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: ABSTRACT- Accurate and early diagnosis of brain tumors can significantly reduce both the invasiveness and cost of
therapeutlc interventions while preserving neurological function. Current limitations in manual MRI analysis, including human
error, variability in expertise, and interpretive inconsistencies, have created a pressing need for advanced diagnostic systems based
on artificial intelligence and deep learning techniques. This study presents a hybrid transfer learning approach designed to enhance
the detection of neuro-oncological abnormalities. Our methodology employs parallel processing of MRI images through pre-trained
DenseNet121 and VGG16 architectures to extract discriminative numerical features. These feature sets are integrated and then
processed through principal component analysis to improve computational efficiency. For the classification stage, we implement
both support vector machine and k-nearest neighbors algorithms independently. A comprehensive evaluation, including an analysis
of data processing sequences to ensure methodological rigor, demonstrates that the proposed feature fusion framework achieves
robust performance and competitive accuracy, exceeding the performance of several contemporary deep learning models in this
domain.
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impairment, vision problems, and motor dysfunction. Treatment
may involve surgery, radiation therapy, or chemotherapy [2, 4].
Magnetic resonance imaging (MRI) is the preferred diagnostic
method for brain tumors due to its excellent soft tissue
visualization. Clinicians analyze MRI images to assess
pathological conditions and determine appropriate treatments.
However, this process depends heavily on human expertise and
faces limitations such as time constraints, potential errors, and
high costs [5, 6, 7].

Publisher’s Note: FOREX Publication stays neutral with regard to
jurisdictional claims in Published maps and institutional affiliations. To address these challenges researchers are developing
b
automated systems using artificial intelligence and machine
learning technologies to improve diagnostic accuracy and

efficiency [8, 9]. Current approaches for brain tumor

1. INTRODUCTION

The brain is an organ located in the skull that controls and
coordinates all processes in the human body. This specialized
tissue can be affected by various diseases, among which tumors
are particularly serious. A brain tumor is an abnormal growth of
cells within the brain or central spinal canal, which may be
either benign or malignant. These tumors develop from different
cell types, including glial, meningeal, or pituitary cells [1, 2, 3].

Symptoms and treatment options vary depending on the tumor's
size and type. Common symptoms include headaches, cognitive

classification in MRI images predominantly employ deep
convolutional neural networks (CNNs) or leverage established
benchmark models through transfer learning.

In [10], a hybrid system combining deep feature integration with
classical machine learning was introduced. MRI images
underwent preprocessing to reduce noise and improve contrast
before being processed by a specialized network with five
convolutional layers, trained to extract deep numerical
representations. An SVM algorithm then classified the extracted
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features into one of three central nervous system (CNS) tumor
types: meningioma, glioma, or pituitary. The model achieved
96% accuracy, surpassing the performance of VGGI16,
GoogLeNet, and AlexNet models.

The authors of [11] designed a CNN model with three
convolutional-pooling blocks followed by a four-layer fully
connected neural network to detect brain anomalies. Their
system reached a test accuracy of 95.87%, while training
accuracy surpassed 99%.

In [12], a specialized architecture consisting of three
convolutional blocks and a neural classifier was proposed.
Using data augmentation, the model achieved a training
accuracy of 99.31%, though validation accuracy remained at
93.1%. The researchers claimed their approach outperformed
traditional feature extraction methods such as Local Binary
Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM).

The work in [13] presented a complex system with five
sequential feature extraction blocks, each containing three
parallel convolutional layers. Their outputs were merged and
processed by a fourth convolutional layer before down sampling
through both max and average pooling. The combined features
were then passed to the next block. After the final block, global
average pooling was applied, followed by a fully connected
three-layer neural network for classification. The model reached
an accuracy of 96.4%.

To avoid the challenge of designing custom architectures, some
studies employ standard pre-trained models. For instance, [14]
proposed a brain tumor classification system using InceptionV3
and Xception for feature extraction, followed by an ensemble
classifier (KNN, SVM, and RF). InceptionV3 slightly
outperformed Xception, achieving 94.34% accuracy compared
to 93.79%.

Following a methodology similar to [14], the authors of [15]
developed a system where features were extracted using
DenseNet169, and classification relied on majority voting
among an ensemble (RF, SVM, and XGBoost). The system was
benchmarked against multiple deep models, including ResNet,
VGG, and EfficientNet variants, achieving 95.10% accuracy
with data augmentation.

In [16], the researchers fine-tuned the You Only Look Once
framework (YOLOVS) to detect brain tumors in MRI scans. The
system attained an F1-score of 91.38% without augmentation
and 92.47% with augmentation, calculated from the provided
precision and recall values.

Another study [17] also utilized YOLO, specifically YOLOVS,
for neuro-oncological lesion detection, achieving an inferred
F1-score of 86.84%. The network was later enhanced with an
improved spatial attention (ESA) layer, boosting performance
to an F1-score of 89.85%.

The development of specialized deep models with numerous
parameters trained on relatively small MRI datasets may lead to
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overfitting, where high training performance fails to generalize
to validation data. While transfer learning eliminates the need
for extensive parameterization, differences in task domains can
limit the generation of effective features capable of achieving the
required high performance. Additionally, producing an
excessive number of features may negatively impact the final
classification stage. This work aims to address these challenges
through the following contributions:

e Proposing a hybrid end-to-end system for enhanced
recognition of central nervous system lesions in MRI
images.

o Investigating the effectiveness of fusing high-level
features obtained from pre-trained deep models.

e Validating the impact of applying class balancing in the
feature space on the overall performance of the final
classification model.

e Conducting an ablation study with multiple metrics to
quantify each component's contribution in the proposed
system pipeline.

i 2.MATERIALS AND METHODS
Fi igure 1 outlines the workflow of the proposed hybrid system.
The process consists of the following key steps:

1. Image acquisition and preprocessing: MRI images are
loaded, processed, and prepared for feature extraction.

2. Deep feature extraction: Two parallel pre-trained models,
DenseNet121 and VGG16, transform the processed images into
high-level numerical feature sets.

3. Cumulative feature integration: The extracted features from
both models are flattened and combined into a unified feature
vector for each image.

4. Class balancing: To mitigate bias and improve model
performance, minority classes near the decision boundary are
augmented.

5.Dimensionality = Optimization: Principal Component
Analysis (PCA) is applied to optimize the feature space by
reducing redundancy while preserving discriminative
information.

6. Classification: The system evaluates the refined features
separately using Support Vector Machine (SVM) and k-Nearest
Neighbors (KNN) algorithms to determine the final neuro-
oncological lesion classification.

In line with common practice in recent literature [18, 19, 20, 21],
the pipeline depicted in figure I applies class balancing and
dimensionality reduction to the overall data distribution. While
this established approach is computationally efficient, the
theoretical concern of potential data leakage is acknowledged.
To thoroughly validate the findings, a comprehensive analysis
was conducted. As detailed in section 3.7, performance was
rigorously evaluated under both this paradigm and a strict
alternative where these steps are applied only to training folds,
confirming the substantial and genuine advantages of the
proposed feature fusion approach.
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Figure 1. Proposed system architecture

2.1. Dataset and Preprocessing

The reliability of data-driven diagnostic systems depends
critically on data quality. When models are trained on low-
resolution images containing inaccurate labels or datasets of
uncertain origin, they produce unreliable results with limited
clinical utility. Consequently, careful selection of appropriate
datasets becomes essential for developing valid and clinically
relevant models.

This study employs the Figshare benchmark brain MRI dataset
[22], consisting of 3064 images collected through collaborative
efforts among medical experts and researchers across multiple
Chinese hospitals. The dataset contains three clinically
significant tumor categories with an imbalanced distribution:
1426 glioma cases, 706 meningioma cases, and 930 pituitary
tumor cases. This composition reflects the prevalence of major
brain tumor types in clinical practice, ensuring the developed
models maintain practical relevance. Representative examples
from the dataset are presented in figure 2.

All images underwent standard preprocessing procedures. First,
they were uniformly resized to 224x224 pixels to optimize
computational efficiency. The images were then normalized
using mean subtraction to match ImageNet's distribution, zero-
centering the pixel values for model compatibility.

Meningioma

Glioma

Pituitary

Figure 2. Samples from the dataset employed in the study

2.2. Feature Extraction

In this study, two deep learning models, VGG16 [23] and
DenseNet121 [24], are employed to extract features from brain
tumor images. Both models were initially trained on the ImageNet
benchmark dataset for natural image classification. By freezing
their optimized weights and removing the top classification layer,
the networks can be repurposed for forward-pass feature
extraction. The architectural details of each model are described
below.

VGG16 is a convolutional neural network composed of 13
learnable layers arranged sequentially across five blocks, followed
by a neural classifier. As illustrated in table 1, the first and second
blocks each contain two convolutional layers, whereas the third,
fourth, and fifth blocks consist of three layers each. All
convolutional layers employ a uniform 3x3 filter size. Each block
concludes with a pooling layer to reduce spatial dimensionality.
Due to its simple and systematic design, this deep model generates
discriminative numerical features that can be effectively utilized
by subsequent classification algorithms.

DenseNetl121, another convolutional neural network,
distinguishes itself through skip connections that link each layer
to every subsequent layer within a dense block. Table I presents
its architecture alongside VGG16 for comparison. The network
comprises four dense blocks separated by transition layers. Each
dense block contains multiple sets of convolutional layers and
normalization components, enabling the extraction of high-level
features efficiently. Transition layers incorporate a 1x1
convolution followed by pooling to maintain computational
efficiency. This design promotes enhanced gradient flow during
backpropagation, while feature reuse via skip connections serves
as the primary advantage when employing the network as a feature
extractor.

Models for image feature extraction vary widely in their size and
complexity. For instance, the VGG16 network is relatively
shallow and fast, yet on ImageNet, it generates higher-quality
features than lightweight models like MobileNetV1. In contrast,
DenseNetl121 uses dense connections to reuse features more
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efficiently than ResNet architectures, and it is also less
computationally demanding than its counterparts. As shown in
figure 3, visualizations from different layers of VGG16 and
DenseNetl21 reveal their unique feature extraction capabilities.
By using these two models in parallel and strategically merging
their outputs, we can create a powerful set of features that may
improve classifier performance for detecting brain anomalies.

Table 1. Architecture comparison of feature extraction
layers in VGG16 and DenseNet121

Component VGG16 DenseNet121
Input 224x224x3 224x224x3
Initial (None — starts 7x7 Conv (64), stride=2 —
Lavers directly with conv ReLU
Y layers) 3x3 MaxPool, stride=2
Dense block:
2% [ii{gﬁgv] O | 6 x [1x1 Conv (128) — ReLU
Block 1 2%2 MaxPool — 3x3 Conv (32)]
stride=2 ’ Transition layer: 1x1 Conv
(128) — 2x2 AvgPool
Dense block:
(21;8?:3156‘;“[}’] 12 x [1x1 Conv (128) —
Block 2 2%2 MaxPool ReLU — 3x3 Conv (32)]
stride=2 ’ Transition layer: 1x1 Conv
(256) — 2x2 AvgPool
Dense block:
é ;6)[3;3}56‘{‘3’] 24 x [1x1 Conv (128) —
Block 3 2%2 MaxPool ReLU — 3x3 Conv (32)]
stride=2 ’ Transition layer: 1x1 Conv
(512) — 2x2 AvgPool
3 x [3x3 Conv .
(512) —> ReLU] Dense block:
Block 4 2%2 MaxPool 16 x [1x1 Conv (128) —
stride=2 ’ ReLU — 3x3 Conv (32)]
3 x [3x3 Conv
(512) — ReLU]
Block 5 2x2 MaxPool, -
stride=2
utput 7x7x512 7x7x1024

DenseNet 121

CONV 1

CONV 2

Figure 3. Reconstruction of MRI image features extracted from
different layers of VGG16 and DenseNet121
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2.3. Feature Fusion

Features obtained from different models often capture different
information. Combining these features in a complementary
manner can create a robust differential representation that
mitigates the weaknesses and biases of individual models [25].
Several feature fusion methods are available, including element-
wise operations such as addition and multiplication, or weighted
fusion, where learned weights are assigned to features.

In this study, the simplest method for fusion, sequential stacking
(also known as concatenation) [26], is used. Given feature vector
F € R" from the first model and F, € R™ from the second model,
the fused representation is:

Z=F @ F.=[fi, ..., fin, 21, ..., om] € R™™

where @ denotes the concatenation operation. This method
uniquely preserves all original features without requiring complex
parameter optimization. The resulting higher-dimensional feature
space retains maximum discriminative information, though
subsequent processing may need to address the increased
dimensionality.

2.4. Data Balancing in Feature Space

Despite the quality and reliability of the dataset used, it exhibits
class imbalance, characterized by majority and minority classes.
This skewed distribution may lead the model to
disproportionately learn patterns from the majority class,
potentially biasing its classification performance toward specific
tumor type. While conventional input space augmentation
through image transformations could address this imbalance,
such approaches risk exacerbating existing domain mismatches
when utilizing models trained on different tasks.

In contrast, this study implements feature space augmentation
using the Borderline Synthetic Minority Oversampling
Technique (Borderline-SMOTE) [27], an enhanced variant of
the original SMOTE algorithm. Unlike standard SMOTE that
generates synthetic samples through interpolation between
arbitrary minority class pairs, Borderline-SMOTE specifically
focuses on minority samples near classification boundaries,
which represent the most challenging cases for accurate
classification.

The technique operates through the following precise steps:
¢ Finding borderline samples. For each minority sample x:
1. Find m nearest neighbors from all classes.
2. Calculate minority ratio = count(minority neighbors)/m.
3. Label x as:
o Safe when minority ratio > 0.5 (no action).
o Borderline when 0 < minority ratio < 0.5 (keep for
synthesis).
o Noise when minority ratio = 0 (discard).
o Generating synthetic samples. For each borderline x:
1. Find k nearest neighbors from minority class only.
2. Randomly select one neighbor s.
3. Create a data point by interpolating between x and s
according to the following formula:
x_new = x + random(0, 1) x (s - x)
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The algorithm's two critical parameters, m (defining the
neighborhood size for borderline detection) and & (determining
neighbors for synthetic sample generation), were configured to
optimize the synthesis of informative minority class samples.
This approach effectively augments the minority classes
(meningiomas and pituitary tumors) while preserving the
original distribution of the majority class (gliomas), with figure
4 demonstrating the balanced outcome.

Meningioma
1426
(33.33%)

Pituitary
1426

\'; / pituitary (33.33%)
(e30

(30.35%)

Figure 4. Data distribution: (a) Before augmentation, (b) After
augmentation

2.5. Classification

The numerical representations extracted from MRI images
enable classification of brain lesion types. However, deep
models such as DenseNet121 and VGG16 produce an extensive
set of features relative to the limited sample size. Direct feature
fusion followed by classification may compromise
generalization performance while unnecessarily increasing
computational complexity and processing time. Principal
component analysis (PCA) serves as an effective solution for
dimensionality reduction while preserving essential information
[28]. In this implementation, the number of principal
components was selected to ensure adequate variance capture.
Figure 5 demonstrates the progressive dimensionality changes
across all processing stages. The resulting reduced features feed
into two machine learning classifiers: a support vector machine
employing an RBF kernel and a k-nearest neighbors classifier
utilizing Euclidean distance metrics, with their respective
hyperparameters tuned for optimal accuracy.

Pl 25088 V16
extaction feamy
o 3 eAnUes
:

MRI image
T
50176 DenseNet121

features

Teature
selection

Fingl feawme veelor:
‘T'otal 75264 fcalures
o e 1000 features

Figure 5. Dimensional shifts after each processing step

= 3. EXPERIMENTS, RESULTS AND
DISCUSSION

All experiments were conducted in a Google Colab environment
using Python, leveraging cloud GPU resources for
computational efficiency. The models were implemented
primarily with the Keras deep learning API, supported by the
scikit-learn library for general machine learning tasks. To assess
model performance, we used an 80% training and 20%
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validation split (hold-out) and applied a rigorous 5-fold cross-
validation. The individual contributions of model components
were also evaluated through a comprehensive ablation study. It
should be noted that all results presented and discussed in this
work correspond exclusively to the test dataset. This approach is
critical because a model's true effectiveness is determined by its
performance on data that was not used during training. The
ability to generalize to unseen samples represents the most
meaningful evaluation of a model's practical utility, as opposed
to assessing performance on training data, which could yield
unreliable performance measures.

3.1. Hyperparameter Configuration

The hyperparameters for all components of the pipeline were
selected to balance model performance, generalization, and
computational efficiency. A fixed random state of 42 was used
across all stochastic processes to ensure the reproducibility of
results. The specific choices are justified as follows:

Borderline-SMOTE: The parameters were set to k=1 and m =
5. A small k value ensures that synthetic samples are generated
very close to the borderline minority instances, preserving the
local structure and avoiding the creation of noisy samples. The
m value of 5 provides a sufficiently large neighborhood to
reliably identify samples on the class decision boundary without
being overly influenced by outliers.

Principal Component Analysis (PCA): The number of
components was set to 1000. This value was selected because it
guarantees the capture of at least 90% of the explained variance
while maintaining a consistent feature dimensionality across all
model configurations for a fair comparative analysis.

Support Vector Machine (SVM): An RBF kernel was chosen
for its ability to model complex, non-linear decision boundaries.
The regularization parameter C was set to 10. This value was
found to provide a good trade-off between maximizing the
margin and minimizing classification error, preventing the
model from being either too rigid or too prone to overfitting.

K-Nearest Neighbors (KNN): The number of neighbors was set
to k = 1, using the Minkowski metric with power parameter p =
2 (Euclidean distance). This choice is principled and aligns with
the feature transformation: since the features were processed by
PCA, which itself operates by maximizing variance in the
Euclidean space, using the Euclidean distance for KNN ensures
geometric consistency. The strong performance of this k£ = 1
configuration suggests that the feature space created by our
fusion and reduction pipeline is highly discriminative, making
the closest neighbor a reliable predictor.

3.2. VGG16 Feature-Based Model

In this experiment, deep features are extracted by processing
input images through a pretrained VGG16 convolutional neural
network. The high-dimensional feature vectors then undergo
principal component analysis (PCA) for dimensionality
reduction while retaining the most discriminative information.
As shown in figure 6, selecting the top 1000 principal
components preserves 90.13% of the original data variance.
These reduced-dimension features serve as input to the
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classifiers. Model performance is evaluated through the
classification report in table 2 and the confusion matrices in
figure 7. The support vector classifier achieves 95.76% overall
accuracy with an average F1 score of 95.31%, misclassifying 26
test samples. Comparatively, the k-nearest neighbors classifier
demonstrates slightly better performance with 95.92%
accuracy, an average F1 score of 95.51%, and 25 misclassified
instances. Both classifiers exhibit strong agreement in their
predictive performance.

o
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Cumulative explained variance
o o
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Figure 6. PCA cumulative explained variance of the VGG16 features

Table 2. Classification report of the VGG16 feature-based
model.
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Figure 7. Confusion matrices of the VGG16 feature-based model: (a)
SVM classifier, (b) KNN classifier

3.3. DenseNet121 Feature-Based Model

The system pipeline undergoes modification through
replacement of the VGG16 feature extractor with a pretrained
DenseNetl21 architecture, while preserving all other system
components. Variance analysis in figure &8 indicates that a
minimal set of principal components explains over 90% of total
variance, meeting standard analytical thresholds. However,
experimental consistency is maintained through use of 1000
features, capturing 99.53% of variance. Classification metrics in
table 3 demonstrate model performance, with the SVM classifier
achieving 96.25% accuracy and an average F1 score of 95.81%,
while the KNN classifier achieves superior results of 97.06%
accuracy and 96.84% average F1 score. These outcomes
represent accuracy improvements of 0.49% and 1.14%
respectively compared to the VGGI16 implementation.
Corresponding confusion matrices in figure 9 show reduced
error rates, with 23 misclassified samples for SVM and 18 for
KNN.
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Figure 8. PCA cumulative explained variance of the DenseNet121
features
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:: Table 3. Classification report of the DenseNet121 feature-
based model.

=== 90% Variance

0.9
End Precisi | Sensitivi F1-| Mean-
classifiel Category on ty score, F1 AcC § 0.8 1
— =
Meﬁigg“’ 9110 | 93.01 |92.04 5
0.7 1
Sve Glioma 97.59 96.59 197.08 9381 1 96.25 E
Pituitary 98.31 98.31 98.31 r—é ]
Meningio g 06
o 93.71 | 9371 |93.71 @
KN | Glioma | 9694 | 9727 _[o7.10] 7% | 77001 5 o5
Pituitary 100 99.44 199.72 3

o
-y
1

§20 031

T T T T T
200 400 600 800 1000

o -

l—200 Number of PCA components
10 283 150 Figure 10. PCA cumulative explained variance of the fused features

WCEVIN 46.17% XA "
i Table 4. Classification report of the deep feature fusion

True label
Pituitary  Glioma Meningioma

=100
I model
3 0 174
0.49% 0.00% 28.38% —-50 End Cat Precisi Sensitivi | F1- Mean ACC
I_(J classifier| ategory on ty score| -F1
Meningioma Glioma Pituitary Meﬂgg“’ 9320 | 95.80 | 94.48
Predicted label
a SVC Glioma 98.62 97.61 98.11 97.06 | 97.39
Pituitary 98.86 98.31 98.58
g Meﬁgg“’ 95.83 96.50 | 96.17
2 9 0 250
2 1.47%  0.00% r KNN Glioma 98.29 97.95 98.12 98.10 1 9821
c N N
[} 200 Pituitary 100 100 100
z; ]
© £ 8 285 0 -150 g
g 2 1.31% 46.49% 0.00% k] 2 I_250
£° -100 £7 0.65%  0.33%
E 1 0 176 l_50 32 l—200
Ell 016% 000% 28.71% B2 286 0 150
< i, g2 FIREU  0.00%
Meningioma Glioma  Pituitary = -100
Predicted label E 0 174 e
b 3 0.00% 28.38%
T

Figure 9. Confusion matrices of the DenseNet121 feature-based
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. Figure 11. Confusion matrices of the deep feature fusion model: (a)
samples, with no more than 16 for SVM and only 11 for KNN. SVM classifier, (b) KNN classifier

Meningioma Glioma Pituitary
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3.5. Augmented Feature Fusion Model

This experiment integrates a Borderline SMOTE component
into the deep feature fusion model to balance the dataset and
increase its size. Following the same approach as previous
cases, the high-dimensional feature space is processed using
PCA. Figure 12 displays the explained variance relative to the
number of principal components, with the first 1000
components capturing over 95% of the variance. The
classification results in table 5 demonstrate outstanding
performance, with SVM achieving near-perfect accuracy of
99.53% and average F1 score of 99.51%, while KNN reached
98.71% accuracy and 98.67% average F1 score. The confusion
matrices in figure 13 reveal minimal misclassifications: only 4
samples for SVM and 11 for KNN. The proposed system shows
clear improvements over individually employed pretrained
networks, with SVM accuracy increasing by more than 3%
compared to both VGG16 and DenseNetl21 based models,
while KNN shows improvements of 2.79% over VGG16 and
1.65% over DenseNet121.
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0.7 1

o
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Figure 12. PCA cumulative explained variance of the augmented
fused features

Table 5. Classification report of the augmented feature
fusion model

End . . ..
classifi | Category Precisi Se1'1s1t1v F1- Mean- ACC
or on ity score| F1
Meningio | g¢ 39 100 | 99.19
ma
SVC | Glioma 100 99.05 | 99.52| 99.51| 99.53
Pituitary 100 99.66 | 99.83
Meningio | o |5 9836 | 97.76
ma
KNN | Glioma | 98.73 97.79 | 98.26| 98.67| 98.71
Pituitary 100 100 100
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Figure 13. Confusion matrices of the augmented feature fusion model:
(a) SVM classifier, (b) KNN classifier.

3.6. Statistical Significance of Performance
Improvements

To assess whether significant differences exist between model
configurations, researchers typically employ the paired t-test.
This statistical method compares means from two related groups
to verify that observed differences reflect true effects rather than
random variation. Since the hold-out method yields only a single
test value, it cannot support paired t-test analysis. Consequently,
a cross-validation approach becomes essential to generate
multiple evaluation metrics for each model.

Table 6 presents performance statistics, while figure 14
compares the accuracy values for both the 5-fold cross validation
and hold-out approaches. The close alignment of accuracy
values between these evaluation approaches for each model
suggests minimal bias toward specific data subsets and indicates
strong generalizability. We utilize the cross-validation fold
accuracy values to perform paired t-tests comparing instances of
the developed model. Table 7 displays the resulting p-values and
Cohen's d effect sizes for each model pair comparison. The p-
values estimate the probability that observed performance
differences occurred by random chance (with p < 0.05 indicating
statistical significance), while Cohen's d quantifies the
magnitude of these differences, where values >0.2, >0.5, and
>0.8 typically represent small, medium, and large effects
respectively.

The analysis reveals that both classifiers achieve comparable
performance with either VGG16 or DenseNetl121 as the feature
extractor. However, fusing features from both networks
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produces statistically significant performance gains over either
individual model. The augmented feature fusion model shows
additional gains, though these require further methodological
consideration as discussed in section 3.7.

Table 6. Statistical performance evaluation using 5-fold
cross-validation

o,
Model . Mean Standard 95%
. Classifier .. Confidence
configuration accuracy | deviation .
interval
SvC 96.38 0.79 (99753369)
VGGl6 KNN 96.15 063 (95.37-
) 96.93)
SvC 96.70 071 (99755882)
DenseNet121 =g 9631 066 (95.49-
) 97.13)
SvC 97.49 (96.72-
Feature 0.62 98.25)
fusion KNN 97.68 057 (96.97-
) 98.39)
SvC 98.83 0.65 (98.03-
Augmented ) 99.63)
feature fusion KNN 98.60 039 (98.12-
) 99.08)

(W SvC (Foldoul B SvG (or0v) B KN (Holdom) Bl KRN (sFCV)
m

1

BE 71 gy

982104
e A

Accuracy (%)

[

VGG1E fraturss
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Augmente fused features.
Feature extraction methods

Figure 14. Accuracy performance across models: 5-Fold cross-
validation and hold-out results

Table 7. Pairwise statistical significance across tested
models

SCV KNN
Comparison Cohen's Cohen's
p-value d p-value d
VGGI6 vs.
DenseNet121 ‘ 0.27
VGGI6vs. Fused | g 0050 | 304 | 0.0072 | 226
features
DenseNet121 vs. | g 018 | 163 | 0.0014 | 3.52
Fused features
Fused features vs.
Augmented fused | 0.0121 1.95 0.0033 2.81
features

3.7. Robustness to Data Processing Sequence

Principal Component Analysis (PCA) and Borderline-Synthetic
Minority Oversampling Technique (Borderline-SMOTE) are
commonly applied as preprocessing techniques prior to dataset
partitioning in machine learning workflows [18, 19, 20, 21].
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Although efficient, this approach introduces a potential risk of
data leakage. To ensure the validity of the findings, a systematic
investigation into the impact of processing sequence on model
performance was conducted using 5-fold cross-validation.

The analysis evaluated the proposed feature fusion model
against baseline individual models (VGG16 and DenseNet121)
across key processing sequences. The results, detailed in table 8,
yield two critical observations. Firstly, the performance of the
feature fusion model exhibits remarkable stability concerning
the timing of PCA application. The minimal performance
degradation observed when PCA is applied post-split confirms
that the superior discriminative power of the fused features is an
inherent property and not an artifact of data leakage.

Secondly, the analysis of Borderline-SMOTE provides two key
insights. When applied in a post-split manner, it offers no
performance benefit for the SVC and only a minor decrement for
KNN compared to the baseline feature fusion. This indicates that
the feature representation learned by the multi-model fusion is
inherently robust to class imbalance, effectively mitigating the
need for synthetic oversampling. However, the notable
performance difference between the pre-split and post-split
application of Borderline-SMOTE suggests that the high results
reported by the former can be attributed to data leakage rather
than a genuine improvement in the model's generalization
capability.

Table 8. Performance comparison across model
configurations (5-fold cross-validation mean accuracy %).

Model PCA PCA Borderline- Borderline-
configuration before | after SMOTE SMOTE
8 split split before split after split
VGG16+SvC | 9638 | 9573 _ _
VGG16 + 96.15 9491 o -
KNN
DenseNetl121 96.70 96.31 - .
+SVC
DenseNet121 96.31 95.99 o o
+ KNN
Feature fusion 97.49 97.03
+SVC 98.83 97.03
Feature fusion 97.68 97.00
+ KNN 98.60 96.77

This comprehensive evaluation confirms that the performance
advantages of the multi-model feature fusion approach remain
substantial and are not dependent on specific data processing
implementation details.

“ 4, LIMITATIONS AND FUTURE WORK

This work is subject to several important limitations that help
define a clear pathway for future research.

4.1. Dataset and Benchmarking Limitations

The study utilizes the Figshare brain tumor dataset, which is
characterized by its high-quality, professional curation under
institutional oversight, ensuring label integrity and ethical
compliance. This standard of quality differentiates it from other
publicly available brain tumor datasets that are often scraped
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from the internet without rigorous validation and are
consequently less reliable for robust benchmarking [29].

However, a key limitation is that the data was collected
exclusively from Chinese institutions, meaning the trained
models may exhibit institutional and demographic biases,
potentially limiting their immediate global applicability.
Furthermore, a critical consideration is the dataset's splitting
methodology. The dataset does not contain duplicated images
from the same patient, which reduces the risk of data leakage
and makes the established image-level splitting protocol a sound
and standard choice. To our knowledge, no prior work on this
dataset has implemented a patient-level split; therefore,
deviating from this universal precedent would invalidate all
direct comparisons with the state-of-the-art, which is a
fundamental aspect of our performance evaluation. Future work
should pursue patient-level splits on larger, multi-institutional
datasets.

4.2. Clinical Translation and Explainability

The clinical applicability of the proposed system requires
significant further development. Our current work serves as a
proof-of-concept, demonstrating the performance gains from
multi-model feature fusion. For real-world clinical adoption,
essential next steps include rigorous validation in live diagnostic
settings and on data from diverse medical centers.

While this study provided visualizations of discriminative
features from the individual VGG16 and DenseNet121 models,
generating a unified, human-interpretable explanation for the
final prediction based on the fused feature space remains a
complex challenge to be addressed in future work. Finally,
while the model successfully classifies the three most prevalent
tumor types (comprising approximately 75% of clinical cases),
expanding its diagnostic scope to include a wider spectrum of
rarer neuro-oncological pathologies is crucial for enhancing its
overall clinical utility and impact.

7. CONCLUSION

This work presents an effective deep learning approach for
detecting brain lesion types in MRI images, specifically
targeting meningioma, glioma, and pituitary tumors. The
proposed system employs a dual-network architecture
combining VGG16 and DenseNet121 for parallel feature
extraction from processed MRI scans. These complementary
networks produce deep features that are fused through
sequential stacking, yielding a robust numerical representation
of the input images.

To enhance the system's efficiency, principal component
analysis optimizes the feature space by preserving maximum
variance during dimensionality reduction. A comprehensive
investigation into class balancing revealed that the proposed
feature fusion inherently mitigates class imbalance,
demonstrating robust performance without relying on synthetic
augmentation. For final classification, the system leverages both
support vector machines and k-nearest neighbors, confirming
the feature representation's quality across different classifier

types.
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The model's validity is examined through hold-out testing and 5-
fold cross-validation, supported by ablation studies and paired t-
test analysis that verify each component's contribution. A
methodological robustness analysis further confirms that the
performance advantages are genuine and not an artifact of data
processing sequences. These results demonstrate the system's
superior performance compared to existing methods and suggest
the proposed approach could serve as a valuable decision-
support tool for clinical specialists, potentially improving both
the speed and accuracy of diagnostic processes for brain lesions.
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