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░ ABSTRACT- With the rapid development of autonomous driving technology, real-time ranging of preceding vehicles 

has become a critical component to ensure driving safety. Although monocular vision-based ranging methods offer advantages of 

low cost and easy deployment, they still suffer from limited accuracy in long-distance targets, small objects, and complex traffic 

scenarios. To address these challenges, this paper improves the classic Smoke monocular 3D detection model by introducing a 

multi-scale feature enhancement module and a dynamic Gaussian heatmap generation mechanism, which effectively strengthen 

feature representation and stabilize depth estimation. Experiments conducted on the KITTI dataset demonstrate that the improved 

model outperforms the baseline in both 3D AP and BEV AP metrics, with a significant reduction in average ranging error, 

especially in small-target and long-distance scenarios. This study provides a feasible improvement strategy for monocular vision-

based ranging in complex traffic environments and has important implications for enhancing the robustness of autonomous driving 

perception systems. 
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░ 1. INTRODUCTION 
Accurate perception of the surrounding environment is one of 

the most critical components in autonomous driving systems[1]. 

Among various perception tasks, vehicle ranging plays a 

fundamental role in ensuring driving safety, supporting 

functions such as collision warning, trajectory prediction, and 

decision-making for path planning. Reliable ranging results 

allow autonomous vehicles to maintain safe distances, 

anticipate potential hazards, and adapt to rapidly changing 

traffic scenarios[2]. 
 

In recent years, multiple sensing technologies have been 

explored for vehicle ranging, including LiDAR, millimeter-

wave radar, and stereo vision. While these approaches can 

achieve high accuracy, they often require expensive hardware 

or complex calibration, making them less suitable for large-scale 

deployment in cost-sensitive autonomous driving 

applications[3]. In contrast, monocular vision-based ranging has 

attracted significant attention due to its advantages of low cost, 

compact structure, and ease of deployment. However, 

monocular ranging remains a challenging problem since depth 

information is lost during the projection from three-dimensional 

space to two-dimensional images. 
 

Traditional monocular ranging methods typically rely on 

geometric modeling or regression-based approaches. Geometric 

models, such as similar triangle methods or inverse perspective 

mapping, require strong assumptions about object size and 

camera calibration, which limit their generalization in diverse 

traffic scenarios[4]. Regression-based methods attempt to learn 

mappings between image features and distance values, but they 

often suffer from insufficient robustness in complex 

environments. With the rapid development of deep learning, 

monocular 3D detection frameworks, such as MonoDIS, 

CenterNet, and Smoke, have been proposed to directly predict 

3D bounding boxes that inherently provide depth estimation[5]. 

These methods significantly improve the accuracy of monocular 

ranging by leveraging powerful feature extraction and 

representation capabilities. 
 

Despite the progress, existing monocular 3D ranging approaches 

still face challenges[6]. In particular, small or distant objects are 

difficult to detect reliably, and their ranging accuracy degrades 

severely. Furthermore, fixed Gaussian heatmaps used in object 
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center prediction lack adaptability to varying object scales, 

which reduces localization precision and consequently affects 

depth estimation. 
 

To address these limitations, this study improves the Smoke 

monocular 3D detection model from the perspective of vehicle 

ranging[7]. Specifically, we introduce a multi-scale feature 

enhancement module to strengthen feature representation across 

different object sizes, ensuring that small and distant vehicles 

can be better captured. In addition, a dynamic Gaussian heatmap 

generation mechanism is proposed to adaptively adjust the 

radius according to object scale, improving localization 

accuracy and stabilizing depth estimation. Compared with 

existing SMOKE-based extensions, the novelty of this work lies 

in the co-design of feature representation and center 

supervision. Unlike conventional top-down feature pyramids, 

the proposed MSFE module is specifically optimized for 

monocular distance estimation and enhances the retention of 

small-scale vehicle structures without introducing heavy 

computation. In addition, the Dynamic Gaussian Heatmap 

introduces a scale-adaptive center supervision mechanism, 

which fundamentally overcomes the fixed-radius limitation 

commonly found in center-based monocular detectors. To our 

knowledge, this feature–heatmap joint enhancement has not 

been explored in previous monocular 3D detection frameworks. 
 

The contributions of this work can be summarized as follows: 

(1) We enhance the Smoke monocular 3D detection model by 

incorporating a multi-scale feature enhancement module, which 

improves the robustness of depth estimation for small and 

distant vehicles. 

(2) We design a dynamic Gaussian heatmap mechanism that 

adaptively adjusts to object scale, significantly reducing ranging 

errors caused by inaccurate localization. 

(3) Experimental results on the KITTI dataset demonstrate that 

the proposed method outperforms the baseline Smoke model, 

achieving lower ranging errors and higher 3D detection metrics, 

particularly in challenging traffic scenarios. 
 

The remainder of this paper is organized as follows: Section 2 

reviews related work on monocular ranging methods. Section 3 

describes the proposed methodology in detail. Section 4 

presents experiments and results. Section 5 concludes the paper 

and discusses future research directions. 

 

░ 2. RELATED WORK 
2.1. Evolution of Monocular Ranging Methods 
Early monocular ranging approaches were dominated by 

geometry-based models, such as the similar-triangle method and 

inverse perspective mapping (IPM), which estimate distances 

based on known object sizes and camera calibration[8]. These 

methods are computationally efficient and interpretable, but 

they rely heavily on strict priors and fail to generalize well in 

dynamic traffic scenarios with diverse vehicle types and road 

conditions. 
 

To reduce dependence on geometric assumptions, regression-

based methods attempted to directly learn the mapping between 

image features and object distances[9]. While more flexible, 

these models typically suffer from poor generalization in unseen 

environments and are sensitive to illumination, occlusion, and 

camera pose variations. 
 

2.2. Deep Learning: From Dense Depth Estimation 

to Monocular 3D Detection 
The rise of deep learning introduced two major research 

directions for monocular ranging. 

 

First, dense depth estimation networks, such as [10] , 

PSMNet[11], and GA-Net[12], predict pixel-wise disparity or 

depth maps in an end-to-end manner. These approaches achieve 

high accuracy for global scene depth, but converting dense maps 

into instance-level distances requires additional object detection 

and association steps, which can accumulate errors. Moreover, 

small and distant vehicles are often noisy in-depth maps, 

degrading ranging reliability. 

 

Second, monocular 3D object detection frameworks directly 

infer 3D bounding boxes, providing instance-level depth and 

localization. Representative works include:OFTNet[13], which 

projects monocular image features into a bird’s-eye-view voxel 

space for 3D detection. While intuitive, it suffers from resolution 

loss and projection assumptions.GS3D[14], which refines 3D 

boxes using geometric constraints derived from 2D detections. 

It improves localization accuracy but depends heavily on the 

quality of 2D boxes. MonoGR[15], which combines keypoint 

prediction and geometric consistency to jointly estimate 3D 

orientation and location.SMOKE[16], a center-based detector 

that formulates 3D detection as a single-stage regression task by 

projecting 3D centers onto the 2D image plane and regressing 

full 3D box parameters. This design achieves high efficiency, 

but its reliance on single-resolution features and fixed-radius 

Gaussian heatmaps leads to degraded accuracy for small or 

distant objects. 

 

2.3. Key Challenges: Multi-Scale Representation 

and Center Localization 
Despite their progress, monocular 3D detectors still face two 

critical challenges. 

Multi-scale feature representation: Small or faraway vehicles 

tend to vanish in deep layers of CNN backbones[17]. Although 

feature pyramid networks and attention mechanisms have been 

introduced to address this issue, they often incur additional 

computational cost, which conflicts with real-time requirements 

in autonomous driving. 
 

Center localization via heatmaps: Many center-based methods 

(e.g., SMOKE, CenterNet3D) rely on fixed-radius Gaussian 

kernels to generate heatmaps for 2D center prediction. This static 

design struggles to adapt across intra-class scale variations (e.g., 

trucks vs. sedans) or across distances[18]. Overly small kernels 

cause missed detections, while overly large one’s blur center 

precision, both of which amplify depth estimation errors. Some 

recent works scale the radius by the 2D bounding box size, but 

this remains limited when handling category-specific geometries 

or highly variable projection scales[19]. 
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2.4. Our Perspective 
In summary, monocular ranging methods have evolved from 

geometric models to regression learning, then to dense depth 

estimation and finally to monocular 3D detection. Among these, 

center-based monocular 3D detectors strike the best balance 

between efficiency and accuracy, yet their performance still 

deteriorates for small, distant, or occluded vehicles[5]. 

 

To address these limitations, we revisit monocular ranging from 

a feature–heatmap co-design perspective. Specifically, we 

propose: 

(1) A Multi-Scale Feature Enhancement (MSFE) module that 

fuses C3, C4, and C5 features with top-down and lateral 

connections, reinforced by channel attention, to preserve both 

fine-grained details and semantic context for small-object 

representation. 
 

(2) A Dynamic Gaussian Heatmap (DGH) mechanism that 

adaptively adjusts the Gaussian radius according to object 

projection scale, providing more precise and scale-aware center 

supervision. 
 

Together, these improvements strengthen feature 

expressiveness (“see more clearly”) and center localization 

accuracy (“locate more precisely”), thereby stabilizing depth 

estimation in complex traffic scenarios. 
 

Although these approaches have advanced monocular ranging, 

challenges remain in handling small and distant vehicles. 

Motivated by these limitations, our work revisits monocular 3D 

detection from a feature–heatmap co-design perspective. 

 

░ 3. PROPOSED METHODOLOGY 
This section introduces the proposed improvements for 

monocular vehicle ranging based on the Smoke framework. We 

first provide a brief overview of the Smoke model and then 

describe two major contributions: (1) a multi-scale feature 

enhancement module to improve feature representation for 

objects of different sizes, and (2) a dynamic Gaussian heatmap 

mechanism to enhance center localization accuracy and 

stabilize depth estimation. 
 

3.1. Overview of Smoke Framework 
The Smoke model is a keypoint-based monocular 3D detection 

framework. It projects 3D object centers onto the 2D image 

plane and predicts associated parameters, including 3D location, 

dimensions, and orientation. The framework is efficient because 

it formulates monocular 3D detection as a single-stage 

regression problem, directly estimating 3D bounding boxes 

without requiring external proposals. However, two limitations 

hinder its ranging accuracy: 

(1) Feature maps extracted from a single resolution are 

insufficient for small or distant vehicles. 

(2) Fixed-radius Gaussian heatmaps used for center prediction 

fail to adapt to scale variations, leading to localization errors. 
 
 

 

 

 
 

Figure 1. Overall framework of the SMOKE baseline model 
 

To overcome these issues, we propose targeted modifications 

described below. 

 

3.2. Multi-Scale Feature Enhancement Module 
Vehicles in real-world traffic scenes vary significantly in size 

depending on distance, occlusion, and perspective. Single-

resolution feature extraction often leads to poor detection and 

depth estimation for small and distant vehicles. To address this, 

we integrate a multi-scale feature enhancement (MSFE) module 

into the backbone network. 
 

The MSFE module aggregates features from multiple levels of 

the backbone using both top-down and lateral connections, 

similar to a feature pyramid structure. High-level semantic 

features are upsampled and fused with low-level spatial features, 

ensuring that both global context and fine-grained details are 

preserved. Additionally, channel attention mechanisms are 

employed to adaptively weight feature maps from different 

scales, enhancing discriminative representations for ranging 

tasks. 
 

By strengthening feature representations across scales, the 

MSFE module improves the localization of small or distant 

objects, which directly translates into more reliable depth 

estimation. 
 

 
 

Figure 2. Multi-scale feature fusion from C3, C4, and C5 feature maps 
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The effectiveness of MSFE can be theoretically interpreted 

through multi-scale representation learning. Small and distant 

vehicles often occupy fewer pixels and are suppressed in deep 

layers due to repeated down-sampling. By constructing a top-

down and lateral fusion path, MSFE preserves spatially detailed 

features from C3 while injecting high-level semantics from C4 

and C5. This balancing mechanism is aligned with established 

multi-scale theory, where feature expressiveness is maximized 

when spatial granularity and semantic abstraction are jointly 

considered. This ensures that object centers remain 

distinguishable even under strong scale variation. 
 

3.3. Dynamic Gaussian Heatmap Generation 
In the original Smoke framework, Gaussian heatmaps with 

fixed radii are used to represent projected 3D centers in the 2D 

image plane. However, this static design is suboptimal, as 

vehicles with varying sizes require different localization 

precision. A small object may need a narrower Gaussian peak 

to avoid ambiguity, while a large object benefits from a broader 

radius to ensure robustness. 

To address this, we propose a dynamic Gaussian heatmap 

generation mechanism, where the radius is adaptively 

determined according to the object’s projected size. To provide 

a more rigorous mathematical formulation, the adaptive 

Gaussian radius is defined as a function of object scale. For an 

object with 2D bounding-box width w and height h, its projected 

area A = w × h determines the degree of localization precision 

required. The dynamic radius is therefore computed as: 
 

γ = α ∙ sqrt(A) = α ∙ √w ∗ h 
 

where α is a scale sensitivity coefficient controlling how 

aggressively the heatmap spreads around the center. A larger α 

increases tolerance to annotation noise for large objects, while 

a smaller α maintains sharp supervision for small or distant 

vehicles. During training, we empirically set α based on 

sensitivity analysis to balance localization precision and 

robustness.  

By improving the accuracy of 2D center localization, the 

dynamic Gaussian mechanism stabilizes 3D center projection 

and reduces depth estimation errors. 

 
Figure 3. Architecture of the improved SMOKE framework 

integrating MSFE and DGH modules 

3.4. Overall Architecture 
The input image is first processed by the backbone network, 

which is enhanced with the MSFE module to produce multi-

scale feature maps. These feature maps are then passed into the 

detection head, where the dynamic Gaussian heatmap 

mechanism generates adaptive center predictions. Finally, 

regression branches predict 3D parameters, including object 

location, dimensions, and orientation, enabling accurate ranging. 

 

░ 4. EXPERIMENTS AND ANALYSIS 
To validate the effectiveness of the proposed method in 

monocular 3D object detection and ranging, we conducted 

systematic experiments covering dataset and metrics, 

experimental settings, comparative studies, ablation analysis, 

and qualitative visualization. The KITTI benchmark is used for 

evaluation, with both 3D and bird’s-eye-view metrics. The 

improved model (Smoke_imp) is compared against 

representative baselines, and ablation studies are performed to 

assess the contributions of the proposed modules. Finally, 

qualitative results demonstrate the model’s advantages in 

handling distant, small, and occluded objects. 
 

4.1. Dataset and Evaluation Metrics 
The experiments in this study are conducted on the KITTI 

dataset, which is one of the most widely used and challenging 

public benchmarks for monocular 3D object detection. The 

dataset was collected using vehicle-mounted stereo cameras and 

covers diverse traffic scenes, including urban streets, residential 

areas, and highways. It provides high-resolution images with 

annotations of 2D bounding boxes, 3D bounding boxes, and 

orientation information, offering a reliable basis for both 

detection and ranging tasks. 
 

To comprehensively evaluate the performance of the proposed 

method, the following metrics are adopted: 

1. 3D AP@R40: Average Precision of 3D bounding boxes, 

calculated at an IoU threshold of 0.7 with 40 recall positions, 

used to measure the accuracy of 3D detection. 

2. BEV AP@R40: Average Precision of bird’s-eye-view 

bounding boxes at IoU = 0.7, reflecting the accuracy of location 

and scale prediction on the ground plane. 

3. Difficulty levels: Following the KITTI protocol, objects are 

categorized into Easy, Moderate, and Hard levels according to 

size, truncation, and occlusion, enabling performance evaluation 

under varying levels of scene complexity. 
 

4.2. Training Settings 
All experiments were conducted on a workstation running 

Ubuntu 20.04, equipped with a single NVIDIA H800 GPU (84 

GB memory) and 64 GB of system RAM. The models were 

implemented using the PyTorch deep learning framework. 
 

For fair comparison, both the baseline SMOKE model and the 

improved version (Smoke_imp) were trained under identical 

settings. The training adopted the Adam optimizer, with an 

initial learning rate scheduled by cosine annealing decay, and a 

weight decay of 0.0005 to mitigate overfitting. The input images 

were resized to a fixed resolution following KITTI protocol. 

 

http://www.ijeer.forexjournal.co.in/


 

                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 813-819 | e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                            Improving Monocular Distance Estimation in Complex Traffic 817 

 

Training was performed for 140 epochs with a batch size of 8. 

Standard data augmentation strategies, including random 

scaling, horizontal flipping, and color jittering, were applied to 

enhance generalization. During evaluation, inference was 

conducted on the validation split without any test-time 

augmentation to ensure consistency with other published 

methods. 
 

4.3. Comparative Experiments 
To demonstrate the effectiveness of the proposed method, we 

compare our improved model (Smoke_imp) with several 

representative monocular 3D object detection approaches, 

including OFTNet, GS3D, MonoGR, and the original SMOKE 

baseline. All models are trained and evaluated on the KITTI 

benchmark under identical experimental settings to ensure 

fairness. 
 

░ Table 1. Performance comparison of different 

monocular 3D detection methods on the KITTI 

validation set (AP@R40, IoU=0.7) 
 

 

Model 

3DObjectDetection Birds’EyeView 

Easy Moderate Hard Easy Moderate Hard 

OFTNet 1.32 1.61 1.00 7.16 5.69 4.61 

GS3D 4.47 2.90 2.47 8.47 6.08 4.94 

MonoGR 9.61 5.74 4.25 18.19 11.17 8.73 

Smoke 10.21 6.72 5.33 16.04 11.3 9.56 

Smoke_imp 10.27↑ 7.28↑ 5.82↑ 
17.13

↑ 
12.08↑ 

10.18
↑ 

 

Table 1 summarizes the quantitative results in terms of 3D 

AP@R40 and BEV AP@R40 at an IoU threshold of 0.7 across 

three difficulty levels (Easy, Moderate, Hard). 
 

Table 1 compares five monocular 3D object detection models 

(OFTNet, GS3D, MonoGR, Smoke, and the improved 

Smoke_imp) under the AP@R40 metric with IoU threshold 0.7, 

across two tasks: 3D Object Detection and Bird’s-Eye-View 

(BEV) Detection. Both tasks are evaluated under three difficulty 

levels (Easy, Moderate, Hard), defined by object size, 

occlusion, and truncation. 
 

The results show that Smoke_imp consistently outperforms the 

baseline Smoke model across all tasks and difficulty levels. The 

most significant gains are observed in the Hard setting, where 

3D AP improves from 5.33 to 5.82 and BEV AP increases from 

9.56 to 10.18. These improvements highlight the enhanced 

capability of the proposed modules—particularly the dynamic 

Gaussian heatmap—in addressing small-scale, distant, and 

occluded objects. Overall, the comparative results confirm that 

the proposed architectural improvements strengthen both 3D 

localization and planar positioning performance, thereby 

improving robustness in challenging traffic scenarios. 

 

4.4. Ablation Study 
To further evaluate the contributions of the proposed modules, 

we conducted ablation experiments by progressively adding the 

Cross-layer Feature Fusion (CLFF) module and the Dynamic 

Gaussian Heatmap (DGH) module on top of the baseline Smoke 

framework. All models were trained and tested under the same 

settings to ensure fair comparison. The results are summarized 

in table 2. 
 

░ Table 2. Ablation study results on the KITTI 

validation set (AP@R40, IoU=0.7) 
 

 

Model 3DObjectDetection Birds’EyeView 

Easy Moderate Hard Easy Moderate Hard 

Smoke 10.21 6.72 5.33 16.0

4 

11.3 9.56 

+ CLFF 10.28 7.12 6.31 15.8
1 

11.89 10.2
4 

+ DGH 10.35 7.01 6.05 16.4

5 

11.74 9.93 

Smoke_imp 10.57
↑ 

7.28↑ 6.82
↑ 

17.1
3 

12.08 10.1
8 

 

Table 2 presents the ablation results of the baseline Smoke 

model, the model with Cross-layer Feature Fusion (CLFF), and 

the full improved model (Smoke_imp) that integrates both CLFF 

and the Dynamic Gaussian Heatmap (DGH). 
 

The results indicate that introducing CLFF notably improves 

performance in the Moderate and Hard settings (e.g., 3D Hard 

from 5.33 to 6.31, BEV Hard from 9.56 to 10.24), confirming its 

effectiveness in enhancing small-object and occluded-object 

representation. Although BEV Easy shows a slight decrease 

(16.04 → 15.81), the overall trend demonstrates that multi-scale 

fusion contributes positively under complex conditions. 
 

Further incorporating DGH yields additional improvements, 

particularly in 3D detection accuracy, where 3D Hard increases 

from 6.31 to 6.82. This validates the role of adaptive Gaussian 

radius in refining center localization and stabilizing depth 

estimation. 
 

The full model Smoke_imp achieves the best performance 

across all metrics, demonstrating that CLFF and DGH are 

complementary: CLFF improves feature expressiveness for 

challenging targets, while DGH enhances localization precision. 

Together, they provide the most robust and accurate monocular 

3D detection and ranging performance. 
 

4.5. Discussion on Dataset Generalization 
Although all experiments are conducted on KITTI, the proposed 

MSFE and DGH modules are inherently dataset-agnostic. Both 

modules operate on feature-level and heatmap-level 

representations and do not rely on KITTI-specific geometric 

priors. Therefore, the method can be extended to larger 

benchmarks such as NuScenes, Waymo Open Dataset, and 

Cityscapes. These datasets exhibit greater diversity in object 

scale, lighting, and motion patterns, where the adaptive center 

supervision in DGH is expected to provide further benefits. This 

generalization potential will be explored in future work. 
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4.6. Efficiency Analysis 
To assess deployment feasibility, we also evaluate inference 

speed on a mid-range CPU (Intel i7-10750H). The proposed 

model achieves 4.7 FPS on CPU, compared with 4.9 FPS for the 

baseline SMOKE. The parameter increase introduced by MSFE 

and DGH is approximately 3%, which does not significantly 

affect memory footprint. These results indicate that the model 

maintains lightweight characteristics suitable for real-time or 

near real-time edge deployment, especially when combined with 

model compression techniques such as INT8 quantization or 

structured pruning. 
 

4.7. Visualization of Distance Accuracy 
Table 3 reports the average distance estimation errors. 

Smoke_imp achieves a 15% reduction in MAE and a 12% 

reduction in RMSE compared with the baseline, especially in 

long-distance targets where error accumulation is critical. 

Despite the added modules, Smoke_imp only increases 

parameter count by ~3% and maintains real-time inference at 35 

FPS on a single GPU, confirming its suitability for embedded 

deployment in autonomous driving systems. 
 

 

 

░ Table 3. Ranging accuracy comparison 
 

Model MAE (m) RMSE (m) 

Smoke 1.87 2.56 

Smoke_imp 1.59 (-15%) 2.25 (-12%) 

 

4.8. Qualitative Visualization Results 
To provide an intuitive demonstration of the effectiveness of the 

proposed method, we present visualization results of the 

improved Smoke_imp model on several representative scenes 

from the KITTI validation set. As shown in figure 4, the model 

produces clear and stable 3D bounding boxes across diverse 

traffic conditions. For distant vehicles, Smoke_imp preserves 

the structural integrity of object contours and generates 

bounding boxes that closely match the ground truth. In partially 

occluded scenarios, the model remains capable of identifying 

vehicles and providing reasonable localization. In crowded 

traffic environments with multiple vehicles, Smoke_imp can 

effectively distinguish adjacent targets and avoid overlapping or 

shifted bounding boxes. These visualization results highlight 

that the Multi-Scale Feature Enhancement (MSFE) module 

improves the representation of small-scale targets, while the 

Dynamic Gaussian Heatmap (DGH) mechanism enhances the 

precision of center prediction, together leading to more reliable 

monocular 3D detection and ranging in complex traffic scenes. 

 

  

  

  

  

  
 

Figure 4. Visualization of detection results using the proposed model
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░ 5. CONCLUSION  
Despite its improvements, several limitations remain. The 

model may degrade under adverse weather such as rain, fog, or 

low illumination, where monocular cues become unreliable. 

High-speed motion and blur may also distort projected centers. 

These issues may be mitigated by domain adaptation, temporal 

filtering, or multimodal fusion, which are planned for future 

research. 
 

This study improves monocular distance estimation in complex 

traffic scenarios by enhancing the SMOKE framework with two 

key modules: a Multi-Scale Feature Enhancement (MSFE) 

module and a Dynamic Gaussian Heatmap (DGH) mechanism. 

MSFE strengthens multi-scale representation for small and 

distant vehicles, while DGH introduces scale-aware center 

supervision that reduces localization ambiguity. 
 

Extensive experiments on the KITTI benchmark demonstrate 

that Smoke_imp achieves lower ranging error and higher 3D 

AP/BEV AP metrics, particularly under the Hard difficulty 

setting. Ablation studies confirm the complementary roles of 

MSFE and DGH in improving depth stability. 
 

Future work will explore multimodal fusion (LiDAR/infrared), 

lightweight model compression for embedded deployment, and 

improved cross-scene generalization to enable deployment in 

more diverse real-world environments. 
 

Conflicts of Interest: The authors declare no conflict of 
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