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= ABSTRACT- Accurate prediction of battery State-of-Health (SoH) is crucial for ensuring safety, reliability, and
longevity in energy storage systems. This study evaluates the utilization of Reservoir Spiking Neural Networks (RSNN) for battery
SoH prediction, focusing on how network configuration affects prediction performance. Various RSNN architectures are analyzed
by varying reservoir neuron number, connection density, inhibitory ratio, time step window, and readout network configuration.
The findings show that a simple RSNN structure is sufficient to achieve high prediction accuracy, provided that the network is
carefully configured to produce diversity in the spike count patterns within the reservoir layer. For the SoH dataset used, the
original input features alone do not yield sufficient diversity, highlighting the importance of structural tuning in the reservoir. In
the optimized network model, the prediction accuracy achieved a lowest error of 0.029 £ 0.011 RMSE, demonstrating strong
accuracy and generalization across different battery datasets, with an energy consumption of approximately 150 nJ. Furthermore,
this work provides a framework for implementing RSNN models on embedded platforms, including neuromorphic devices such
as Intel Loihi and SoC-FPGA platforms with customized hardware circuits. The results demonstrate the potential of RSNNs as
lightweight, efficient, and hardware-friendly models for practical battery SoH prediction.
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ARTICLE INFORMATION rate 'd.epends on many factors mainly bpcause of usage
conditions, storage temperature, and charge/discharge rate [1,4].
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SoH can easily be measured by using equation 1 which indicates
capacity and power fade as internal resistance increases. Here,
Cow denotes the maximum allowable discharge capacity, and Cp
denotes the battery's nominal capacity.
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Cnow
SoH =TX 100% (1)
Currently, various techniques are available to monitor and
estimate the health state of a battery. These include: (i) direct
measurement, (7i) internal state modeling, and (iii) data-driven
methods [6]. The data-driven technique offers advantages over
other approaches, particularly in terms of implementation
practicality and real-time adaptability. The main reason is that
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1. INTRODUCTION

Battery technology is one of the most crucial components to the
development of electric vehicles (EV), storage of renewable
energy and uninterruptable power supply (UPS) systems [1-3].
To manage the battery, most systems rely on Battery
Management Systems (BMS) which consist of multiple
important modules; one of them is the State of Health (SoH)
module [4,5]. The purpose of SoH is to measure the battery's
health or lifespan relative to the health state of a new battery.
Over time, the battery’s health will degrade. The degradation

the data-driven method relies on machine learning techniques to
estimate the battery’s health state according to historical data [6].
The current trend in data-driven techniques mostly uses deep
learning algorithms such as Convolutional Neural Network
(CNN) [6-10] and Long Short-Term Memory (LSTM) models
[11-14] to produce good estimation of battery SoH. Deep
learning techniques rely on the high quantity and quality of the
acquired data to produce accurate estimation. However, current
battery degradation data are mostly recorded in controlled and
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ideal environments [15]. In real applications, battery
degradation is a complex process in which monitoring and
estimating the battery’s state in real-time is challenging, as it
usually relies on incomplete and low-quality data. Furthermore,
the computational burden increases rapidly when the data
increase, especially for complex deep-learning models [1,2] that
hinder on-situ learning. Recently, a few research works [16,17]
have utilized the concept of Spiking Neural Network (SNN) to
resolve the limitations posed by deep learning techniques. SNN,
also well-known as the 3rd generation of neural networks, is
theoretically more power-efficient and promising than current
deep learning techniques [18-20]. Therefore, this work explores
the suitability of the Reservoir Spiking Neural Network (RSNN)
model for predicting battery State of Health (SoH) by evaluating
both prediction accuracy and computational cost. The main
contributions of this work are summarized as follows:

e A detailed evaluation of RSNN performance in battery SoH
prediction is provided, considering different network
configurations such as reservoir size, connection density,
inhibitory ratio, spike encoding methods, and readout
structures.

e It is demonstrated that a simple RSNN structure, when
properly configured to generate spike pattern diversity, can
achieve high prediction accuracy with low computational
cost.

The rest of this article is organized as follows: Section 2 reviews

related work on SoC estimation and spiking neural networks.

Section 3 describes the experimental setup, while section 4

presents the results and discussion. Finally, section 5 concludes

the study and outlines future research directions.

2. RELATED WORK
2.1. Current Techniques on Estimating Battery’s
State of Health (SoH)

Battery SoH can be estimated using various techniques. In direct
measurement technique, the capacity and the internal resistance
is measured within a test lab environment. The coulomb counting
method, open-circuit voltage (OCV) method, and internal
resistance-based estimating method are all common ways in this
technique. These approaches are applicable to a variety of
batteries and are simple to execute. However, the accuracy of the
estimation is strongly dependent on the measuring procedure.
Furthermore, this type of technique is only relevant for off-line
SoH measurement in a test lab environment [4].

Meanwhile, internal modeling approaches are techniques that use
prior knowledge to represent the internal battery's condition as an
electrochemical model. The model parameters, which include the
aging characteristics of the lithium battery, are found using the
least squares approach or the observer method, and the SoH is
estimated using the model parameters. However, selecting the
correct model to achieve a trade-off between SoH estimation
accuracy and computing cost is difficult, limiting its
implementation in practice [1]. In the data-driven method, the
idea is to extract available aspects of battery degradation from
battery characterisation data and then use machine learning
algorithms to build a link between these features and SOH. For
instance, the cycle number, incremental capacity, differential
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voltage, and candidate features in the voltage response under the
current pulse test are chosen as features to represent battery
degradation. Then, machine learning methods such as Support
Vector Machine (SVM), Gaussian Process Regression (GPR),
Grey Relational Analysis, and artificial neural networks (ANN)
[2,5] are used to learn the nonlinear mapping from characteristics
to SoH. Compared with these three techniques, the data-driven
approach has advantages in terms of prediction accuracy on real-
life situation because it is based on historical data. Additionally,
this technique is easier to deploy in real application [2,3].

Recently, there has been significant progress on data driven
methods for SoH estimation using Deep Learning techniques.
Deep learning techniques for SoH estimation have gained
significant interest as they produce higher prediction accuracy
compared to other machine learning techniques [2]. For instance,
the research work in [6] uses Convolutional Neural Network
(CNN) for local features with transformer-based global variables
to estimate battery state with higher accuracy. Although previous
research has employed various data preprocessing methods to
reduce model complexity, these approaches still suffer from high
computational demands and are typically optimised for a single
type of battery. Similarly, the research work in [10] also utilizes
modified CNN with explicit preprocessing techniques to reduce
noise on an offline dataset, resulting higher and more robust
battery state estimation. However, the model also suffers from a
high computational process and was only tested on a limited
number of battery offline datasets. In another approach, Long
Short-Term Memory (LSTM), also known as a recurrent neural
network, has also been widely used in this research area. For
example, the research work in [11] uses LSTM to predict battery
state of health with high accuracy although there is a specific
limitation where the model is designed with only a limited input
parameter. This reflects the scalability problem if the same
estimator design is to be used on multiple battery cells for a large
scale storage system. There are also other techniques [7-9] that
combine different neural network models (CNN and LSTM) to
achieve higher and more robust estimation accuracy that work
with variant battery dataset. However, these models still suffer
from computational complexity and are not suitable to be
implemented on low-powered edge computing platform.

2.2. Spiking Neural Network as an Alternative

Approach

The Spiking Neural Network (SNN), known as the third
generation of neural networks, is a promising alternative to
address the high computational demands of deep neural networks.
Unlike previous generations of ANN, information transfer in
SNNs is based on discrete spikes, which significantly reduces
power consumption. This is achieved because neurons within the
network are only active when they receive a spike carrying
information from other connected neurons. Hence, it removes the
necessity to continuously update their internal state at every single
simulation time-step.

Theoretically, SNN has several advantages as compared to
conventional artificial neural network. Firstly, when compared to
traditional ANN, SNN has the potential to be more efficient and
have lower latency. They can achieve cutting-edge accuracy while
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reducing fire rates and increasing energy efficiency. Secondly,
SNN is event-driven, which means it computes only when there
is information to process. This results in extremely energy-
efficient processing, particularly when dealing with sparse data
from the outside world. In addition, SNN can completely leverage
accurate temporal information from event-based sensors, making
it perfectly suited for processing spatio-temporal event-based
information. This enables more efficient feature computing and
increases power efficiency. On top of that, because of their low
energy consumption, robustness, and ability to decode in real-
time [21], SNN is well-suited for real-time applications such as
brain-machine interfaces, automatic driving, and robotics. These
benefits place SNN as a promising approach for efficient and real-
time processing, especially in applications like in EV or
renewable energy storage devices that requiring low power
consumption and real-time decision-making based on continuous
input streams.

Practically, SNN is already widely used in different research areas
for instance in object recognition, optical character recognition,
robotic applications, and data forecasting [22-24]. In these
applications, SNN has been proved to have a significant impact
especially in terms of training speed, energy efficiency and
requires less demand on computational resources. However, it
comes with specific drawbacks mostly in terms of prediction
accuracy in which usually slightly less than conventional machine
learning counterparts. This limitation comes from the fact that the
current technique usually requires conversion from original input
data into spike trains, which is typically lossy and inefficient,
contributing to this reduced accuracy. Additionally, the lack of
training algorithms that make specific use of the capabilities of
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spiking neurons, as well as the challenges in designing and
analyzing training algorithms for SNN further limits their
performance [18]. In BMS research area, the utilization of SNN
especially for battery state estimation is still immature. To date,
only a single research group has applied SNN to predict battery
SoH as reported in [16, 17]. These initial works have proved that
SNN gives significant advantages not only enhancing the
prediction accuracy but at the same time reducing energy
consumption for SoH estimation in BMS system.

#: 3. MATERIALS AND METHODS

3.1. Datasets

In this work, the dataset provided by National Aeronautics and
Space Administration (NASA) [25] is used. NASA's dataset
includes cycles aging data for pouch-type LCO/graphite 1.5 Ah
cells. The information includes current, voltage, charge/discharge
capacity and energy, internal resistance, and impedance
measurements. Cycling at low C-rates was used to age the cells,
followed by calendar aging at various storage temperatures. The
dataset is available on Kaggle database that directly can be access
from here
https://www.kaggle.com/code/rajeevsharma993/battery-health-
nasa-dataset which comprises experimental data from four
lithium-ion batteries (#5, #6, #7, and #18).

3.2. RSNN Architecture

The RSNN network model consists of 3 important network pool;
the input layer, the reservoir network and the readout network.
Figure I shows the structure of RSNN.

Readout Network
(The network is optimised using a
supervised training method based
on the spike count pattern as input)

No. of neuron : 50~500

Input-Reservoir using
all-to-all connectivity

No. of neuron at 1%t layer
equal to no. of neuron
within reservoir

—Excitatory Connection
~~~*Inhibitory Connection

Figure 1. Reservoir Spiking Neural Network (RSNN) Architecture. The network model consists of three main parts: the input layer, the reservoir
network and the readout network.
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3.2.1. Input Layer

The function of input layer basically is to receive encoded data of
different features of the battery dataset. The dimensionality of the
input layer was determined by the number of features, where each
continuous input value was converted into a binary spike train
occuring within simulation time steps, tstep. The encoded spike
trains were then forwarded to the reservoir network via sparse
synaptic connections. Each input neuron projected to all reservoir
neurons, with each connection assigned a random non-negative
synaptic weight.

3.2.2. Reservoir Network

The reservoir network forms the central dynamic core of the
RSNN architecture and is composed of interconnected Leaky
Integrate-and-Fire (LIF) neurons. This layer nonlinearly projects
temporally encoded spike trains from the input layer into a high-
dimensional dynamic space. It enables the network to retain
short-term memory and process temporal dependencies. Each
LIF neuron accumulates postsynaptic potentials from incoming
spikes, updating its membrane voltage over time. The reservoir
neuron was modeled using a simple LIF formulation, as described
in equation 2, where a neuron emitted a spike (s;(t) = 1) when
its membrane potential V;(t) exceeded the threshold value, after
which it was immediately reset to V,..¢.¢. In the absence of input
spikes, the membrane potential decayed exponentially according
to the time constant, 7. Connectivity in the reservoir layer
followed a sparse, randomized topology to promote diverse
internal dynamics.

Vit + At) = Vi(£) + = (=V;(0) + (D)) )

3.2.3. Readout Network

The readout network constituted the final processing stage of the
RSNN, tasked with decoding the high-dimensional
spatiotemporal dynamics generated by the reservoir into a scalar
output representing the battery’s SoH. It began by transforming
the reservoir's spike tensor generated over the 100 ms simulation
period into a compact feature vector. This was achieved by
summing the spiking activity of each reservoir neuron across all
time steps, yielding a single activation value per neuron. The
resulting vector, with a dimension equal to the number of
reservoir neurons, encoded the temporal firing profile in a static
form suitable for regression. This spike count vector was then
passed into a regression model, implemented as a multiple-layer
feedforward neural network. The training process was restricted
to the readout layer, while the reservoir weights and connectivity
remained static, consistent with the reservoir computing
paradigm.

3.3. Data Preprocessing and Encoding

The data preprocessing procedure followed a structured pipeline
to prepare the NASA battery dataset for RSNN model training.
Key battery parameters which consist of [capacity,
voltage measured, current_measured, temperature measured,
current_load, voltage load, time] were extracted from the
discharge cycles. To ensure uniform feature scaling and prevent
dominance by any single feature, all variables were normalized
using the MinMax scaling technique that standardizes the value
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range between [0, 1]. Unlike conventional neural network, SNN
does not process continuous values. Instead, the input must first
be encoded into spike stream For this work, Poisson encoding
technique is used to imitate the firing behavior of biological
neurons which converted normalized continuous input values into
spike trains that randomly occur. Each input value is normalized
to fall between [0,1] and multiplied by the predetermined
max_rate. This determines how many spikes to expect during the
simulation window. For example, an input of 0.7 yields a higher
expected firing rate than an input of 0.2, leading to more frequent
spiking activity. However, the spike timing in Poisson encoding is
probabilistic and driven by the average inter-spike interval (ISI).
This parameter controls the mean temporal spacing between
spikes while allowing for natural variability which results in spike
events that are irregularly distributed across time.

3.4. Performance Evaluation

To comprehensively evaluate the performance of the RSNN
model for battery SoH prediction, this study considers two key
aspects: prediction accuracy and computational cost. Accuracy is
assessed using standard regression metrics, namely the Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE), which
are defined in equation 3 and equation 4; respectively.

RMSE = (3)

n
1
MAE == |y = 9i “
i=1

Here, y; is the true SoH value, y; is the predicted SoH value, and
N is the number of samples. These metrics quantify how closely
the RSNN predictions match the actual values. Meanwhile, the
computational cost is evaluated using equation 5, in which directly
measures the total number of spikes generated during inference.

Synaptic Event = Z Z Sa(®) &)

t=1 n=1

Here, S, (t) € {0,1} represents the spike event (1 if a spike
occurs, 0 otherwise) of neuron n at time step t, N is the total
number of neurons, and fstep is the total number of simulation
time steps. This spike count serves as a proxy for energy
consumption in neuromorphic hardware, since spiking operations
typically consume energy only when a spike occurs. While
training speed is also observed, it is not used as a primary measure
of computational efficiency due to limitations in the simulation
environment, which does not fully reflect the real-time
performance of neuromorphic devices. Therefore, incorporating
spike count offers a more meaningful and hardware-relevant
indicator of computational cost in this context.

7 4. RESULTS AND DISCUSSION
4.1. Effect of Reservoir Size on the Network

Performance
One of the critical design parameters in RSNN is the number of
neurons in the reservoir pool, which functions as a temporal
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memory to preserve and transform input patterns. In general, a
larger reservoir is expected to capture more complex temporal
and spatial dependencies from the input. To investigate this
effect, the network model was configured with varying reservoir
sizes, ranging from 50 to 500 neurons. The model was then
trained and tested using approximately 20% of the dataset
selected randomly. A comprehensive comparative evaluation of
these configurations is summarized in fable 1.

Table 1. Performance evaluation of RSNN with varying
reservoir neuron numbers

Reservoir Training Trainin
Time €| RMSE MAE
Neurons Loss
(sec)
50 0.106 =
319 0.0031 0.019 0.090+0.017
100 0.116 =
330 0.0038 0.018 0.098 +0.016
200 0.115+
493 0.0056 0.018 0.099+0.014
300 0.130 +
494 0.0064 0.030 0.112+0.024
400 0.119+
501 0.0079 0.009 0.104 = 0.008
500 0.143 +
509 0.0090 0.014 0.126 +0.011

The results clearly indicate that increasing the reservoir size
does not necessarily improve predictive accuracy. In fact, the
50-neuron configuration achieved the best performance, with
the lowest loss (0.0031), the smallest error values in terms of
RMSE (0.106 + 0.019) and MAE (0.09 + 0.017). By contrast,
the 500-neuron reservoir yielded the poorest outcomes,
including the highest loss (0.009) and the largest error metrics.
Training time further emphasized the trade-offs in reservoir
sizing. The model with 50 neurons required 319 seconds to
train, whereas increasing the reservoir size to 500 neurons
required 60% more training time. Despite this, training on a
conventional desktop computer with the BindsNET library
revealed negligible variation in memory consumption, which
remained stable approximately at 4.47 GB, where the model
configuration itself required around 0.05 MB. Here, two
primary factors likely explain the limited benefits of larger
reservoirs. First, the readout stage was relatively simple,
consisting of only a single hidden layer with 10 neurons, which
restricted its capacity to exploit the richer reservoir dynamics.
Second, the use of all-to-all connectivity within the reservoir led
to asynchronous and continuous spiking whenever a single
neuron was activated. This significantly reduces the diversity of
spike patterns which are a critical feature for the readout layer
to learn discriminative temporal representations. As a result,
increasing the reservoir size not only failed to improve
performance but, in some cases, led to performance
degradation. This shows that utilizing a small reservoir size is
sufficient to achieve good prediction accuracy, which is also
suitable for deployment on edge devices with limited
computational resources.
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4.2. Effect of Connection Density on the Network

Performance

Another critical criterion for edge device deployment of the
network model is the network topology itself, specifically the
connection density between neurons. In this subsection, the
connection density between neurons in the reservoir pool is
reduced to only 20% from the original all-to-all connection. The
connection density between input-reservoir layers remains as
all-to-all connection to ensure all input features are effectively
transferred to the reservoir pool. Table 2 summarizes the
network model performance and computational cost with
different connection densities in the reservoir layer. As
indicated, reducing the connections between neurons lowered
the training loss and improved prediction accuracy. For instance,
when the connection probability between reservoir neurons is set
to 0.2, the average training loss reaches 0.0012, which is
approximately three times lower than that observed in the all-to-
all connectivity configuration. The prediction accuracy also
increased by 20%, with average RMSE of 0.093 + 0.009 and
MAE of 0.079 + 0.008.

These improvements were achieved while significantly reducing
the number of synaptic events in the network model. Across
multiple simulation runs using different seed numbers, the
energy usage at 20% connection density was approximately 80
nJ. This value is about 71% lower than that of full connectivity,
assuming a typical energy cost of ~10 pJ per synaptic event [26—
28]. This finding is further supported by the spike count (spike
rate) distribution across reservoir neurons. As shown in figure 2,
the spike count pattern became more evenly distributed when the
network was configured with lower connection density. At full
connectivity (p=1.0), the spike distribution is lowest at H=0.2.
Meanwhile, reducing the connection density with p=0.2
effectively increases the spike count distribution at H=0.31.
Here, H value is calculated using equation 5 where, N represents
number of reservoir neurons, p; is the probability or the
occurrence of specific spike count, and the log(N) represents the
maximum possible spike rate.

_ XiLipilog ()
log (N)

This is also supported by mapping the relationship between
prediction accuracy (RMSE) and the average spike count per
neuron as shown in figure 3(a). The RMSE falls within the range
[0.08-0.13] across multiple tests runs for various connection
densities. However, lower connection density consistently
achieved better prediction accuracy with a lower average spike
rate. Focusing on memory footprints to run the network model,
reducing the connection density did not significantly reduce the
memory. Running the model on a conventional computer
requires around 4 GB and 0.05 MB for network configuration.
In BindsNET library, synaptic weights are maintained in dense
tensor representations where absent connections are stored as
zeros, resulting in nearly constant memory allocation regardless
of connection density.

Spike Distribution, H = (5)
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Connection Density
Spike Count

31 H=015]
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Neuron Index

Figure 2. Spike distribution in the reservoir layer for different
connection densities. The spike pattern becomes more distributed as
the connection density decreases

Consequently, changes in connection density primarily
influence spike propagation and computational load, affecting
runtime and energy consumption rather than memory usage.
However, reducing the reservoir connection density
significantly contributes to the memory space savings for the
model implementation on edge devices. Assuming that the
connection weights are stored as 16-bit fixed-point
representation, with a connection probability of 0.2, it only
requires 1 kB compared to full connectivity that requires 5 kB.
This indicates that a relatively low connection density is
sufficient for maintaining prediction accuracy while reducing
computational complexity, which is highly advantageous for
deployment on edge devices with limited resources.

Table 2. Performance evaluation of RSNN with varying
connection densities

. Trainin .. Synapse | Synaptic
Connec.tl'o n| Timeg Training RMSE | MAE N)lllmger )l:Zvelr)lt
Probability, Loss

(sec)
0.093 0.079 504 8058
0.2 + +
328 0.0012 | 0.009 0.008
0.098 0.083 1017 12771
0.4 + +
329 0.0018 | 0.014 0.013
0.101 0.085 1526 18073
0.6 + +
323 0.0026 | 0.020 0.018
0.107 0.090| 2027 23407
0.8 + +
327 0.0029 | 0.015 0.013
0.106 0.090| 2500 28580
1.0 + +
332 0.0031| 0.019 0.017

4.3. Effect of Window Time on the Network

Performance

In spiking neural networks, the input is encoded into spike
streams that occur within a specific time window, fstep.
Theoretically, using a larger value of tstep allows the input value
to be mapped in more detail. This consequently creates more
diversity in the spike rate pattern in the reservoir layer.
However, increasing the time window also increases the overall
system latency, which affects both the training time and the
system response. To analyze the effect of the time window on
network model performance, #step is varied from the lowest at
10 ms to the largest at 250 ms. The network topology remains
the same, with the connection density of the reservoir layer set
atp=0.2. Figure 3(b) shows the relationship between prediction
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accuracy (RMSE) and the average spike count per neuron. From
this relationship, it is clearly indicated that using a low value of
tstep leads to inaccuracy in the system. For example, at tstep =
10 ms, the spike count of each neuron is around 1-2, which is not
sufficient to introduce variability in the spike count distribution
in the reservoir layer. The detailed spike count distribution is
depicted in figure 4, where the spike count entropy, H, for tstep
=10 ms is very low at 0.11. Meanwhile, by using a high value
of tstep, for instance at 200 ms or 250 ms, the accuracy
significantly improves, where the RMSE achieves a low value
of approximately 0.072.

0.14

0.124

0.10 4

RMSE
—e—

p=0.8L
L p=1.0
0.08 =0.2 =0.4 -
P P p=0.6
0.06 1
7 8 9 10 11
Spike Counts/Neuron
(a)
0.14
tstep =10
0.121
tstep =50
- 0.10
wu
E =100
tstep = 30 tstep = tstep =200

T tstep =250

0.08 1 I
| | |

0 6 18 24 30 3 4
Spike Counts/Neuron
(b)

Figure 3. Prediction accuracy (RMSE) versus spike count per neuron:
(a) with varying connection densities, the RMSE does not change
significantly; (b) increasing the time step window significantly
reduces the RMSE, although it results in a high number of spikes per
neuron

The main reason is that the spike count distribution improves
greatly as shown in figure 4. The entropy value increases at time
steps of 200 ms and 250 ms, showing an increase of more than
0.5. Nevertheless, using a high value of #step is not ideal since it
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increases the overall time latency. Therefore, the next analysis
focuses on optimizing the network model using tstep varied
between 30—-100 ms, as the prediction accuracy remains within
an acceptable range (RMSE lower than 0.1). This is achieved
with less energy consumption (lower spike count per neuron),
which is on average 3-7 times lower compared to when zstep is
250 ms. This indicates that using a longer time window to
encode the input is not necessary to achieve a sufficient level of
prediction  accuracy,  especially = when  considering
implementation on embedded systems.

2
S

30ms

Time Window
Spike Count

200ms 100ms  50ms

[H =0.45

H=054

250ms

0 5 10 15 2 2 30 £ 2 5
Neuron Index

Figure 4. Spike distribution in the reservoir layer for different time
step windows. The spike pattern becomes more evenly distributed as
the time step window increases

4.4. Effect of Inhibitory Connection on the

Network Performance

Another technique to increase variability in spike count patterns
is to introduce inhibitory connections between reservoir
neurons. In previous simulations, communication between
neurons in the reservoir layer was established using only
excitatory connections. This means that if a spike occurred on
any neuron in the reservoir layer, it consequently led to
simultaneous spikes on other neurons. In other words, this
reduced the diversity of the spike count patterns. Theoretically,
by adding some portion of inhibitory connections in the
reservoir layer, the diversity of spike count patterns can be
increased. To prove this concept, the connections in the
reservoir layer for the network model with tstep = [30, 50, 100
ms] were reconfigured with inhibitory connections at ratios of
0.25 and 0.5, selected randomly.

As shown in figure 5, for each tstep case, adding a portion of
inhibitory connections in the reservoir layer generally increased
the prediction accuracy. For instance, when the inhibitory ratio
was 0.25 (shown by the solid line), the RMSE decreased from
0.097 to 0.093 (for tstep = 30 ms) and from 0.092 to 0.089 (for
tstep = 50 ms). Increasing the inhibitory ratio to 0.5 further
reduced the RMSE, as well as the number of synaptic events,
which lowered the energy consumption of the network model
itself. For example, at #step = 50 ms and a connection density of
p=0.2,using a 0.5 inhibitory ratio reduced the network model’s
energy consumption by approximately 4% (7695 synaptic
events, assuming 10 nJ/event). In addition, adding inhibitory
connections increased spike distribution.
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i Table 3. Performance evaluation of RSNN with varying
ratios of inhibitory connections

Time Inhibit Traini | Synap | Spike
Step ory RMSE MAE ng tic Distribu
[ms] Ratio Loss Event tion

30 0.25 0(')(?33; 0('%3 f 0.0021 | 4563 | 0.28
30 0.5 %f’gg; 0('%3; 0.0018 | 4463 | 032
50 0.25 0(.)(.)38 f %‘?ggf 0.0013 | 7871 | 039
50 0.5 odégg > 0('%35* 0.0011 | 7695 | 041
100 | 025 O(')(_)gg; 0(')‘_)53; 0.0007 | 16164 | 0.49
100 0.5 O&% " 0(')‘_)35 | 0.0006 | 15800 | 051

For example, at tstep = 100 ms with an inhibitory connection
ratio of 0.5, the model achieved a spike distribution exceeding
0.51, which is nearly equivalent to that obtained with a higher
tstep configuration. The performance evaluation is summarized
in table 3.

0.14
—— 0.25 Inhibitory Ratio
- - - 0.5 Inhibitory Ratio
0.124
tstep =30
i 010 P
%) tstep = 50
>
M| FeET -
-5
0.08 1 )
0.06

T T T T T

4 6 8 10 12 14 16
Spike Counts/Neuron

Figure S. Prediction accuracy (RMSE) versus spike count per neuron.
The inclusion of inhibitory connections significantly reduces the
RMSE. The solid line represents an inhibitory ratio of 0.25, while the
dashed line represents a ratio of 0.5

4.5. Optimize with Readout Layer

Commonly, the RSNN model is designed to work efficiently on
low-powered devices, for instance, on embedded SoC-FPGAs or
neuromorphic hardware. In this work, the sigmoid transfer
function was replaced with the ReLU function, which is more
hardware friendly. Furthermore, the performance of the network
model was evaluated with different configurations of the readout
network. In addition, the default weight initialization is replaced
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with Kaiming uniform initialization to ensure stable variance
and efficient gradient flow across layers, specifically tailored
for the ReLU activation function.

Average Prediction Accuracy

Double Hidden
5-3 Nodes

Single Hidden
10 Nodes

RMSE

!

Single Hidden
5 Nodes

0 0.02 0.04
100 ms ™50 ms

0.06
30 ms

0.08 0.1 0.12
Figure 6. Comparison of prediction accuracy across different readout
network configurations. A simple readout network with fewer
neurons achieves a low RMSE, comparable to the benchmark value of
0.72, when the network is configured with a higher time step window

(tstep)

As shown in figure 6, reconfiguration of the readout network
yields different outcomes. At a lower #tep of 30 ms, the
performance with a single hidden layer and ReLU activation
function provides slightly better accuracy. However, this
improvement does not occur when zstep is set at 50 ms, where
the RMSE worsens compared to the previous setup. Using a
higher #step value of 100 ms, accuracy performance improves
significantly, outperforming the network at higher tstep values
(e.g., 250 ms). Nonetheless, utilizing deeper networks with
multiple hidden layers did not improve the accuracy
performance for any fstep value. The overall SoH prediction
result (solid line) compared with the calculated value (dashed
line) on different battery datasets (B6, B7, and B18) is depicted
in figure 7. In all cases, the RSNN network model is able to
predict the behaviour and the battery’s SoH drop pattern
efficiently. However, due to variations in battery cells such as
internal resistance, capacity, and aging characteristics, some
prediction errors are common and expected.

SoH Prediction using Single Hidden Layer with 5 Neurons

- - - - Calculated(B6)
Predicted(B6)
- - - - Calculated(B7)
Predicted(B7)
- - - - Calculated(B18)
Predicted(B18)

0.9 4

0.8 +

State of Health (SoH)

0.6

0.5 T T T T T T T T
0 20 40 60 80 100 120 140 160

180
Time (sec)
Figure 7. SoH prediction results for different battery datasets using

the optimized RSNN. The dashed line represents the calculated
values, while the solid line represents the predicted values

Next, a Feedforward Neural Network (FNN) was implemented
as a baseline model to benchmark the RSNN’s performance.
The network consists of three fully connected hidden layers
with eight ReLU-activated neurons each, followed by a 25%
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dropout layer to reduce overfitting. The model was trained using
the Adam optimizer with default parameters. The number of
training epochs was matched to that of the RSNN for fair
comparison. Table 4 summarizes the results for each battery
datasets, evaluated multiple times with different random seeds
to account for stochastic variations during training. The RSNN
achieved lower prediction errors than the FNN for Battery 6 but
showed weaker performance for Batteries 7 and 18. This
outcome suggests that Battery 6 exhibits stronger temporal
dependencies and nonlinear degradation behavior, which benefit
from the RSNN’s recurrent dynamics. In contrast, the smoother
and more stable degradation patterns of Batteries 7 and 18 are
adequately captured by the FNN, where the additional temporal
states in the RSNN may introduce unnecessary complexity and
slight performance degradation.

i: Table 4. Prediction accuracy comparison of the FNN and
RSNN models for battery SoH estimation

FNN RSNN
Battery B6 B7 B18 B6 B7 B18
RMSE 0.086+ | 0.029+ | 0.019+ | 0.069+ | 0.034+ | 0.029+
0.004 0.002 0.004 0.011 0.010 0.011
MAE 0.074+ | 0.027+ | 0.016+ | 0.062+ | 0.032+ | 0.028 +
0.002 0.003 0.002 0.010 0.010 0.011

In addition to performance differences, the results also highlight
the effect of network complexity. The FNN offers a simpler
structure and lower computational demand, which makes it
suitable for relatively stable datasets with near-linear
degradation patterns. However, this simplicity limits its ability
to model temporal dependencies and dynamic variations that
often occur in real battery operating conditions. In contrast, the
RSNN incorporates recurrent reservoir dynamics that enable
temporal processing and adaptive learning from sequential data.
This characteristic makes the RSNN inherently more suitable for
capturing the nonlinear and time-dependent behaviour of battery
degradation, especially under fluctuating load profiles or varying
environmental conditions. It is worth noting that the NASA
battery dataset, although derived from real experimental
measurements, was collected under controlled laboratory
conditions with consistent charge—discharge cycles and minimal
external noise. As a result, it does not fully represent the
variability and uncertainty typically observed in real-world
battery applications.

Furthermore, the RSNN offers a biologically inspired
framework aligned with emerging neuromorphic computing
trends. Its event-driven spiking mechanism enables
asynchronous and energy-efficient computation, unlike
conventional networks that rely on continuous activation.
Although this study simulates the RSNN using the BindsNET
library on conventional hardware, its full potential lies in
neuromorphic deployment, where sparse spiking activity can
substantially reduce power consumption and improve real-time
processing. Therefore, while the FNN serves as a useful
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baseline, the RSNN presents a more scalable and energy-
efficient solution for future intelligent battery management
systems.

Despite these promising results, the current study is limited to
simulation-based evaluation. The performance under real
hardware constraints, such as SoC-FPGA or neuromorphic
devices, remains unexplored. Factors including memory
limitations, fixed-point arithmetic, and spike propagation delays
on physical platforms may influence the RSNN’s accuracy and
energy efficiency. Therefore, future work should focus on
implementing and testing the RSNN on real embedded
hardware to validate the simulation outcomes and optimize the
network for practical deployment in battery management
systems.

# 5, CONCLUSION

In this work, the utilization of RSNN in battery SoH prediction
is evaluated in detail. The network model is tested under various
configurations to provide a clear understanding of the
fundamental structural factors that affect prediction
performance. Specifically, this study analyzes the performance
impact of varying the number of reservoir neurons, connection
density, time step window length, ratio of inhibitory
connections, and readout network configuration. The results
show that, for battery SoH prediction, a simple RSNN structure
is sufficient to achieve high prediction accuracy. The essential
aspect is configuring the network to produce diversity in the
spike count pattern within the reservoir layer. For the SoH
dataset used in this study, the original input features alone are
not sufficient to generate high spike pattern diversity. Therefore,
careful model configuration is required, guided by observations
of spike count diversity in the reservoir layer. Additionally, the
findings from this study provide a framework for constructing
RSNN models on embedded platforms, whether implemented
on neuromorphic devices such as Intel Loihi or on SoC-FPGA
platforms with customized hardware circuits. However, further
evaluation is required to analyze the network performance under
hardware-specific constraints, for instance when reducing the
bit length for storing network weight values.
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