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ABSTRACT- Accurate pain intensity recognition is vital for improving clinical care, especially in scenarios where
patients cannot self-report. However, although existing datasets are often imbalanced, the main challenge is that current
optimization and loss functions lack sensitivity to minority classes, adapt poorly to intra-class variability, and are less robust under
imbalance, leading to biased recognition performance. To address these challenges, this study proposes a hybrid deep learning
model based on ResNet-50 and BiLSTM to capture both spatial and temporal features from facial expression videos while
incorporating strategies to mitigate the imbalance issue. To address the challenge of category imbalance inherent in real-world
datasets, the study constructs an imbalanced version of the BioVid Part A database, reflecting realistic pain distribution with
limited high-intensity samples. The study systematically compares three loss functions—Cross Entropy Loss, Focal Loss, and
Cross Entropy Focal Loss (CEFL)—and evaluates their effectiveness in enhancing minority class recognition. A comprehensive
benchmarking of four state-of-the-art optimization algorithms, AdamW, LAMB, AdaBelief, and NovoGrad, is conducted across
a range of learning rates to systematically evaluate their convergence dynamics and generalization performance within the
proposed framework. Experimental results show that the Focal Loss combined with LAMB or NovoGrad achieves superior
performance, with the best accuracy reaching up to 84.89%, significantly outperforming traditional configurations. This research
highlights the importance of tailored training strategies for imbalanced facial pain recognition and provides a robust baseline for
future work. Future directions include expanding to real-world, in-the-wild pain assessment scenarios and integrating multimodal
signals to enhance robustness and accuracy.
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#11. INTRODUCTION

Pain is a complex and prevalent clinical issue, if the issue is
inadequately managed, it can lead to serious physical and

as a promising solution, aiming to objectively evaluate pain
through behavioral and physiological cues. Given that pain is a
critical diagnostic indicator and a well-documented barrier to
recovery, particularly in postoperative and Intensive Care Unit
(ICU) [2] settings, this area has garnered increasing attention in
healthcare, driving the development of various deep learning-
based pain assessment methodologies.

Medasense has developed a medical device for objective pain
monitoring, based on the premise that pain induces changes in
physiological signals such as blood pressure, heart rate,
respiratory rate, and SpO2 acquired through EMG, ECG, or
EEG, which may occur individually or in combination, and often
in an upward trend. However, acquiring such physiologic data is
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typically more complex and time-consuming compared to facial
video [3]. In contrast, facial expressions, as natural responses to
pain, are easier to capture and provide rich information about
pain intensity, making them a practical and effective modality
for pain assessment [4]. The Facial Action Coding System
(FACS) introduced in [5] provides a standardized framework
for analysing facial expression by encoding facial muscle
movements into discrete components known as Action Units
(AUs). Building on this, the study in [6] proposed the Prkachin
and Solomon Pain Intensity (PSPI) metric to quantify pain
intensity based on selected AUs. This metric has established the
foundation for many studies that utilise video-based facial
features to automatically recognize and estimate pain.

In recent years, the integration of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) has
demonstrated significant improvements across various video-
based recognition tasks, including medical and affective
computing domains [4, 7-9]. This hybrid architecture
effectively captures both spatial features and temporal
dynamics, making it especially suitable for sequential data such
as facial expression videos in pain assessment. However, in the
context of medical applications, two major challenges persist:
the limited availability of annotated clinical data and the
inherent class imbalance in pain expression datasets, where
samples of high-intensity pain are often scarce.

In current pain intensity estimation studies, available pain
datasets generally suffer from category imbalance, which
restricts the performance improvement of deep learning models
in automated pain assessment. The uneven distribution of pain
level labels affects both training and generalization, leading to
models that achieve better recognition for the majority class (no
pain) but poorer recognition for the minority class (high-
intensity pain) [10-14]. These limitations hinder the robustness
and applicability of deep learning models in real-world clinical
scenarios. While model architectures have advanced
significantly, existing loss functions such as cross-entropy and
focal loss still face challenges in handling imbalanced datasets:
cross-entropy is easily dominated by majority classes, whereas
focal loss often struggles to distinguish minority samples with
subtle expressions. Consequently, few studies have
systematically investigated how loss functions and optimization
strategies can effectively address these data-driven constraints.
To bridge this gap, this study explores balanced loss functions
and training optimizers within a Residual Network and
Bidirectional Long Short-Term Memory (ResNet-BiLSTM)
framework for recognizing imbalanced facial pain expressions.

In the study presented, a deep learning architecture fusing
ResNet-50 and BiLSTM is constructed. The proposed model
leverages the advantages of ResNet-50 to model spatial features
and the ability of BILSTM to interpret the temporal dynamics,
hence enhancing the recognition of variations in continuous
pain expressions. In terms of experimental design, this paper
builds a five-level pain intensity recognition task based on the
BioVid thermal pain database for training and evaluation, and
pays special attention to the performance of the model under
unbalanced data conditions. To address the problem of category
imbalance, the proposed model compares the performance
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differences of three different loss functions: Cross-Entropy Loss
(CE), Focal Loss (FL), [15] Cross-Entropy Focal Loss (CEFL)
[16], and analyzes their roles in minority category recognition.
In addition, this paper also combines four well-known
optimizers - AdamW [17], LAMB [18], AdaBelief [19], and
NovoGrad [20] - to compare the performance of the proposed
model and finally determines the optimal combination of loss
functions and optimizers[21] as a reference for future research
directions.

The main contributions of this study are:

e A hybrid ResNet-50 and BiLSTM is developed to extract
spatial and temporal features from facial expressions,
improving the accuracy of multi-level pain intensity
estimation.

e A systematic evaluation of three class-balancing loss
functions is conducted under imbalanced data conditions,
providing both theoretical and empirical evidence for
enhancing the model’s ability to recognise minority pain
categories.

e A comparative analysis of three optimization algorithms
is performed to assess training stability and generalization
performance under imbalanced learning, leading to the
identification of the optimal configuration as the
benchmark scheme.

22, RELATED WORK

Several recent studies have explored automated pain intensity
estimation using deep learning approaches across various
benchmarked datasets.A. Neg at al.[22]proposed a hybrid
feature fusion framework that combines local-global features
with temporal context for robust facial expression recognition.
Authors in [23] proposed a hybrid architecture combining
VGGFace, PCA, and a CNN-BIiLSTM structure (EJH-CNN-
BiLSTM) to classify four pain intensity levels on the UNBC-
McMaster Shoulder Pain Expression Archive Database. Work in
[13] utilized a Deep Convolutional Neural Network (DCNN)
model on the same dataset to perform binary pain or no-pain
classification, achieving impressive results with an AUC of 97%
and ROC values ranging between 0.95 and 0.97. Study in [24]
applied a CNN-BiLSTM model for binary pain classification,
reporting an Fl-score of 64.35 + 10.40. Authors in [11]
employed models such as Random Forest classifier (RFc), Long
Short-Term Memory (LSTM), and LSTM-sw on the X-ITE pain
database to classify four pain levels. More recently, Researchers
in [8] implemented a Fully Convolutional Network (FCN)-based
BiLSTM model to extract pain-relevant spatiotemporal features
for improved recognition performance. These studies
collectively demonstrate the widespread applicability and
effectiveness of CNN-RNN-based architectures for automatic
pain recognition across various datasets and classification tasks.

Current pain intensity estimation research is hindered by the
category imbalance in available datasets, leading to deep
learning models that perform well on majority classes, such no
pain, but struggle to accurately recognize minority classes, such
as high-intensity pain [10-14]. Researchers have proposed
various strategies to address the challenge of category
imbalance, among which the balanced loss function has shown
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promising results because it does not require modifying the
original data and can be integrated directly into the model
training. Authors in [16] propose Focal loss, which modifies the
standard CE to reduce the contribution of easily classified
samples, thereby directing the model’s focus toward harder,
minority-class samples. Work in [25] embedded focal loss and
CosFace Loss into the training model to overcome the
imbalance of data sets hindering model training. Focal loss is
designed to highlight hard-to-classify samples, but if
misclassified samples are abundant, their contribution to the
cumulative loss is reduced. Authors in [16] proposed CEFL and
CEFL2 loss, which are reweighted based on the CE function and
the focus loss function to improve the classification accuracy of
imbalanced datasets [26, 27].

'3, METHODOLOGY

In this section, a pain intensity assessment framework is
proposed, which contains two steps: pain feature extraction and
temporal modeling with intensity prediction. First, unprocessed
videos are transformed into normalized facial image sequences.
Then, both spatial features and spatiotemporal representations
are leveraged to enhance the evaluation of pain intensity from
facial expression sequences. Finally, the output layer generates
predicted intensity scores (five-class classification: no pain to
severe pain). At this stage, the framework incorporates
specifically designed loss functions, such as Cross Entropy
Loss, Focal Loss, and Cross Entropy Focal Loss. These loss
functions not only measure the discrepancy between the
predicted intensity distribution and the ground-truth labels but
are primarily introduced to address the class imbalance problem
in pain intensity datasets, where severe pain samples are far
fewer than pain-free or mild cases. By dynamically adjusting
the weights of minority classes and hard-to-classify samples,
they guide the model to pay greater attention to
underrepresented  pain  levels. Subsequently, gradient
backpropagation is performed with advanced optimizers (e.g.,
AdamW, LAMB, AdaBelief, or NovoGrad), enabling the
framework to learn more balanced and robust feature
representations.

Thus, the position of the loss functions in the framework is at
the prediction layer, where they align the model’s outputs with
the annotated pain intensity levels, completing the end-to-end
optimization pipeline illustrated in figure 1.
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Figure 1. Pain Assessment Framework
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3.1. Data Pre-Processing

In this study, the BioVid Heat Pain Database (BVDB) [26] is
utilized, which contains recordings of spontaneous facial
expressions and physiological signals from laboratory-induced
heat pain. The BVDB dataset contains biomedical signals and
anterior facial recordings from 87 subsets, which are labeled as
pain-free and four levels of pain intensity, such as mild,
moderate, moderately severe, and severe pain, as shown in figure
2. Each subset contains video sequences recorded under various
pain intensity conditions, labeled with the corresponding pain
intensity level. Each video has a duration of 5.5 seconds.

st

Mild Pain

Moderately
Severe Pain

No Pain Moderate Pain Severe Pain

Figure 2. Five samples of pain expression in the BioVid dataset

This study establishes a data preprocessing pipeline on the
BVDB, as shown in figure 3, to enhance the model's ability to
recognize pain-related facial features. First, facial regions are
detected in each video frame using OpenCV [28]. Subsequently,
68 facial landmarks are extracted using the dlib library [29] to
perform face alignment. This step addresses variations in facial
position and orientation across frames, thereby improving spatial
consistency and enhancing the saliency of facial features
relevant to pain expression. Finally, based on the detected
landmarks, each image is cropped to a standardized size of 224
x 224 x 3, eliminating background noise and focusing on pain-
relevant facial regions. All images are then normalized to ensure
consistent pixel distribution. This preprocessing procedure
provides the deep learning model with well-structured and
semantically focused high-quality input data.

a a4 aw

(A) Video Decompose (B) Face Detection (C) Face Alignment

Figure 3. ResultsProcess of pain expression dataset pre-processing

This section may be divided by subheadings. It should provide a
concise and precise description of the experimental results, their
interpretation, and the experimental conclusions that can be
drawn.

3.2. Model Construction

Figure I presents the overall architecture of our pain intensity
estimation framework, which includes two key components.
Initially, ResNet-50 is utilized to extract spatial features from
each facial frame. Subsequently, a BILSTM network describes
the temporal dynamics across the frame sequence.

3.2.1. Extraction of spatial features
This study employed a deep residual network base on the
ResNet-50 architecture as a spatial feature extraction module for
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facial images. CNN has the ability to extract local to global
features layer by layer, but the deep network is susceptible to
the gradient disappearance, which makes it difficult to train.
Research presented in [9] proposed ResNet, which can
effectively mitigate the gradient problem by introducing
"shortcut connections" to make the network easier to train and
improve the feature extraction in the classification model.
ResNet-50 performs well in the expression recognition task with
strong generalization and robustness.

identity(x)

relu

Res-Block

Figure 4. A building block of residual learning

In this study, facial image sequences are fed into a ResNet to
extract robust and discriminative features for pain expression
recognition. As illustrated in figure 4, each residual block is
designed to learn the residual mapping rather than the direct
transformation. Given an input feature x, through the
convolution operation, the study obtained the residual function,
which is defined as, wherer denotes the ReLU activation
function. Then, via a shortcut, the input identity mapping is
directly added to the output of the convolutional transform,
yielding the final response, which serves as the input to the next
layer. As shown in figure 5, the preprocessed video frames are
successively passed through four stages of residual blocks in the
backbone network, resulting in a high-level feature
representation with 2028 channels in the final feature map. Each
residual block achieves the summation of the input and
convolution results through constant mapping, which enhances
the information flow and stability under the depth of the model,
and thus provides high-quality spatial feature support for
subsequent time-series modeling.
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Figure 5. The overflow based on ResNet50 feature extraction

3.2.2. Extraction of Spatiotemporal Features

The LSTM network is a specialized form of RNN. It is designed
to address the limitations of traditional RNNs in capturing long-
term dependencies, particularly the issues of vanishing and
exploding gradients during the training of long sequences. As
depicted in figure 6, the LSTM architecture includes three gate
mechanisms: forget, input, and output gates, which regulate the
flow and preservation of important information for long
sequences through the network.

This study leverages the ability of the BILSTM [30] model to
effectively capture the temporal dependencies between
consecutive frames. Unlike the standard LSTM, which only
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considers the past context, the BILSTM processes the input
sequence in both forward and backward directions, thereby
enabling the model to exploit information from both past and
future frames simultaneously. Such bidirectional processing is
particularly important for facial expression recognition, where
subtle pain-related muscle movements may occur before or after
a given frame. Figure 5 illustrates the internal structure of a
single LSTM cell, which is the fundamental unit of the BILSTM.
At each time step u, € R1928, extracted from the convolutional
layers, together with the previous hidden state h,_, and the
previous cell state c,_,. The internal operations of the LSTM cell
can be described as follows [30];

i =0(ieur+Wyehey+b) (1)
fe=o@ieu+Wrehe 1 +b) (2)
¢, = tanh(y;eu, +W.eh,_y +b.) 3)
G =fiQco1 +i; Q¢ 4)
ge=0geus+W;ehiy+by) 5)
h; = g, ® tanh(c,) (6)

Where, i;, f; and o.denote the input gate, forget gate, and output
gate, respectively, while & represents the candidate cell state.
The vector c,is the updated cell state that integrates both long-
term and short-term memory, and h,is the updated hidden state
passed to the next time step. The symbol o(-)denotes the
sigmoid activation function, tanh( -)represents the hyperbolic
tangent function, and @ indicates element-wise multiplication.
Through this gating mechanism, the LSTM unit is able to
selectively retain, update, and output relevant temporal features
from the 1028-dimensional convolutional feature sequence.
When extended to the bidirectional structure, the BiLSTM
significantly enhances the model’s ability to capture the
temporal dynamics of facial expressions related to different pain
intensities.

Ce1 ® S>
fe it,_' Ct
[ o | [ o | [tann ]|
ha ] | |

Figure 6. The structure of an LSTM unit [30]

4, EXPERIMENTAL WORK

4.1. Data Preparation

In this study, the BVDB dataset is used to validate the
effectiveness of the proposed method in dealing with the
category imbalance problem. To ensure fair evaluation and avoid
data leakage, all experiments adopt a subject-independent
partition, where subjects in the training and testing sets are
mutually exclusive. Specifically, all videos from 80% of the
subjects were assigned to the training set, and the remaining 20%
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to the testing set. To simulate realistic pain distributions—
where high-intensity pain occurrences are rare in medical and
occupational settings—the raw dataset was reconstructed into
an imbalanced version through random subject-level down-
sampling. The down-sampling process ensures: (/) samples are
selected uniformly within each class; (2) no subject appears in
more than one subset; (3) reproducible selection via fixed
random seeds. The degree of imbalance follows the commonly
used imbalance ratio (IR) criterion widely adopted in class-
imbalanced benchmarks such as CIFAR-10/100 [16].

The resulting distribution is summarized in fable 1, where lower
pain levels contain more samples while high-intensity pain
levels remain scarce. This forms a more challenging benchmark
for minority-class recognition. Based on the subject-
independent split, 2,992 videos were used for training and 748
for testing, as shown in table 2.

‘7 Table 1. Pain intensity level distribution

. o Number of
Pain Level Description Videos Percentage
Level 1 No pain 1,340 37%
Level 2 Mild pain 1,050 28%
Level 3 Moderate pain 700 19%
Level 4 Moderate 400 1%
severe pain
Level 5 Severe pain 250 6%
Total — 3740 100%
Table 2. Training and testing picture data
Datasets | Videos |Proportion Level Size
Training 2992 80% 0,1,2,3,4 224x224x%3pixel
Testing 748 20% 0,1,2,3,4 | 224x224x3pixel

4.2. Experimental Setup

All experiments were conducted on an HP workstation equipped
with an NVIDIA Tesla A30 GPU (24GB VRAM) under Ubuntu
20.04, using CUDA 12.4 and PyTorch (>2.1). The proposed
model consists of a ResNet-50 backbone for spatial feature
extraction and a two-layer bidirectional LSTM with 256 hidden
units and a dropout rate of 0.3 for temporal modeling. Each
input frame is resized to 224x224 and processed by ResNet-50
to produce a 2048-dimensional global pooled feature, which is
then sequentially aggregated by the BILSTM. A fully connected
layer maps the resulting temporal representation to a five-class
softmax output.

During training, Kaiming initialization is applied to non-
pretrained layers, and gradient clipping with a max-norm of 5 is
used to stabilize optimization. Mixed-precision (AMP) training
is enabled to improve computational efficiency. The models are
trained for 100 epochs with a mini-batch size of 8. We evaluate
four optimizers—AdamW, LAMB, AdaBelief, and
NovoGrad—and follow their standard hyperparameter settings
(e.g., pi=0.9, [:=0.999 for AdamW; e=Ile-I12 and weight
decay=/e-4 for AdaBelief). The base learning rate is selected
from [0.01, 0.001, 0.0001, 0.00001] and is decayed using
StepLR with a decay factor of 0.1 every 20 epochs. Cross-
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Entropy Loss, Focal Loss, and CEFL are employed as training
objectives depending on the experimental configuration. All
feature extraction, data loading, and visualization rely on
Torchvision, Scikit-learn, Matplotlib, and Seaborn.

The experimental setup is designed to comprehensively evaluate
the model’s performance in the facial pain video classification
task. A combination of training strategies is employed to conduct
comparative experiments. In this experimental work, the three
common loss functions, namely CE Loss, FL, and CEFL
function will be utilized. Then, for the optimizer, such as
AdamW, LAMB, AdaBelief, and NovoGrad are used to explore
the effects of different gradient updating methods on the
convergence of the model in the learning rate setting. This
experiment covers multiple initial learning rates, such as 0.01,
0.001, 0.0001, and 0.00001. The combination of the proposed
loss functions and optimizers with the dynamic adjustment of the
learning rate scheduler will improve the training efficiency and
generalization ability of the model.

To comprehensively assess the performance of the facial pain
classification model, a set of well-established evaluation metrics
is employed. These metrics include Accuracy, Precision, Recall,
and Fl-score. In addition, to address the challenges posed by
class imbalance—common in pain expression datasets—three
specialized metrics are introduced: Probability of Detection
(PD), Probability of False Alarms (PF), and Balance (Bal). Bal
considers the balance between PD and PF comprehensively,
evaluating the model’s overall performance in pain recognition
versus false alarm avoidance. Higher Bal values indicate better
balance between recognition accuracy and false alarm control,
with ideal values approaching 1. In multi-class classification,
Bal is typically calculated for each category and then weighted
or averaged. The definitions of these metrics are as follows:

TP+TN

Accuracy = TP+TN+FP+FN (7)
Pr e cision = LS 3
TP+FP
Recall = — )
TP+FN
F1 — Score = 2xPre.ci.sion><Recall (10)
Precision+Re call
TP
PD = TP+FN (11
FP
PF = FP+TN (12)
— 1 _ J(0—PF)2+(1-PD)?2
Bal=1-*—"r—" (13)

4.3. Balanced Loss Function

Loss function is used to evaluate the error between the predicted
output and the true label. The balanced loss function employed
in this study is to improve the class imbalance in facial pain
videos for five levels pain intensity assessment. Besides, CE also
adopted as the base loss function due to its stable performance
in multi-categorization tasks[16]. Formula for the CE loss is as
follows:
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(14)

However, facing the problem of severe uneven distribution of
classes, the standard CE Loss tends to cause the model to be
biased towards the majority class[31], which affects the
minority class recognition performance. Lin et al.[15]proposed
FL function to address the problem of class imbalance. This loss
function aims to reduce the contribution of easy-to-classify.
samples by down-weighting gradient ratio between classes,
Thereby, this effort will be encouraging the model to focus more
on hard or minority samples which contribute to less learning
and lead to be biased toward the majority samples. Therefore,
the FL functions will focus on hard or misclassified samples.
The formula is as follows[15];

FL = —(1 = py)'log(py) (15)

However, it has been found that when the predicted probability
of the true class (p) is relatively low, such as p<0.5, Focal Loss
tends to reduce the loss value compared to Cross-Entropy
Loss[15]. This may hinder the amplification of the loss gap
between "easy" and "hard" samples. To address this issue, the
authors proposed the CEFL, formulated as follows [16];

Lcg = —log(py)

CEFL = —<%N,[(1 - p) log(p) + p(1 — p)" log(p)(16)

Following Lin et al.[15] , the focusing parameter is set to y =
2.0, which yielded the most stable convergence in preliminary
validation. The class-balancing factor a is computed adaptively
according to class frequency, where the weight for class i is
defined as:

ey
DL

a; = 17)
Where K =5 is the total number of categories. This strategy
essentially normalizes based on the inverse of class frequency,
giving higher weights to categories with fewer samples, thereby
increasing the model’s attention to them.

5, DISCUSSION

5.1. Analysis of Test Results

The ResNet-BiLSTM model developed in the study is to train
the model on the BVDB unbalanced dataset with 100 rounds of
training using CE Loss, FL and CEFL, respectively, and the best
accuracies were recorded on the Videol test set. The
experimental results in fable 3 show that the best accuracy of
FL is 83.3%, which is the best performance among all the loss
functions; the best accuracy of CEFL is 80.0%; and the best
accuracy of traditional CE Loss is 78.1%.

Table 3. Comparison of best accuracy for ResNet-
BiLSTM model

Function | Accuracy|Precision| Recall |F-score Bal

CE Loss 78.1% 78.53% | 77.32%| 78.11% | 79.52%
i":;l 83.3% | 83.76% | 82.47% 83.40% | 85.88%
CEFL 80.0% [80.44% |79.20% |80.09% 81.48%
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The analysis of the results indicates that FL exhibits greater
adaptability when combined with the proposed model and
dataset, particularly in addressing class imbalance. This
adaptability is reflected in a 5.2% (83.3% vs. 78.1% in table 4)
performance improvement over the traditional CE Loss, and also
in a significantly higher balance performance, with its BAL
score reaching 85.88%, compared to CE Loss’s 79.52%. The key
advantage of FL lies in its modulation factor, which dynamically
down-weights the loss contribution from easy-to-classify
samples, allowing the model to focus more on hard samples,
especially those from minority classes. This leads to enhanced
learning of underrepresented categories and improved
generalization.

In contrast, although the CE Loss is a classical technique and
widely adopted loss function for multi-class classification, this
loss function applies uniform weighting to all samples without
consideration of their difficulty or class imbalance. This often
results in a bias toward majority classes in imbalanced datasets,
limiting their effectiveness in capturing minority class
characteristics.

Although CEFL attempts to integrate the strengths of both CE
and Focal Loss. The performance is not as good as the focal loss;
the result obtained for this loss function only reaches 80.0%, and
its Bal score is 81.4%, which is notably lower than that of Focal
Loss. This could be because its loss structure and weight
adjustment mechanism fail to fully coordinate the advantages of
the two loss functions, making it difficult for the model to
effectively focus on key samples throughout the training process
and lowering the overall performance.

Since FL demonstrates superior performance in the comparative
results, this loss function was combined with different
optimizers (AdamW, LAMB, AdaBelief, and NovoGrad) and
learning rates (0.01, 0.001, 0.0001, 0.00001) on the ResNet-
BILSTM model. Experimental results reveal significant
disparities in how different optimizers adapt to learning rates, as
visualized in the histogram in figure 7 and detailed in table 4.

When the learning rate decreases to 0.0001, almost all optimizers
achieve their peak accuracy except AdamW. LAMB achieves
the highest accuracy of 0.8489, closely followed by NovoGrad
at 0.8459, AdaBelief at 0.8380, and AdamW at 0.8331. At the
lowest learning rate of 0.00001, AdamW exhibits remarkable
stability, reaching the highest accuracy of 0.8429—an
improvement from its 0.8331 at 0.0001, indicating consistent
performance enhancement as the learning rate decreases. In
contrast, LAMB’s performance degrades significantly from
0.8489 to 0.7038, while NovoGrad drops substantially to 0.6431.
AdaBelief maintains relatively stable performance, shifting from
0.838 to 0.833, but still falls short of AdamW’s optimal
performance at this learning rate. In summary, AdamW achieves
relatively higher accuracy peaks and optimal stability under
changes in learning rates.
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Figure 7. Evaluation Metrics Across Optimizers and Learning Rates

TABLE 4. Effect of optimizer and learning rate on
accuracy with focal loss

Optimizer 0.01 0.001 0.0001 0.00001
AdamW 0.2068 0.2068 0.8331 0.8429
LAMB 0.2068 0.4046 0.8489 0.7038

AdaBelief 0.2167 0.5974 0.838 0.833

NovoGrad 0.1988 0.2086 0.8459 0.6431

Figure § illustrates the training and test accuracy curves of the
ResNet-BiLSTM model trained with Focal Loss and the LAMB
optimizer on the unbalanced BVDB dataset. The training
accuracy steadily increases and eventually saturates, while the
test accuracy improves rapidly during early epochs and
stabilizes at a high level. The numerical results in table 5 show
that the LAMB optimizer achieves the highest accuracy
(84.89%) with a learning rate of 0.0001, highlighting its
effectiveness in optimizing model performance under class-
imbalanced conditions.

Table 5 summarizes the classification performance of various
models and loss function strategies on the facial pain intensity
assessment task. Among them, the proposed ResNet-BiLSTM
model, integrated with Focal Loss and the adapter optimizer,
achieved an accuracy exceeding 82%, substantially
outperforming other baseline methods. In contrast, the CNN-
LSTM [4] model trained with Regularization Center Loss
reached only 37.42%, likely due to its limited ability to jointly
capture deep spatial representations and long-range temporal
dependencies. The standard ResNet [25] model, equipped with
FL and CosFace Loss, improved the accuracy to 61.88%,

leveraging a more discriminative feature embedding and
enhanced focus on difficult samples. Meanwhile, the Combating
Uncertainty and Class Imbalance Network (CUCN) [32] model
using a modified CE Loss attained 63.29%, indicating moderate
improvement but still falling short in handling imbalanced
category distributions effectively.

Training and Test Accuracy

101 —e— Train Accuracy
—— Test Accuracy

0.8

Accuracy

0.4

02

[ 20 a0 60 80 100
Epoch

Figure 8. Accuracy variation curve during training of Focal Loss and
LAMB optimizer

# TABLE 5. Effect of balanced loss functions on model
performance under imbalanced data conditions

Classifier Method Accuracy
CNN - LSTM Regularlia)tzlson center 37.42%
ResNet Focal Loss and CosFace 61.88%
Loss
CUCN Modifications Cross 63.29%
Entropy
ResNet - BILSTM +
ResNet - BILSTM Focal Loss + adapter >82%
optimizer
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Considering the dataset’s class imbalance (Level 1: 37%, Level
5: 6%), we adopted subject-wise 5-fold cross-validation to
ensure fair evaluation and prevent subject overlap between the
training and testing sets. The model was trained using Focal
Loss with the LAMB optimizer (learning rate = 0.0001).
Performance was assessed using Accuracy, Precision, Recall,
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F1-score, and Balance (Bal), reported as the mean =+ standard
deviation across folds, as shown in figure 9. Final results were
Accuracy = 85.30% =+ 1.45%, Precision = 84.70% + 1.30%,
Recall = 84.90% + 1.25%, Fl-score = 85.36% + 1.20%, and
Balance = 87.40% + 1.10%, confirming the ResNet - BiLSTM
model’s generalization under imbalanced conditions.

Accuracy Precision Recall
== Mean: 85.30% 88 == Mean: 84.70% 28 4 == Mean: 84.90%
- +1Std 86.75% +1Std +1Std
§ 8roo1w g 87 . /3% § 87
< < | N <
g 86.02% B6I247%) g % 2510 85.41% | @ 86 §
] 1 85.10% 84.96% & 5 | _82:40%- G a5 =20
£ [T T T T "1 T —"1 £ o T 1T T 84.09% | | | Tl g [ TB432% 8432% [ [T T T
- - 1 -
O a4 ] o 841
£ £ g3 £ “
@ o @ 834 82510 - 82.74%
82 - 821 82 -
T T T T T 81 T T T T T T T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Fold Fold Fold
Fl-score Balance
== Mean: 85.36% 904 ==: Mean: 87.40%
88 - +1 5td +1 5td
= = 89.01%
& 874 & 89
[ N ]
g2 867 B9°7d%, £ 887 87.47%
B — —— e e ——— g ({--———4 7L e E e e — ——
£ 85 84.69% £ 87 86.80%
5 84.14% 84.27% 5
£ 84 83.67% | 't g5 | 85.83%
[ [
L. o
85
82
1 2 3 4 5 1 2 3 4 5
Fold Fold

Figure 9. 5-Fold Cross-Validation Performance Comparison

To validate the effectiveness of each component in the proposed
model, we conducted a systematic ablation study. Specifically,
we examined the performance of three architectural variants:
ResNet backbone only, ResNet+LSTM, and ResNet+BiLSTM,
in order to quantify the contribution of different temporal
modeling strategies to the overall results. The experimental
outcomes are summarized in fable 6. To further illustrate the
classification details and inter-class confusion patterns of each
model intuitively, figure 10 presents the confusion matrices of
the three variants on the test set. For the ResNet-only model, the
confusion matrix shows noticeable misclassification between
adjacent pain levels.

This suggests that the single ResNet backbone, which lacks
temporal feature modeling, struggles to capture the dynamic
characteristics of pain expressions, resulting in limited
discrimination between similar pain intensities. The
ResNet+BiLSTM model achieves the most concentrated
confusion matrix, with the highest diagonal values across all
categories—particularly for high pain levels (Level 4 and 5),
where 67 out of 80 Level 4 samples and 48 out of 50 Level 5
samples are correctly identified. Misclassifications are
minimized to only a small number of adjacent-level cases (e.g.,
25 Level | samples misclassified as Level 2), benefiting from
the bidirectional temporal modeling of BILSTM that captures
both past and future contextual information of video frames.

TABLE 6. Comparison of Model Performance Under
Different Sequential Modeling Strategies

Model Accuracy Precision Recall F-score
ResNet 62.05% 61.55% 63.20% 62.10%
RL‘A’SSI;IIS/}' 81.53% 81.30% 81.05% 81.78%
gfﬁg;;/[ 84.89% 84.76% 83.47% | 84.40%
Sy ki - |-

o
Peshet-BILSTM
Predicted Label Preicted Labe

Figure 10. Confusion Matrices for Pain Level Classification Models

Website: www.ijeer.forexjournal.co.in

Handling Class Imbalance in Video-Based Pain Intensity



http://www.ijeer.forexjournal.co.in/

FOREX

Publication
Open Access | Rapid and quality publishing

5.2. Discussion

This study presents a ResNet-BiLSTM-based deep learning
architecture tailored for sequential pain expression recognition,
a task characterized by strong temporal dependencies and
significant class imbalance. The model’s performance is
systematically examined by evaluating the impact of loss
function selection, optimizer configuration, and learning rate
strategies, thereby providing deeper insights into designing
effective training for imbalanced learning conditions.

First, the architectural design of the proposed model is
inherently tailored to the task characteristics. Unlike static
image recognition, pain expression in video sequences is a
dynamic phenomenon, requiring the effective capture of
temporal contextual information. The ablation study confirms
the incremental value of temporal modeling components: the
ResNet-only baseline, lacking temporal feature extraction,
achieves limited classification performance due to its inability
to model frame-wise dependencies; the integration of LSTM
mitigates inter-class confusion by leveraging unidirectional
temporal sequences; and the adoption of BiLSTM further
enhances robustness by capturing bidirectional contextual
information, which proves critical for distinguishing subtle
differences between adjacent pain levels (e.g., mild vs.
moderate pain) and improving the recognition accuracy of high-
intensity pain (Level 4-5). This progressive improvement
validates that bidirectional temporal modeling is essential for
recognizing sequential pain.

Moreover, this study examines the impact of various optimizers
and learning rate combinations on the effectiveness of model
training. Experiments were conducted using a combination of
four optimizers: AdamW, LAMB, AdaBelief, and NovoGrad,
with four learning rates: 0.01, 0.001, 0.0001, and 0.00001. The
results indicate significant differences in learning rates,
sensitivity, and performance among the optimizers.

Comparison with existing methods shows that the traditional
CNN-LSTM + regularized central loss method only achieves
37.42% accuracy, while ResNet + Focal Loss + CosFace
improves the accuracy to 61.88%, and CUCN + modified cross-
entropy loss reaches 63.29%. In contrast, the proposed ResNet-
BiLSTM architecture, integrated with Focal Loss and an adapter
optimizer strategy, achieves an accuracy exceeding 82%. This
represents a substantial improvement in addressing the
challenges of recognizing imbalanced and temporally dynamic
pain.

# 6. CONCLUSION

This study aimed to develop a ResNet-BiLSTM model for facial
pain expression recognition, addressing the dual challenges of
temporal dependencies and category imbalance inherent in the
BioVid Part A dataset. To this end, we systematically evaluated
the impact of different loss functions, optimizers, and learning
rate strategies on model performance.

Experimental results demonstrate that the proposed model,
when combined with Focal Loss (FL), achieves the best
accuracy of 83.3%, outperforming CEFL (80.0%) and
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conventional CE Loss (78.1%). The superiority of FL is
attributed to its adaptive modulation factor, which enhances the
learning of underrepresented pain categories by dynamically
down-weighting  easy-to-classify  samples.  Furthermore,
optimizer and learning rate experiments reveal that the LAMB
optimizer achieves the highest accuracy of 84.89% at a learning
rate of 0.0001, while AdamW exhibits the best stability with an
accuracy of 84.29% at a learning rate of 0.00001. Overall, the
ResNet-BiLSTM integrated with FL and adaptive optimization
strategies achieves an accuracy of over 82%, substantially
outperforming baseline methods such as CNN-LSTM (37.42%),
ResNet with FL and CosFace Loss (61.88%), and CUCN
(63.29%).

These findings confirm the effectiveness of the proposed
architecture in handling class imbalance and temporal dynamics
in pain recognition tasks. Future research can further extend to
the pain recognition task in complex environments in the wild,
incorporating more robust feature extraction techniques to
enhance the generalization ability of the model under
uncontrolled conditions; meanwhile, multimodal information
(e.g., speech, physiological signals, or gestures) can be
introduced to enhance the model's semantic comprehension and
judgment ability, laying the foundation for constructing a more
realistic and comprehensive automated pain assessment system.
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