularly when dealing with sparse data 

from the outside world. In addition, SNN can completely leverage 

accurate temporal information from event-based sensors, making 

it perfectly suited for processing spatio-temporal event-based 

information. This enables more efficient feature computing and 

increases power efficiency. On top of that, because of their low 

energy consumption, robustness, and ability to decode in real-

time [21], SNN is well-suited for real-time applications such as 

brain-machine interfaces, automatic driving, and robotics. These 

benefits place SNN as a promising approach for efficient and real-

time processing, especially in applications like in EV or 

renewable energy storage devices that requiring low power 

consumption and real-time decision-making based on continuous 

input streams. 
 

Practically, SNN is already widely used in different research areas 

for instance in object recognition, optical character recognition, 

robotic applications, and data forecasting [22-24]. In these 

applications, SNN has been proved to have a significant impact 

especially in terms of training speed, energy efficiency and 

requires less demand on computational resources. However, it 

comes with specific drawbacks mostly in terms of prediction 

accuracy in which usually slightly less than conventional machine 

learning counterparts. This limitation comes from the fact that the 

current technique usually requires conversion from original input 

data into spike trains, which is typically lossy and inefficient, 

contributing to this reduced accuracy. Additionally, the lack of 

training algorithms that make specific use of the capabilities of 

spiking neurons, as well as the challenges in designing and 

analyzing training algorithms for SNN further limits their 

performance [18]. In BMS research area, the utilization of SNN 

especially for battery state estimation is still immature. To date, 

only a single research group has applied SNN to predict battery 

SoH as reported in [16, 17]. These initial works have proved that 

SNN gives significant advantages not only enhancing the 

prediction accuracy but at the same time reducing energy 

consumption for SoH estimation in BMS system. 

 

░ 3. MATERIALS AND METHODS 
3.1. Datasets 
In this work, the dataset provided by National Aeronautics and 

Space Administration (NASA) [25] is used. NASA's dataset 

includes cycles aging data for pouch-type LCO/graphite 1.5 Ah 

cells. The information includes current, voltage, charge/discharge 

capacity and energy, internal resistance, and impedance 

measurements. Cycling at low C-rates was used to age the cells, 

followed by calendar aging at various storage temperatures. The 

dataset is available on Kaggle database that directly can be access 

from here 

https://www.kaggle.com/code/rajeevsharma993/battery-health-

nasa-dataset which comprises experimental data from four 

lithium-ion batteries (#5, #6, #7, and #18). 

  

3.2. RSNN Architecture 
The RSNN network model consists of 3 important network pool; 

the input layer, the reservoir network and the readout network. 

Figure 1 shows the structure of RSNN. 
 

 

 
Figure 1. Reservoir Spiking Neural Network (RSNN) Architecture. The network model consists of three main parts: the input layer, the reservoir 

network and the readout network. 
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3.2.1. Input Layer 

The function of input layer basically is to receive encoded data of 

different features of the battery dataset.  The dimensionality of the 

input layer was determined by the number of features, where each 

continuous input value was converted into a binary spike train 

occuring within simulation time steps, tstep. The encoded spike 

trains were then forwarded to the reservoir network via sparse 

synaptic connections. Each input neuron projected to all reservoir 

neurons, with each connection assigned a random non-negative 

synaptic weight. 
 

3.2.2. Reservoir Network 

The reservoir network forms the central dynamic core of the 

RSNN architecture and is composed of interconnected Leaky 

Integrate-and-Fire (LIF) neurons. This layer nonlinearly projects 

temporally encoded spike trains from the input layer into a high-

dimensional dynamic space. It enables the network to retain 

short-term memory and process temporal dependencies. Each 

LIF neuron accumulates postsynaptic potentials from incoming 

spikes, updating its membrane voltage over time. The reservoir 

neuron was modeled using a simple LIF formulation, as described 

in equation 2, where a neuron emitted a spike (𝑠𝑗(𝑡) = 1) when 

its membrane potential 𝑉𝑗(𝑡) exceeded the threshold value, after 

which it was immediately reset to 𝑉𝑟𝑒𝑠𝑒𝑡 . In the absence of input 

spikes, the membrane potential decayed exponentially according 

to the time constant, 𝜏. Connectivity in the reservoir layer 

followed a sparse, randomized topology to promote diverse 

internal dynamics. 
 

𝑉𝑗(𝑡 + Δ𝑡) = 𝑉𝑗(𝑡) +
Δ𝑡

𝜏
(−𝑉𝑗(𝑡) + 𝐼𝑗(𝑡))  (2) 

 

3.2.3. Readout Network  

The readout network constituted the final processing stage of the 

RSNN, tasked with decoding the high-dimensional 

spatiotemporal dynamics generated by the reservoir into a scalar 

output representing the battery’s SoH. It began by transforming 

the reservoir's spike tensor generated over the 100 ms simulation 

period into a compact feature vector. This was achieved by 

summing the spiking activity of each reservoir neuron across all 

time steps, yielding a single activation value per neuron. The 

resulting vector, with a dimension equal to the number of 

reservoir neurons, encoded the temporal firing profile in a static 

form suitable for regression. This spike count vector was then 

passed into a regression model, implemented as a multiple-layer 

feedforward neural network. The training process was restricted 

to the readout layer, while the reservoir weights and connectivity 

remained static, consistent with the reservoir computing 

paradigm.  
 

3.3. Data Preprocessing and Encoding 

The data preprocessing procedure followed a structured pipeline 

to prepare the NASA battery dataset for RSNN model training. 

Key battery parameters which consist of [capacity, 

voltage_measured, current_measured, temperature_measured, 

current_load, voltage_load, time] were extracted from the 

discharge cycles. To ensure uniform feature scaling and prevent 

dominance by any single feature, all variables were normalized 

using the MinMax scaling technique that standardizes the value 

range between [0, 1]. Unlike conventional neural network, SNN 

does not process continuous values. Instead, the input must first 

be encoded into spike stream For this work, Poisson encoding 

technique is used to imitate the firing behavior of biological 

neurons which converted normalized continuous input values into 

spike trains that randomly occur. Each input value is normalized 

to fall between [0,1] and multiplied by the predetermined 

max_rate. This determines how many spikes to expect during the 

simulation window. For example, an input of 0.7 yields a higher 

expected firing rate than an input of 0.2, leading to more frequent 

spiking activity. However, the spike timing in Poisson encoding is 

probabilistic and driven by the average inter-spike interval (ISI). 

This parameter controls the mean temporal spacing between 

spikes while allowing for natural variability which results in spike 

events that are irregularly distributed across time. 

  

3.4. Performance Evaluation 
To comprehensively evaluate the performance of the RSNN 

model for battery SoH prediction, this study considers two key 

aspects: prediction accuracy and computational cost. Accuracy is 

assessed using standard regression metrics, namely the Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE), which 

are defined in equation 3 and equation 4; respectively.  
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=0

 (3) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (4) 

 

Here, 𝑦𝑖  is the true SoH value, 𝑦̂𝑖 is the predicted SoH value, and 

𝑁 is the number of samples. These metrics quantify how closely 

the RSNN predictions match the actual values. Meanwhile, the 

computational cost is evaluated using equation 5, in which directly 

measures the total number of spikes generated during inference. 
 

𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝐸𝑣𝑒𝑛𝑡 =  ∑ ∑ 𝑆𝑛(𝑡)

𝑁

𝑛=1

𝑡𝑠𝑡𝑒𝑝

𝑡=1

 (5) 

 

Here, 𝑆𝑛 (𝑡) ∈ {0, 1} represents the spike event (1 if a spike 

occurs, 0 otherwise) of neuron 𝑛 at time step 𝑡, 𝑁 is the total 

number of neurons, and tstep is the total number of simulation 

time steps. This spike count serves as a proxy for energy 

consumption in neuromorphic hardware, since spiking operations 

typically consume energy only when a spike occurs. While 

training speed is also observed, it is not used as a primary measure 

of computational efficiency due to limitations in the simulation 

environment, which does not fully reflect the real-time 

performance of neuromorphic devices. Therefore, incorporating 

spike count offers a more meaningful and hardware-relevant 

indicator of computational cost in this context. 

 

░ 4. RESULTS AND DISCUSSION 
4.1. Effect of Reservoir Size on the Network 

Performance 
One of the critical design parameters in RSNN is the number of 

neurons in the reservoir pool, which functions as a temporal 

http://www.ijeer.forexjournal.co.in/
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memory to preserve and transform input patterns. In general, a 

larger reservoir is expected to capture more complex temporal 

and spatial dependencies from the input. To investigate this 

effect, the network model was configured with varying reservoir 

sizes, ranging from 50 to 500 neurons. The model was then 

trained and tested using approximately 20% of the dataset 

selected randomly. A comprehensive comparative evaluation of 

these configurations is summarized in table 1. 
 

░ Table 1. Performance evaluation of RSNN with varying 

reservoir neuron numbers 
 

Reservoir 

Neurons 

Training 

Time 

(sec) 

Training 

Loss 
RMSE MAE 

50 
319 0.0031 

0.106 ± 

0.019 0.090 ± 0.017 

100 
330 0.0038 

0.116 ± 

0.018 0.098 ± 0.016 

200 
493 0.0056 

0.115 ± 

0.018 0.099 ± 0.014 

300 
494 0.0064 

0.130 ± 

0.030 0.112 ± 0.024 

400 
501 0.0079 

0.119 ± 
0.009 0.104 ± 0.008 

500 
509 0.0090 

0.143 ± 
0.014 0.126 ± 0.011 

 

The results clearly indicate that increasing the reservoir size 

does not necessarily improve predictive accuracy. In fact, the 

50-neuron configuration achieved the best performance, with 

the lowest loss (0.0031), the smallest error values in terms of 

RMSE (0.106 ± 0.019) and MAE (0.09 ± 0.017). By contrast, 

the 500-neuron reservoir yielded the poorest outcomes, 

including the highest loss (0.009) and the largest error metrics. 

Training time further emphasized the trade-offs in reservoir 

sizing. The model with 50 neurons required 319 seconds to 

train, whereas increasing the reservoir size to 500 neurons 

required 60% more training time. Despite this, training on a 

conventional desktop computer with the BindsNET library 

revealed negligible variation in memory consumption, which 

remained stable approximately at 4.47 GB, where the model 

configuration itself required around 0.05 MB. Here, two 

primary factors likely explain the limited benefits of larger 

reservoirs. First, the readout stage was relatively simple, 

consisting of only a single hidden layer with 10 neurons, which 

restricted its capacity to exploit the richer reservoir dynamics. 

Second, the use of all-to-all connectivity within the reservoir led 

to asynchronous and continuous spiking whenever a single 

neuron was activated. This significantly reduces the diversity of 

spike patterns which are a critical feature for the readout layer 

to learn discriminative temporal representations. As a result, 

increasing the reservoir size not only failed to improve 

performance but, in some cases, led to performance 

degradation. This shows that utilizing a small reservoir size is 

sufficient to achieve good prediction accuracy, which is also 

suitable for deployment on edge devices with limited 

computational resources. 
 

4.2. Effect of Connection Density on the Network 

Performance 

Another critical criterion for edge device deployment of the 

network model is the network topology itself, specifically the 

connection density between neurons. In this subsection, the 

connection density between neurons in the reservoir pool is 

reduced to only 20% from the original all-to-all connection. The 

connection density between input-reservoir layers remains as 

all-to-all connection to ensure all input features are effectively 

transferred to the reservoir pool. Table 2 summarizes the 

network model performance and computational cost with 

different connection densities in the reservoir layer. As 

indicated, reducing the connections between neurons lowered 

the training loss and improved prediction accuracy. For instance, 

when the connection probability between reservoir neurons is set 

to 0.2, the average training loss reaches 0.0012, which is 

approximately three times lower than that observed in the all-to-

all connectivity configuration. The prediction accuracy also 

increased by 20%, with average RMSE of 0.093 ± 0.009 and 

MAE of 0.079 ± 0.008.  
 

These improvements were achieved while significantly reducing 

the number of synaptic events in the network model. Across 

multiple simulation runs using different seed numbers, the 

energy usage at 20% connection density was approximately 80 

nJ. This value is about 71% lower than that of full connectivity, 

assuming a typical energy cost of ~10 pJ per synaptic event [26–

28]. This finding is further supported by the spike count (spike 

rate) distribution across reservoir neurons. As shown in figure 2, 

the spike count pattern became more evenly distributed when the 

network was configured with lower connection density. At full 

connectivity (p=1.0), the spike distribution is lowest at H=0.2. 

Meanwhile, reducing the connection density with p=0.2 

effectively increases the spike count distribution at H=0.31. 

Here, H value is calculated using equation 5 where, N represents 

number of reservoir neurons, pi is the probability or the 

occurrence of specific spike count, and the log(N) represents the 

maximum possible spike rate. 
 

𝑆𝑝𝑖𝑘𝑒 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝐻 =  −
∑ 𝑝𝑖log (𝑝𝑖)𝑁

𝑖=1

log (𝑁)
 (5) 

 

This is also supported by mapping the relationship between 

prediction accuracy (RMSE) and the average spike count per 

neuron as shown in figure 3(a). The RMSE falls within the range 

[0.08–0.13] across multiple tests runs for various connection 

densities. However, lower connection density consistently 

achieved better prediction accuracy with a lower average spike 

rate. Focusing on memory footprints to run the network model, 

reducing the connection density did not significantly reduce the 

memory. Running the model on a conventional computer 

requires around 4 GB and 0.05 MB for network configuration. 

In BindsNET library, synaptic weights are maintained in dense 

tensor representations where absent connections are stored as 

zeros, resulting in nearly constant memory allocation regardless 

of connection density. 

 

http://www.ijeer.forexjournal.co.in/
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Figure 2. Spike distribution in the reservoir layer for different 

connection densities. The spike pattern becomes more distributed as 

the connection density decreases 
 

Consequently, changes in connection density primarily 

influence spike propagation and computational load, affecting 

runtime and energy consumption rather than memory usage. 

However, reducing the reservoir connection density 

significantly contributes to the memory space savings for the 

model implementation on edge devices. Assuming that the 

connection weights are stored as 16-bit fixed-point 

representation, with a connection probability of 0.2, it only 

requires 1 kB compared to full connectivity that requires 5 kB. 

This indicates that a relatively low connection density is 

sufficient for maintaining prediction accuracy while reducing 

computational complexity, which is highly advantageous for 

deployment on edge devices with limited resources. 
 

░ Table 2. Performance evaluation of RSNN with varying 

connection densities 
 

Connection 

Probability 

Training 

Time 

(sec) 

Training 

Loss 
RMSE MAE 

Synapse 

Number 

Synaptic 

Event 

0.2 
328 0.0012 

0.093 

± 
0.009 

0.079 

± 
0.008  

504 8058 

0.4 
329 0.0018 

0.098 

± 
0.014 

0.083 

± 
0.013 

1017 12771 

0.6 

323 0.0026 

0.101 

± 

0.020 

0.085 

± 

0.018 

1526 18073 

0.8 

327 0.0029 

0.107 

± 

0.015 

0.090 

± 

0.013 

2027 23407 

1.0 

332 0.0031 

0.106 
± 

0.019 

0.090 
± 

0.017 

2500 28580 

 

4.3. Effect of Window Time on the Network 

Performance 
In spiking neural networks, the input is encoded into spike 

streams that occur within a specific time window, tstep. 

Theoretically, using a larger value of tstep allows the input value 

to be mapped in more detail. This consequently creates more 

diversity in the spike rate pattern in the reservoir layer. 

However, increasing the time window also increases the overall 

system latency, which affects both the training time and the 

system response. To analyze the effect of the time window on 

network model performance, tstep is varied from the lowest at 

10 ms to the largest at 250 ms. The network topology remains 

the same, with the connection density of the reservoir layer set 

at p = 0.2. Figure 3(b) shows the relationship between prediction 

accuracy (RMSE) and the average spike count per neuron. From 

this relationship, it is clearly indicated that using a low value of 

tstep leads to inaccuracy in the system. For example, at tstep = 

10 ms, the spike count of each neuron is around 1-2, which is not 

sufficient to introduce variability in the spike count distribution 

in the reservoir layer. The detailed spike count distribution is 

depicted in figure 4, where the spike count entropy, H, for tstep 

= 10 ms is very low at 0.11. Meanwhile, by using a high value 

of tstep, for instance at 200 ms or 250 ms, the accuracy 

significantly improves, where the RMSE achieves a low value 

of approximately 0.072. 

 

 
(a) 

 
(b) 

Figure 3. Prediction accuracy (RMSE) versus spike count per neuron: 

(a) with varying connection densities, the RMSE does not change 

significantly; (b) increasing the time step window significantly 

reduces the RMSE, although it results in a high number of spikes per 

neuron 
 

The main reason is that the spike count distribution improves 

greatly as shown in figure 4. The entropy value increases at time 

steps of 200 ms and 250 ms, showing an increase of more than 

0.5. Nevertheless, using a high value of tstep is not ideal since it 
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increases the overall time latency. Therefore, the next analysis 

focuses on optimizing the network model using tstep varied 

between 30–100 ms, as the prediction accuracy remains within 

an acceptable range (RMSE lower than 0.1). This is achieved 

with less energy consumption (lower spike count per neuron), 

which is on average 3-7 times lower compared to when tstep is 

250 ms. This indicates that using a longer time window to 

encode the input is not necessary to achieve a sufficient level of 

prediction accuracy, especially when considering 

implementation on embedded systems. 

 

 
 

Figure 4. Spike distribution in the reservoir layer for different time 

step windows. The spike pattern becomes more evenly distributed as 

the time step window increases 

 

4.4. Effect of Inhibitory Connection on the 

Network Performance 
Another technique to increase variability in spike count patterns 

is to introduce inhibitory connections between reservoir 

neurons. In previous simulations, communication between 

neurons in the reservoir layer was established using only 

excitatory connections. This means that if a spike occurred on 

any neuron in the reservoir layer, it consequently led to 

simultaneous spikes on other neurons. In other words, this 

reduced the diversity of the spike count patterns. Theoretically, 

by adding some portion of inhibitory connections in the 

reservoir layer, the diversity of spike count patterns can be 

increased. To prove this concept, the connections in the 

reservoir layer for the network model with tstep = [30, 50, 100 

ms] were reconfigured with inhibitory connections at ratios of 

0.25 and 0.5, selected randomly.  
 

As shown in figure 5, for each tstep case, adding a portion of 

inhibitory connections in the reservoir layer generally increased 

the prediction accuracy. For instance, when the inhibitory ratio 

was 0.25 (shown by the solid line), the RMSE decreased from 

0.097 to 0.093 (for tstep = 30 ms) and from 0.092 to 0.089 (for 

tstep = 50 ms). Increasing the inhibitory ratio to 0.5 further 

reduced the RMSE, as well as the number of synaptic events, 

which lowered the energy consumption of the network model 

itself. For example, at tstep = 50 ms and a connection density of 

p = 0.2, using a 0.5 inhibitory ratio reduced the network model’s 

energy consumption by approximately 4% (7695 synaptic 

events, assuming 10 nJ/event). In addition, adding inhibitory 

connections increased spike distribution.  

░ Table 3. Performance evaluation of RSNN with varying 

ratios of inhibitory connections 

Time  
Step 

[ms] 

Inhibit

ory 

Ratio 

RMSE MAE 

Traini

ng 

Loss 

Synap

tic 

Event 

Spike 

Distribu

tion 

30 0.25 
0.093 ± 

0.005 

0.079 ± 

0.004 
0.0021 4563 0.28 

30 0.5 
0.092 ± 
0.003 

0.078 ± 
0.003 

0.0018 4463 0.32 

50 0.25 
0.089 ± 
0.004 

0.076 ± 
0.004 

0.0013 7871 0.39 

50 0.5 
0.087 ± 

0.005 

0.075 ± 

0.005 
0.0011 7695 0.41 

100 0.25 
0.085 ± 

0.003 

0.075 ± 

0.003 
0.0007 16164 0.49 

100 0.5 
0.081 ± 

0.004  

0.072 ± 

0.004 
0.0006 15800 0.51 

 

For example, at tstep = 100 ms with an inhibitory connection 

ratio of 0.5, the model achieved a spike distribution exceeding 

0.51, which is nearly equivalent to that obtained with a higher 

tstep configuration. The performance evaluation is summarized 

in table 3. 

 

 
Figure 5. Prediction accuracy (RMSE) versus spike count per neuron. 

The inclusion of inhibitory connections significantly reduces the 

RMSE. The solid line represents an inhibitory ratio of 0.25, while the 

dashed line represents a ratio of 0.5 
 

4.5. Optimize with Readout Layer 

Commonly, the RSNN model is designed to work efficiently on 

low-powered devices, for instance, on embedded SoC-FPGAs or 

neuromorphic hardware. In this work, the sigmoid transfer 

function was replaced with the ReLU function, which is more 

hardware friendly. Furthermore, the performance of the network 

model was evaluated with different configurations of the readout 

network. In addition, the default weight initialization is replaced 

         

         

         

         

         

         

         

         

          

                     
                    

http://www.ijeer.forexjournal.co.in/


 

                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 792-801 | e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                            Evaluating Reservoir Spiking Neural Network Configurations 799 

 

with Kaiming uniform initialization to ensure stable variance 

and efficient gradient flow across layers, specifically tailored 

for the ReLU activation function. 

 

 
Figure 6. Comparison of prediction accuracy across different readout 

network configurations. A simple readout network with fewer 

neurons achieves a low RMSE, comparable to the benchmark value of 

0.72, when the network is configured with a higher time step window 

(tstep) 
 

As shown in figure 6, reconfiguration of the readout network 

yields different outcomes. At a lower 𝑡step of 30 ms, the 

performance with a single hidden layer and ReLU activation 

function provides slightly better accuracy. However, this 

improvement does not occur when tstep is set at 50 ms, where 

the RMSE worsens compared to the previous setup. Using a 

higher tstep value of 100 ms, accuracy performance improves 

significantly, outperforming the network at higher tstep values 

(e.g., 250 ms). Nonetheless, utilizing deeper networks with 

multiple hidden layers did not improve the accuracy 

performance for any tstep value. The overall SoH prediction 

result (solid line) compared with the calculated value (dashed 

line) on different battery datasets (B6, B7, and B18) is depicted 

in figure 7. In all cases, the RSNN network model is able to 

predict the behaviour and the battery’s SoH drop pattern 

efficiently. However, due to variations in battery cells such as 

internal resistance, capacity, and aging characteristics, some 

prediction errors are common and expected. 
 

 
Figure 7. SoH prediction results for different battery datasets using 

the optimized RSNN. The dashed line represents the calculated 

values, while the solid line represents the predicted values 
 

Next, a Feedforward Neural Network (FNN) was implemented 

as a baseline model to benchmark the RSNN’s performance. 

The network consists of three fully connected hidden layers 

with eight ReLU-activated neurons each, followed by a 25% 

dropout layer to reduce overfitting. The model was trained using 

the Adam optimizer with default parameters. The number of 

training epochs was matched to that of the RSNN for fair 

comparison. Table 4 summarizes the results for each battery 

datasets, evaluated multiple times with different random seeds 

to account for stochastic variations during training. The RSNN 

achieved lower prediction errors than the FNN for Battery 6 but 

showed weaker performance for Batteries 7 and 18. This 

outcome suggests that Battery 6 exhibits stronger temporal 

dependencies and nonlinear degradation behavior, which benefit 

from the RSNN’s recurrent dynamics. In contrast, the smoother 

and more stable degradation patterns of Batteries 7 and 18 are 

adequately captured by the FNN, where the additional temporal 

states in the RSNN may introduce unnecessary complexity and 

slight performance degradation. 

 

░ Table 4. Prediction accuracy comparison of the FNN and 

RSNN models for battery SoH estimation 
 

 FNN RSNN 

Battery  B6 B7 B18 B6 B7 B18 

RMSE 
0.086 ± 

0.004 

0.029 ± 

0.002 

0.019 ± 

0.004 

0.069 ± 

0.011 

0.034 ± 

0.010 

0.029 ± 

0.011 

MAE 
0.074 ± 
0.002 

0.027 ± 
0.003 

0.016 ± 
0.002 

0.062 ± 
0.010 

0.032 ± 
0.010 

0.028 ± 
0.011 

 

In addition to performance differences, the results also highlight 

the effect of network complexity. The FNN offers a simpler 

structure and lower computational demand, which makes it 

suitable for relatively stable datasets with near-linear 

degradation patterns. However, this simplicity limits its ability 

to model temporal dependencies and dynamic variations that 

often occur in real battery operating conditions. In contrast, the 

RSNN incorporates recurrent reservoir dynamics that enable 

temporal processing and adaptive learning from sequential data. 

This characteristic makes the RSNN inherently more suitable for 

capturing the nonlinear and time-dependent behaviour of battery 

degradation, especially under fluctuating load profiles or varying 

environmental conditions. It is worth noting that the NASA 

battery dataset, although derived from real experimental 

measurements, was collected under controlled laboratory 

conditions with consistent charge–discharge cycles and minimal 

external noise. As a result, it does not fully represent the 

variability and uncertainty typically observed in real-world 

battery applications. 
 

Furthermore, the RSNN offers a biologically inspired 

framework aligned with emerging neuromorphic computing 

trends. Its event-driven spiking mechanism enables 

asynchronous and energy-efficient computation, unlike 

conventional networks that rely on continuous activation. 

Although this study simulates the RSNN using the BindsNET 

library on conventional hardware, its full potential lies in 

neuromorphic deployment, where sparse spiking activity can 

substantially reduce power consumption and improve real-time 

processing. Therefore, while the FNN serves as a useful 
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baseline, the RSNN presents a more scalable and energy-

efficient solution for future intelligent battery management 

systems. 
 

Despite these promising results, the current study is limited to 

simulation-based evaluation. The performance under real 

hardware constraints, such as SoC-FPGA or neuromorphic 

devices, remains unexplored. Factors including memory 

limitations, fixed-point arithmetic, and spike propagation delays 

on physical platforms may influence the RSNN’s accuracy and 

energy efficiency. Therefore, future work should focus on 

implementing and testing the RSNN on real embedded 

hardware to validate the simulation outcomes and optimize the 

network for practical deployment in battery management 

systems. 

 

░ 5. CONCLUSION  
In this work, the utilization of RSNN in battery SoH prediction 

is evaluated in detail. The network model is tested under various 

configurations to provide a clear understanding of the 

fundamental structural factors that affect prediction 

performance. Specifically, this study analyzes the performance 

impact of varying the number of reservoir neurons, connection 

density, time step window length, ratio of inhibitory 

connections, and readout network configuration. The results 

show that, for battery SoH prediction, a simple RSNN structure 

is sufficient to achieve high prediction accuracy. The essential 

aspect is configuring the network to produce diversity in the 

spike count pattern within the reservoir layer. For the SoH 

dataset used in this study, the original input features alone are 

not sufficient to generate high spike pattern diversity. Therefore, 

careful model configuration is required, guided by observations 

of spike count diversity in the reservoir layer. Additionally, the 

findings from this study provide a framework for constructing 

RSNN models on embedded platforms, whether implemented 

on neuromorphic devices such as Intel Loihi or on SoC-FPGA 

platforms with customized hardware circuits. However, further 

evaluation is required to analyze the network performance under 

hardware-specific constraints, for instance when reducing the 

bit length for storing network weight values. 
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