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░ ABSTRACT- Accurate and early diagnosis of brain tumors can significantly reduce both the invasiveness and cost of 

therapeutic interventions while preserving neurological function. Current limitations in manual MRI analysis, including human 

error, variability in expertise, and interpretive inconsistencies, have created a pressing need for advanced diagnostic systems based 

on artificial intelligence and deep learning techniques. This study presents a hybrid transfer learning approach designed to enhance 

the detection of neuro-oncological abnormalities. Our methodology employs parallel processing of MRI images through pre-trained 

DenseNet121 and VGG16 architectures to extract discriminative numerical features. These feature sets are integrated and then 

processed through principal component analysis to improve computational efficiency. For the classification stage, we implement 

both support vector machine and k-nearest neighbors algorithms independently. A comprehensive evaluation, including an analysis 

of data processing sequences to ensure methodological rigor, demonstrates that the proposed feature fusion framework achieves 

robust performance and competitive accuracy, exceeding the performance of several contemporary deep learning models in this 

domain. 
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░ 1. INTRODUCTION 
The brain is an organ located in the skull that controls and 

coordinates all processes in the human body. This specialized 

tissue can be affected by various diseases, among which tumors 

are particularly serious. A brain tumor is an abnormal growth of 

cells within the brain or central spinal canal, which may be 

either benign or malignant. These tumors develop from different 

cell types, including glial, meningeal, or pituitary cells [1, 2, 3]. 
 

Symptoms and treatment options vary depending on the tumor's 

size and type. Common symptoms include headaches, cognitive 

impairment, vision problems, and motor dysfunction. Treatment 

may involve surgery, radiation therapy, or chemotherapy [2, 4]. 

Magnetic resonance imaging (MRI) is the preferred diagnostic 

method for brain tumors due to its excellent soft tissue 

visualization. Clinicians analyze MRI images to assess 

pathological conditions and determine appropriate treatments. 

However, this process depends heavily on human expertise and 

faces limitations such as time constraints, potential errors, and 

high costs [5, 6, 7]. 
 

To address these challenges, researchers are developing 

automated systems using artificial intelligence and machine 

learning technologies to improve diagnostic accuracy and 

efficiency [8, 9]. Current approaches for brain tumor 

classification in MRI images predominantly employ deep 

convolutional neural networks (CNNs) or leverage established 

benchmark models through transfer learning. 
 

In [10], a hybrid system combining deep feature integration with 

classical machine learning was introduced. MRI images 

underwent preprocessing to reduce noise and improve contrast 

before being processed by a specialized network with five 

convolutional layers, trained to extract deep numerical 

representations. An SVM algorithm then classified the extracted 
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features into one of three central nervous system (CNS) tumor 

types: meningioma, glioma, or pituitary. The model achieved 

96% accuracy, surpassing the performance of VGG16, 

GoogLeNet, and AlexNet models. 
 

The authors of [11] designed a CNN model with three 

convolutional-pooling blocks followed by a four-layer fully 

connected neural network to detect brain anomalies. Their 

system reached a test accuracy of 95.87%, while training 

accuracy surpassed 99%. 
 

In [12], a specialized architecture consisting of three 

convolutional blocks and a neural classifier was proposed. 

Using data augmentation, the model achieved a training 

accuracy of 99.31%, though validation accuracy remained at 

93.1%. The researchers claimed their approach outperformed 

traditional feature extraction methods such as Local Binary 

Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM). 
 

The work in [13] presented a complex system with five 

sequential feature extraction blocks, each containing three 

parallel convolutional layers. Their outputs were merged and 

processed by a fourth convolutional layer before down sampling 

through both max and average pooling. The combined features 

were then passed to the next block. After the final block, global 

average pooling was applied, followed by a fully connected 

three-layer neural network for classification. The model reached 

an accuracy of 96.4%. 
 

To avoid the challenge of designing custom architectures, some 

studies employ standard pre-trained models. For instance, [14] 

proposed a brain tumor classification system using InceptionV3 

and Xception for feature extraction, followed by an ensemble 

classifier (KNN, SVM, and RF). InceptionV3 slightly 

outperformed Xception, achieving 94.34% accuracy compared 

to 93.79%. 
 

Following a methodology similar to [14], the authors of [15] 

developed a system where features were extracted using 

DenseNet169, and classification relied on majority voting 

among an ensemble (RF, SVM, and XGBoost). The system was 

benchmarked against multiple deep models, including ResNet, 

VGG, and EfficientNet variants, achieving 95.10% accuracy 

with data augmentation. 
 

In [16], the researchers fine-tuned the You Only Look Once 

framework (YOLOv8) to detect brain tumors in MRI scans. The 

system attained an F1-score of 91.38% without augmentation 

and 92.47% with augmentation, calculated from the provided 

precision and recall values. 
 

Another study [17] also utilized YOLO, specifically YOLOv5, 

for neuro-oncological lesion detection, achieving an inferred 

F1-score of 86.84%. The network was later enhanced with an 

improved spatial attention (ESA) layer, boosting performance 

to an F1-score of 89.85%. 
 

The development of specialized deep models with numerous 

parameters trained on relatively small MRI datasets may lead to 

overfitting, where high training performance fails to generalize 

to validation data. While transfer learning eliminates the need 

for extensive parameterization, differences in task domains can 

limit the generation of effective features capable of achieving the 

required high performance. Additionally, producing an 

excessive number of features may negatively impact the final 

classification stage. This work aims to address these challenges 

through the following contributions:  
 

• Proposing a hybrid end-to-end system for enhanced 

recognition of central nervous system lesions in MRI 

images. 

• Investigating the effectiveness of fusing high-level 

features obtained from pre-trained deep models. 

• Validating the impact of applying class balancing in the 

feature space on the overall performance of the final 

classification model. 

• Conducting an ablation study with multiple metrics to 

quantify each component's contribution in the proposed 

system pipeline. 

 

░ 2. MATERIALS AND METHODS 
Figure 1 outlines the workflow of the proposed hybrid system. 

The process consists of the following key steps: 
 

1. Image acquisition and preprocessing: MRI images are 

loaded, processed, and prepared for feature extraction. 

2. Deep feature extraction: Two parallel pre-trained models, 

DenseNet121 and VGG16, transform the processed images into 

high-level numerical feature sets. 

3. Cumulative feature integration: The extracted features from 

both models are flattened and combined into a unified feature 

vector for each image. 

4. Class balancing: To mitigate bias and improve model 

performance, minority classes near the decision boundary are 

augmented. 

5.Dimensionality Optimization: Principal Component 

Analysis (PCA) is applied to optimize the feature space by 

reducing redundancy while preserving discriminative 

information. 

6. Classification: The system evaluates the refined features 

separately using Support Vector Machine (SVM) and k-Nearest 

Neighbors (KNN) algorithms to determine the final neuro-

oncological lesion classification. 
 

In line with common practice in recent literature [18, 19, 20, 21], 

the pipeline depicted in figure 1 applies class balancing and 

dimensionality reduction to the overall data distribution. While 

this established approach is computationally efficient, the 

theoretical concern of potential data leakage is acknowledged. 

To thoroughly validate the findings, a comprehensive analysis 

was conducted. As detailed in section 3.7, performance was 

rigorously evaluated under both this paradigm and a strict 

alternative where these steps are applied only to training folds, 

confirming the substantial and genuine advantages of the 

proposed feature fusion approach. 

http://www.ijeer.forexjournal.co.in/
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Figure 1. Proposed system architecture 
 

2.1. Dataset and Preprocessing 
The reliability of data-driven diagnostic systems depends 

critically on data quality. When models are trained on low-

resolution images containing inaccurate labels or datasets of 

uncertain origin, they produce unreliable results with limited 

clinical utility. Consequently, careful selection of appropriate 

datasets becomes essential for developing valid and clinically 

relevant models. 
 

This study employs the Figshare benchmark brain MRI dataset 

[22], consisting of 3064 images collected through collaborative 

efforts among medical experts and researchers across multiple 

Chinese hospitals. The dataset contains three clinically 

significant tumor categories with an imbalanced distribution: 

1426 glioma cases, 706 meningioma cases, and 930 pituitary 

tumor cases. This composition reflects the prevalence of major 

brain tumor types in clinical practice, ensuring the developed 

models maintain practical relevance. Representative examples 

from the dataset are presented in figure 2. 
 

All images underwent standard preprocessing procedures. First, 

they were uniformly resized to 224×224 pixels to optimize 

computational efficiency. The images were then normalized 

using mean subtraction to match ImageNet's distribution, zero-

centering the pixel values for model compatibility. 
 

 
 

Figure 2. Samples from the dataset employed in the study 

2.2. Feature Extraction 
In this study, two deep learning models, VGG16 [23] and 

DenseNet121 [24], are employed to extract features from brain 

tumor images. Both models were initially trained on the ImageNet 

benchmark dataset for natural image classification. By freezing 

their optimized weights and removing the top classification layer, 

the networks can be repurposed for forward-pass feature 

extraction. The architectural details of each model are described 

below. 
 

VGG16 is a convolutional neural network composed of 13 

learnable layers arranged sequentially across five blocks, followed 

by a neural classifier. As illustrated in table 1, the first and second 

blocks each contain two convolutional layers, whereas the third, 

fourth, and fifth blocks consist of three layers each. All 

convolutional layers employ a uniform 3×3 filter size. Each block 

concludes with a pooling layer to reduce spatial dimensionality. 

Due to its simple and systematic design, this deep model generates 

discriminative numerical features that can be effectively utilized 

by subsequent classification algorithms. 
 

DenseNet121, another convolutional neural network, 

distinguishes itself through skip connections that link each layer 

to every subsequent layer within a dense block. Table 1 presents 

its architecture alongside VGG16 for comparison. The network 

comprises four dense blocks separated by transition layers. Each 

dense block contains multiple sets of convolutional layers and 

normalization components, enabling the extraction of high-level 

features efficiently. Transition layers incorporate a 1×1 

convolution followed by pooling to maintain computational 

efficiency. This design promotes enhanced gradient flow during 

backpropagation, while feature reuse via skip connections serves 

as the primary advantage when employing the network as a feature 

extractor.  
 

Models for image feature extraction vary widely in their size and 

complexity. For instance, the VGG16 network is relatively 

shallow and fast, yet on ImageNet, it generates higher-quality 

features than lightweight models like MobileNetV1. In contrast, 

DenseNet121 uses dense connections to reuse features more 

http://www.ijeer.forexjournal.co.in/


                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 802-812 | e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                                      Multi-Model Deep Feature Fusion for Robust Detection 805 

efficiently than ResNet architectures, and it is also less 

computationally demanding than its counterparts. As shown in 

figure 3, visualizations from different layers of VGG16 and 

DenseNet121 reveal their unique feature extraction capabilities. 

By using these two models in parallel and strategically merging 

their outputs, we can create a powerful set of features that may 

improve classifier performance for detecting brain anomalies. 
 

░ Table 1. Architecture comparison of feature extraction 

layers in VGG16 and DenseNet121 
 

Component VGG16 DenseNet121 

Input 224×224×3 224×224×3 

Initial 

Layers 

(None – starts 

directly with conv 

layers) 

7×7 Conv (64), stride=2 → 

ReLU 

3×3 MaxPool, stride=2 

Block 1 

2 × [3×3 Conv (64) 

→ ReLU] 

2×2 MaxPool, 

stride=2 

Dense block: 

 6 × [1×1 Conv (128) → ReLU 

→ 3×3 Conv (32)] 

Transition layer: 1×1 Conv 

(128) → 2×2 AvgPool 

Block 2 

2 × [3×3 Conv 

(128) → ReLU] 

2×2 MaxPool, 

stride=2 

Dense block:  

12 × [1×1 Conv (128) → 

ReLU → 3×3 Conv (32)] 

Transition layer: 1×1 Conv 

(256) → 2×2 AvgPool 

Block 3 

3 × [3×3 Conv 

(256) → ReLU] 

2×2 MaxPool, 

stride=2 

Dense block:  

24 × [1×1 Conv (128) → 

ReLU → 3×3 Conv (32)] 

Transition layer: 1×1 Conv 

(512) → 2×2 AvgPool 

Block 4 

3 × [3×3 Conv 

(512) → ReLU] 

2×2 MaxPool, 

stride=2 

Dense block:  

16 × [1×1 Conv (128) → 

ReLU → 3×3 Conv (32)] 

Block 5 

3 × [3×3 Conv 

(512) → ReLU] 

2×2 MaxPool, 

stride=2 

— 

Output 

Features 
7×7×512 7×7×1024 

 

 
 

Figure 3. Reconstruction of MRI image features extracted from 

different layers of VGG16 and DenseNet121 

 

2.3. Feature Fusion 
Features obtained from different models often capture different 

information. Combining these features in a complementary 

manner can create a robust differential representation that 

mitigates the weaknesses and biases of individual models [25]. 

Several feature fusion methods are available, including element-

wise operations such as addition and multiplication, or weighted 

fusion, where learned weights are assigned to features. 
 

In this study, the simplest method for fusion, sequential stacking 

(also known as concatenation) [26], is used. Given feature vector 

F1 ∈ ℝn from the first model and F2 ∈ ℝm from the second model, 

the fused representation is: 
 

Z = F1 ⊕ F2 = [f11, ..., f1n, f21, ..., f2m] ∈ ℝn+m 
 

where ⊕ denotes the concatenation operation. This method 

uniquely preserves all original features without requiring complex 

parameter optimization. The resulting higher-dimensional feature 

space retains maximum discriminative information, though 

subsequent processing may need to address the increased 

dimensionality. 
 

2.4. Data Balancing in Feature Space 
Despite the quality and reliability of the dataset used, it exhibits 

class imbalance, characterized by majority and minority classes. 

This skewed distribution may lead the model to 

disproportionately learn patterns from the majority class, 

potentially biasing its classification performance toward specific 

tumor type. While conventional input space augmentation 

through image transformations could address this imbalance, 

such approaches risk exacerbating existing domain mismatches 

when utilizing models trained on different tasks. 
 

In contrast, this study implements feature space augmentation 

using the Borderline Synthetic Minority Oversampling 

Technique (Borderline-SMOTE) [27], an enhanced variant of 

the original SMOTE algorithm. Unlike standard SMOTE that 

generates synthetic samples through interpolation between 

arbitrary minority class pairs, Borderline-SMOTE specifically 

focuses on minority samples near classification boundaries, 

which represent the most challenging cases for accurate 

classification. 
 

The technique operates through the following precise steps: 

• Finding borderline samples. For each minority sample x: 

1. Find m nearest neighbors from all classes. 

2. Calculate minority_ratio = count(minority_neighbors)/m. 

3. Label x as: 

o Safe when minority_ratio > 0.5 (no action). 

o Borderline when 0 < minority_ratio ≤ 0.5 (keep for 

synthesis). 

o Noise when minority_ratio = 0 (discard). 

•  Generating synthetic samples. For each borderline x: 

1. Find k nearest neighbors from minority class only. 

2. Randomly select one neighbor s. 

3. Create a data point by interpolating between x and s 

according to the following formula: 

x_new = x + random(0, 1) × (s - x) 

http://www.ijeer.forexjournal.co.in/
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The algorithm's two critical parameters, m (defining the 

neighborhood size for borderline detection) and k (determining 

neighbors for synthetic sample generation), were configured to 

optimize the synthesis of informative minority class samples. 

This approach effectively augments the minority classes 

(meningiomas and pituitary tumors) while preserving the 

original distribution of the majority class (gliomas), with figure 

4 demonstrating the balanced outcome. 
 

 
 

Figure 4. Data distribution: (a) Before augmentation, (b) After 

augmentation 

 

2.5. Classification 
The numerical representations extracted from MRI images 

enable classification of brain lesion types. However, deep 

models such as DenseNet121 and VGG16 produce an extensive 

set of features relative to the limited sample size. Direct feature 

fusion followed by classification may compromise 

generalization performance while unnecessarily increasing 

computational complexity and processing time. Principal 

component analysis (PCA) serves as an effective solution for 

dimensionality reduction while preserving essential information 

[28]. In this implementation, the number of principal 

components was selected to ensure adequate variance capture. 

Figure 5 demonstrates the progressive dimensionality changes 

across all processing stages. The resulting reduced features feed 

into two machine learning classifiers: a support vector machine 

employing an RBF kernel and a k-nearest neighbors classifier 

utilizing Euclidean distance metrics, with their respective 

hyperparameters tuned for optimal accuracy. 

 

 
 

Figure 5. Dimensional shifts after each processing step 

 

░ 3. EXPERIMENTS, RESULTS AND 

DISCUSSION 
All experiments were conducted in a Google Colab environment 

using Python, leveraging cloud GPU resources for 

computational efficiency. The models were implemented 

primarily with the Keras deep learning API, supported by the 

scikit-learn library for general machine learning tasks. To assess 

model performance, we used an 80% training and 20% 

validation split (hold-out) and applied a rigorous 5-fold cross-

validation. The individual contributions of model components 

were also evaluated through a comprehensive ablation study. It 

should be noted that all results presented and discussed in this 

work correspond exclusively to the test dataset. This approach is 

critical because a model's true effectiveness is determined by its 

performance on data that was not used during training. The 

ability to generalize to unseen samples represents the most 

meaningful evaluation of a model's practical utility, as opposed 

to assessing performance on training data, which could yield 

unreliable performance measures. 
 

3.1. Hyperparameter Configuration 
The hyperparameters for all components of the pipeline were 

selected to balance model performance, generalization, and 

computational efficiency. A fixed random state of 42 was used 

across all stochastic processes to ensure the reproducibility of 

results. The specific choices are justified as follows: 
 

Borderline-SMOTE: The parameters were set to k = 1 and m = 

5. A small k value ensures that synthetic samples are generated 

very close to the borderline minority instances, preserving the 

local structure and avoiding the creation of noisy samples. The 

m value of 5 provides a sufficiently large neighborhood to 

reliably identify samples on the class decision boundary without 

being overly influenced by outliers. 
 

Principal Component Analysis (PCA): The number of 

components was set to 1000. This value was selected because it 

guarantees the capture of at least 90% of the explained variance 

while maintaining a consistent feature dimensionality across all 

model configurations for a fair comparative analysis. 
 

Support Vector Machine (SVM): An RBF kernel was chosen 

for its ability to model complex, non-linear decision boundaries. 

The regularization parameter C was set to 10. This value was 

found to provide a good trade-off between maximizing the 

margin and minimizing classification error, preventing the 

model from being either too rigid or too prone to overfitting. 
 

K-Nearest Neighbors (KNN): The number of neighbors was set 

to k = 1, using the Minkowski metric with power parameter p = 

2 (Euclidean distance). This choice is principled and aligns with 

the feature transformation: since the features were processed by 

PCA, which itself operates by maximizing variance in the 

Euclidean space, using the Euclidean distance for KNN ensures 

geometric consistency. The strong performance of this k = 1 

configuration suggests that the feature space created by our 

fusion and reduction pipeline is highly discriminative, making 

the closest neighbor a reliable predictor. 
 

3.2. VGG16 Feature-Based Model 
In this experiment, deep features are extracted by processing 

input images through a pretrained VGG16 convolutional neural 

network. The high-dimensional feature vectors then undergo 

principal component analysis (PCA) for dimensionality 

reduction while retaining the most discriminative information. 

As shown in figure 6, selecting the top 1000 principal 

components preserves 90.13% of the original data variance. 

These reduced-dimension features serve as input to the 

http://www.ijeer.forexjournal.co.in/
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classifiers. Model performance is evaluated through the 

classification report in table 2 and the confusion matrices in 

figure 7. The support vector classifier achieves 95.76% overall 

accuracy with an average F1 score of 95.31%, misclassifying 26 

test samples. Comparatively, the k-nearest neighbors classifier 

demonstrates slightly better performance with 95.92% 

accuracy, an average F1 score of 95.51%, and 25 misclassified 

instances. Both classifiers exhibit strong agreement in their 

predictive performance. 
 

 
Figure 6. PCA cumulative explained variance of the VGG16 features 

 

░ Table 2. Classification report of the VGG16 feature-based 

model. 
End 

classifier 
Category 

Precisi

on 

Sensitiv

ity 

F1-

score 

Mean-

F1 
ACC 

SVC 

Meningio

ma 
90.91 90.91 90.91 

95.31 95.76 Glioma 96.26 96.59 96.42 

Pituitary 98.86 98.31 98.58 

KNN 

Meningio

ma 
92.75 89.51 91.10 

95.51 95.92 Glioma 95.93 96.59 96.26 

Pituitary 98.33 100 99.16 

 

 

 
Figure 7. Confusion matrices of the VGG16 feature-based model: (a) 

SVM classifier, (b) KNN classifier 
 

3.3. DenseNet121 Feature-Based Model 
The system pipeline undergoes modification through 

replacement of the VGG16 feature extractor with a pretrained 

DenseNet121 architecture, while preserving all other system 

components. Variance analysis in figure 8 indicates that a 

minimal set of principal components explains over 90% of total 

variance, meeting standard analytical thresholds. However, 

experimental consistency is maintained through use of 1000 

features, capturing 99.53% of variance. Classification metrics in 

table 3 demonstrate model performance, with the SVM classifier 

achieving 96.25% accuracy and an average F1 score of 95.81%, 

while the KNN classifier achieves superior results of 97.06% 

accuracy and 96.84% average F1 score. These outcomes 

represent accuracy improvements of 0.49% and 1.14% 

respectively compared to the VGG16 implementation. 

Corresponding confusion matrices in figure 9 show reduced 

error rates, with 23 misclassified samples for SVM and 18 for 

KNN. 

 

 
 

Figure 8. PCA cumulative explained variance of the DenseNet121 

features 

 

http://www.ijeer.forexjournal.co.in/
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░ Table 3. Classification report of the DenseNet121 feature-

based model. 
 

End 

classifier 
Category 

Precisi

on 

Sensitivi

ty 

F1-

score 

Mean-

F1 
ACC 

SVC 

Meningio

ma 
91.10 93.01 92.04 

95.81 96.25 
Glioma 97.59 96.59 97.08 

Pituitary 98.31 98.31 98.31 

KNN 

Meningio

ma 
93.71 93.71 93.71 

96.84 97.06 
Glioma 96.94 97.27 97.10 

Pituitary 100 99.44 99.72 

 

 
 

 
Figure 9. Confusion matrices of the DenseNet121 feature-based 

model: (a) SVM classifier, (b) KNN classifier 

 

3.4. Deep Feature Fusion Model 
Fusing features extracted from VGG16 and DenseNet121 

networks provides more diverse information, improving 

representational power. However, this process can produce 

overlapping features and increase dimensionality. Figure 10 

shows that using PCA to reduce the dimensions of the deep 

fused features to a fixed number of 1000 components captures 

less variance (94.18%) than DenseNet121 alone but still 

exceeds the variance obtained with VGG16. The classification 

report in table 4 highlights the superiority of the fused feature 

model over both individual networks. The SVM classifier 

achieved an accuracy of 97.39% and an average F1-score of 

97.06%, while the KNN classifier reached an accuracy of 

98.21% and an average F1-score of 98.10%. The confusion 

matrices in figure 11 indicate a low number of misclassified 

samples, with no more than 16 for SVM and only 11 for KNN. 
 

 
Figure 10. PCA cumulative explained variance of the fused features 

 

░ Table 4. Classification report of the deep feature fusion 

model 
 

End 

classifier 
Category 

Precisi

on 

Sensitivi

ty 

F1-

score 

Mean

-F1 
ACC 

SVC 

Meningio

ma 
93.20 95.80 94.48 

97.06 97.39 
Glioma 98.62 97.61 98.11 

Pituitary 98.86 98.31 98.58 

KNN 

Meningio

ma 
95.83 96.50 96.17 

98.10 98.21 
Glioma 98.29 97.95 98.12 

Pituitary 100 100 100 

 

 
 

 
Figure 11. Confusion matrices of the deep feature fusion model: (a) 

SVM classifier, (b) KNN classifier 

http://www.ijeer.forexjournal.co.in/
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3.5. Augmented Feature Fusion Model 
This experiment integrates a Borderline SMOTE component 

into the deep feature fusion model to balance the dataset and 

increase its size. Following the same approach as previous 

cases, the high-dimensional feature space is processed using 

PCA. Figure 12 displays the explained variance relative to the 

number of principal components, with the first 1000 

components capturing over 95% of the variance. The 

classification results in table 5 demonstrate outstanding 

performance, with SVM achieving near-perfect accuracy of 

99.53% and average F1 score of 99.51%, while KNN reached 

98.71% accuracy and 98.67% average F1 score. The confusion 

matrices in figure 13 reveal minimal misclassifications: only 4 

samples for SVM and 11 for KNN. The proposed system shows 

clear improvements over individually employed pretrained 

networks, with SVM accuracy increasing by more than 3% 

compared to both VGG16 and DenseNet121 based models, 

while KNN shows improvements of 2.79% over VGG16 and 

1.65% over DenseNet121. 
 

 
Figure 12. PCA cumulative explained variance of the augmented 

fused features 
 

░ Table 5. Classification report of the augmented feature 

fusion model 
 

End 

classifi

er 

Category 
Precisi

on 

Sensitiv

ity 

F1-

score 

Mean-

F1 
ACC 

SVC 

Meningio

ma 
98.39 100 99.19 

99.51 99.53 Glioma 100 99.05 99.52 

Pituitary 100 99.66 99.83 

KNN 

Meningio

ma 
97.17 98.36 97.76 

98.67 98.71 Glioma 98.73 97.79 98.26 

Pituitary 100 100 100 

 

 
 

 
Figure 13. Confusion matrices of the augmented feature fusion model: 

(a) SVM classifier, (b) KNN classifier. 

 
3.6. Statistical Significance of Performance 

Improvements 

To assess whether significant differences exist between model 

configurations, researchers typically employ the paired t-test. 

This statistical method compares means from two related groups 

to verify that observed differences reflect true effects rather than 

random variation. Since the hold-out method yields only a single 

test value, it cannot support paired t-test analysis. Consequently, 

a cross-validation approach becomes essential to generate 

multiple evaluation metrics for each model. 
 

Table 6 presents performance statistics, while figure 14 

compares the accuracy values for both the 5-fold cross validation 

and hold-out approaches. The close alignment of accuracy 

values between these evaluation approaches for each model 

suggests minimal bias toward specific data subsets and indicates 

strong generalizability. We utilize the cross-validation fold 

accuracy values to perform paired t-tests comparing instances of 

the developed model. Table 7 displays the resulting p-values and 

Cohen's d effect sizes for each model pair comparison. The p-

values estimate the probability that observed performance 

differences occurred by random chance (with p < 0.05 indicating 

statistical significance), while Cohen's d quantifies the 

magnitude of these differences, where values ≥0.2, ≥0.5, and 

≥0.8 typically represent small, medium, and large effects 

respectively. 
 

The analysis reveals that both classifiers achieve comparable 

performance with either VGG16 or DenseNet121 as the feature 

extractor. However, fusing features from both networks 

http://www.ijeer.forexjournal.co.in/
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produces statistically significant performance gains over either 

individual model. The augmented feature fusion model shows 

additional gains, though these require further methodological 

consideration as discussed in section 3.7. 
 

░ Table 6. Statistical performance evaluation using 5-fold 

cross-validation 
 

Model 

configuration 
Classifier 

Mean 

accuracy 

Standard 

deviation 

95% 

Confidence 

interval 

VGG16 

SVC 96.38 
0.79 

(95.39-

97.36) 

KNN 96.15 
0.63 

(95.37-

96.93) 

DenseNet121 

SVC 96.70 
0.71 

(95.82-

97.58) 

KNN 96.31 
0.66 

(95.49-

97.13) 

Feature 

fusion  

SVC 97.49 
0.62 

(96.72-

98.25) 

KNN 97.68 
0.57 

(96.97-

98.39) 

Augmented 

feature fusion 

SVC 98.83 
0.65 

(98.03-

99.63) 

KNN 98.60 
0.39 

(98.12-

99.08) 

 

 
Figure 14. Accuracy performance across models: 5-Fold cross-

validation and hold-out results 
 

░ Table 7. Pairwise statistical significance across tested 

models 
 

Comparison 

SCV KNN 

p-value 
Cohen's 

d 
p-value 

Cohen's 

d 

VGG16 vs. 

DenseNet121 
0.3253 0.50 0.5778 0.27 

VGG16 vs. Fused 

features 
0.0022 3.14 0.0072 2.26 

DenseNet121 vs. 

Fused features 
0.0218 1.63 0.0014 3.52 

Fused features vs. 

Augmented fused 

features 

0.0121 1.95 0.0033 2.81 

 

3.7. Robustness to Data Processing Sequence 
Principal Component Analysis (PCA) and Borderline-Synthetic 

Minority Oversampling Technique (Borderline-SMOTE) are 

commonly applied as preprocessing techniques prior to dataset 

partitioning in machine learning workflows [18, 19, 20, 21]. 

Although efficient, this approach introduces a potential risk of 

data leakage. To ensure the validity of the findings, a systematic 

investigation into the impact of processing sequence on model 

performance was conducted using 5-fold cross-validation. 
 

The analysis evaluated the proposed feature fusion model 

against baseline individual models (VGG16 and DenseNet121) 

across key processing sequences. The results, detailed in table 8, 

yield two critical observations. Firstly, the performance of the 

feature fusion model exhibits remarkable stability concerning 

the timing of PCA application. The minimal performance 

degradation observed when PCA is applied post-split confirms 

that the superior discriminative power of the fused features is an 

inherent property and not an artifact of data leakage. 
 

Secondly, the analysis of Borderline-SMOTE provides two key 

insights. When applied in a post-split manner, it offers no 

performance benefit for the SVC and only a minor decrement for 

KNN compared to the baseline feature fusion. This indicates that 

the feature representation learned by the multi-model fusion is 

inherently robust to class imbalance, effectively mitigating the 

need for synthetic oversampling. However, the notable 

performance difference between the pre-split and post-split 

application of Borderline-SMOTE suggests that the high results 

reported by the former can be attributed to data leakage rather 

than a genuine improvement in the model's generalization 

capability. 
 

░ Table 8. Performance comparison across model 

configurations (5-fold cross-validation mean accuracy %). 
 

Model 

configuration 

PCA 

before 

split 

PCA 

after 

split 

Borderline-

SMOTE 

before split 

Borderline-

SMOTE 

after split 

VGG16 + SVC 96.38 95.73 — — 

VGG16 + 

KNN 

96.15 94.91 
— — 

DenseNet121 

+ SVC 

96.70 96.31 
— — 

DenseNet121 

+ KNN 

96.31 95.99 
— — 

Feature fusion 

+ SVC 

97.49 97.03 
98.83 97.03 

Feature fusion 

+ KNN 

97.68 97.00 
98.60 96.77 

 

This comprehensive evaluation confirms that the performance 

advantages of the multi-model feature fusion approach remain 

substantial and are not dependent on specific data processing 

implementation details. 

 

░ 4. LIMITATIONS AND FUTURE WORK 

This work is subject to several important limitations that help 

define a clear pathway for future research. 
 

4.1. Dataset and Benchmarking Limitations 
The study utilizes the Figshare brain tumor dataset, which is 

characterized by its high-quality, professional curation under 

institutional oversight, ensuring label integrity and ethical 

compliance. This standard of quality differentiates it from other 

publicly available brain tumor datasets that are often scraped 

http://www.ijeer.forexjournal.co.in/
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from the internet without rigorous validation and are 

consequently less reliable for robust benchmarking [29]. 
 

However, a key limitation is that the data was collected 

exclusively from Chinese institutions, meaning the trained 

models may exhibit institutional and demographic biases, 

potentially limiting their immediate global applicability. 

Furthermore, a critical consideration is the dataset's splitting 

methodology. The dataset does not contain duplicated images 

from the same patient, which reduces the risk of data leakage 

and makes the established image-level splitting protocol a sound 

and standard choice. To our knowledge, no prior work on this 

dataset has implemented a patient-level split; therefore, 

deviating from this universal precedent would invalidate all 

direct comparisons with the state-of-the-art, which is a 

fundamental aspect of our performance evaluation. Future work 

should pursue patient-level splits on larger, multi-institutional 

datasets. 

 

4.2. Clinical Translation and Explainability 
The clinical applicability of the proposed system requires 

significant further development. Our current work serves as a 

proof-of-concept, demonstrating the performance gains from 

multi-model feature fusion. For real-world clinical adoption, 

essential next steps include rigorous validation in live diagnostic 

settings and on data from diverse medical centers. 
 

While this study provided visualizations of discriminative 

features from the individual VGG16 and DenseNet121 models, 

generating a unified, human-interpretable explanation for the 

final prediction based on the fused feature space remains a 

complex challenge to be addressed in future work. Finally, 

while the model successfully classifies the three most prevalent 

tumor types (comprising approximately 75% of clinical cases), 

expanding its diagnostic scope to include a wider spectrum of 

rarer neuro-oncological pathologies is crucial for enhancing its 

overall clinical utility and impact. 

 

░ 7. CONCLUSION 
This work presents an effective deep learning approach for 

detecting brain lesion types in MRI images, specifically 

targeting meningioma, glioma, and pituitary tumors. The 

proposed system employs a dual-network architecture 

combining VGG16 and DenseNet121 for parallel feature 

extraction from processed MRI scans. These complementary 

networks produce deep features that are fused through 

sequential stacking, yielding a robust numerical representation 

of the input images. 
 

To enhance the system's efficiency, principal component 

analysis optimizes the feature space by preserving maximum 

variance during dimensionality reduction. A comprehensive 

investigation into class balancing revealed that the proposed 

feature fusion inherently mitigates class imbalance, 

demonstrating robust performance without relying on synthetic 

augmentation. For final classification, the system leverages both 

support vector machines and k-nearest neighbors, confirming 

the feature representation's quality across different classifier 

types. 

The model's validity is examined through hold-out testing and 5-

fold cross-validation, supported by ablation studies and paired t-

test analysis that verify each component's contribution. A 

methodological robustness analysis further confirms that the 

performance advantages are genuine and not an artifact of data 

processing sequences. These results demonstrate the system's 

superior performance compared to existing methods and suggest 

the proposed approach could serve as a valuable decision-

support tool for clinical specialists, potentially improving both 

the speed and accuracy of diagnostic processes for brain lesions. 
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