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░ ABSTRACT- Accurate pain intensity recognition is vital for improving clinical care, especially in scenarios where 

patients cannot self-report. However, although existing datasets are often imbalanced, the main challenge is that current 

optimization and loss functions lack sensitivity to minority classes, adapt poorly to intra-class variability, and are less robust under 

imbalance, leading to biased recognition performance. To address these challenges, this study proposes a hybrid deep learning 

model based on ResNet-50 and BiLSTM to capture both spatial and temporal features from facial expression videos while 

incorporating strategies to mitigate the imbalance issue. To address the challenge of category imbalance inherent in real-world 

datasets, the study constructs an imbalanced version of the BioVid Part A database, reflecting realistic pain distribution with 

limited high-intensity samples. The study systematically compares three loss functions—Cross Entropy Loss, Focal Loss, and 

Cross Entropy Focal Loss (CEFL)—and evaluates their effectiveness in enhancing minority class recognition. A comprehensive 

benchmarking of four state-of-the-art optimization algorithms, AdamW, LAMB, AdaBelief, and NovoGrad, is conducted across 

a range of learning rates to systematically evaluate their convergence dynamics and generalization performance within the 

proposed framework. Experimental results show that the Focal Loss combined with LAMB or NovoGrad achieves superior 

performance, with the best accuracy reaching up to 84.89%, significantly outperforming traditional configurations. This research 

highlights the importance of tailored training strategies for imbalanced facial pain recognition and provides a robust baseline for 

future work. Future directions include expanding to real-world, in-the-wild pain assessment scenarios and integrating multimodal 

signals to enhance robustness and accuracy. 
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░ 1. INTRODUCTION 
Pain is a complex and prevalent clinical issue, if the issue is 

inadequately managed, it can lead to serious physical and 

psychological harm, underscoring the need for accurate and 

timely assessment [1]. Automated pain recognition has emerged 

as a promising solution, aiming to objectively evaluate pain 

through behavioral and physiological cues. Given that pain is a 

critical diagnostic indicator and a well-documented barrier to 

recovery, particularly in postoperative and Intensive Care Unit 

(ICU) [2] settings, this area has garnered increasing attention in 

healthcare, driving the development of various deep learning-

based pain assessment methodologies.  
 

Medasense has developed a medical device for objective pain 

monitoring, based on the premise that pain induces changes in 

physiological signals such as blood pressure, heart rate, 

respiratory rate, and SpO2 acquired through EMG, ECG, or 

EEG, which may occur individually or in combination, and often 

in an upward trend. However, acquiring such physiologic data is 
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typically more complex and time-consuming compared to facial 

video [3]. In contrast, facial expressions, as natural responses to 

pain, are easier to capture and provide rich information about 

pain intensity, making them a practical and effective modality 

for pain assessment [4]. The Facial Action Coding System 

(FACS) introduced in [5] provides a standardized framework 

for analysing facial expression by encoding facial muscle 

movements into discrete components known as Action Units 

(AUs). Building on this, the study in [6] proposed the Prkachin 

and Solomon Pain Intensity (PSPI) metric to quantify pain 

intensity based on selected AUs. This metric has established the 

foundation for many studies that utilise video-based facial 

features to automatically recognize and estimate pain. 
 

In recent years, the integration of Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) has 

demonstrated significant improvements across various video-

based recognition tasks, including medical and affective 

computing domains [4, 7-9]. This hybrid architecture 

effectively captures both spatial features and temporal 

dynamics, making it especially suitable for sequential data such 

as facial expression videos in pain assessment. However, in the 

context of medical applications, two major challenges persist: 

the limited availability of annotated clinical data and the 

inherent class imbalance in pain expression datasets, where 

samples of high-intensity pain are often scarce.  
 

In current pain intensity estimation studies, available pain 

datasets generally suffer from category imbalance, which 

restricts the performance improvement of deep learning models 

in automated pain assessment. The uneven distribution of pain 

level labels affects both training and generalization, leading to 

models that achieve better recognition for the majority class (no 

pain) but poorer recognition for the minority class (high-

intensity pain) [10-14]. These limitations hinder the robustness 

and applicability of deep learning models in real-world clinical 

scenarios. While model architectures have advanced 

significantly, existing loss functions such as cross-entropy and 

focal loss still face challenges in handling imbalanced datasets: 

cross-entropy is easily dominated by majority classes, whereas 

focal loss often struggles to distinguish minority samples with 

subtle expressions. Consequently, few studies have 

systematically investigated how loss functions and optimization 

strategies can effectively address these data-driven constraints. 

To bridge this gap, this study explores balanced loss functions 

and training optimizers within a Residual Network and 

Bidirectional Long Short-Term Memory (ResNet-BiLSTM) 

framework for recognizing imbalanced facial pain expressions. 
 

In the study presented, a deep learning architecture fusing 

ResNet-50 and BiLSTM is constructed. The proposed model 

leverages the advantages of ResNet-50 to model spatial features 

and the ability of BiLSTM to interpret the temporal dynamics, 

hence enhancing the recognition of variations in continuous 

pain expressions. In terms of experimental design, this paper 

builds a five-level pain intensity recognition task based on the 

BioVid thermal pain database for training and evaluation, and 

pays special attention to the performance of the model under 

unbalanced data conditions. To address the problem of category 

imbalance, the proposed model compares the performance 

differences of three different loss functions: Cross-Entropy Loss 

(CE), Focal Loss (FL), [15] Cross-Entropy Focal Loss (CEFL) 

[16], and analyzes their roles in minority category recognition. 

In addition, this paper also combines four well-known 

optimizers - AdamW [17], LAMB [18], AdaBelief [19], and 

NovoGrad [20] - to compare the performance of the proposed 

model and finally determines the optimal combination of loss 

functions and optimizers[21] as a reference for future research 

directions. 
 

The main contributions of this study are: 

• A hybrid ResNet-50 and BiLSTM is developed to extract 

spatial and temporal features from facial expressions, 

improving the accuracy of multi-level pain intensity 

estimation. 

• A systematic evaluation of three class-balancing loss 

functions is conducted under imbalanced data conditions, 

providing both theoretical and empirical evidence for 

enhancing the model’s ability to recognise minority pain 

categories. 

• A comparative analysis of three optimization algorithms 

is performed to assess training stability and generalization 

performance under imbalanced learning, leading to the 

identification of the optimal configuration as the 

benchmark scheme. 

 

░ 2. RELATED WORK 
Several recent studies have explored automated pain intensity 

estimation using deep learning approaches across various 

benchmarked datasets.A. Neg at al.[22]proposed a hybrid 

feature fusion framework that combines local–global features 

with temporal context for robust facial expression recognition. 

Authors in [23] proposed a hybrid architecture combining 

VGGFace, PCA, and a CNN-BiLSTM structure (EJH-CNN-

BiLSTM) to classify four pain intensity levels on the UNBC-

McMaster Shoulder Pain Expression Archive Database. Work in 

[13] utilized a Deep Convolutional Neural Network (DCNN) 

model on the same dataset to perform binary pain or no-pain 

classification, achieving impressive results with an AUC of 97% 

and ROC values ranging between 0.95 and 0.97. Study in [24] 

applied a CNN-BiLSTM model for binary pain classification, 

reporting an F1-score of 64.35 ± 10.40. Authors in [11] 

employed models such as Random Forest classifier (RFc), Long 

Short-Term Memory (LSTM), and LSTM-sw on the X-ITE pain 

database to classify four pain levels. More recently, Researchers 

in [8] implemented a Fully Convolutional Network (FCN)-based 

BiLSTM model to extract pain-relevant spatiotemporal features 

for improved recognition performance. These studies 

collectively demonstrate the widespread applicability and 

effectiveness of CNN-RNN-based architectures for automatic 

pain recognition across various datasets and classification tasks. 
 

Current pain intensity estimation research is hindered by the 

category imbalance in available datasets, leading to deep 

learning models that perform well on majority classes, such no 

pain, but struggle to accurately recognize minority classes, such 

as high-intensity pain [10-14]. Researchers have proposed 

various strategies to address the challenge of category 

imbalance, among which the balanced loss function has shown 

http://www.ijeer.forexjournal.co.in/
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promising results because it does not require modifying the 

original data and can be integrated directly into the model 

training. Authors in [16] propose Focal loss, which modifies the 

standard CE to reduce the contribution of easily classified 

samples, thereby directing the model’s focus toward harder, 

minority-class samples. Work in [25] embedded focal loss and 

CosFace Loss into the training model to overcome the 

imbalance of data sets hindering model training. Focal loss is 

designed to highlight hard-to-classify samples, but if 

misclassified samples are abundant, their contribution to the 

cumulative loss is reduced. Authors in [16] proposed CEFL and 

CEFL2 loss, which are reweighted based on the CE function and 

the focus loss function to improve the classification accuracy of 

imbalanced datasets [26, 27]. 

 

░ 3. METHODOLOGY 
In this section, a pain intensity assessment framework is 

proposed, which contains two steps: pain feature extraction and 

temporal modeling with intensity prediction. First, unprocessed 

videos are transformed into normalized facial image sequences. 

Then, both spatial features and spatiotemporal representations 

are leveraged to enhance the evaluation of pain intensity from 

facial expression sequences. Finally, the output layer generates 

predicted intensity scores (five-class classification: no pain to 

severe pain). At this stage, the framework incorporates 

specifically designed loss functions, such as Cross Entropy 

Loss, Focal Loss, and Cross Entropy Focal Loss. These loss 

functions not only measure the discrepancy between the 

predicted intensity distribution and the ground-truth labels but 

are primarily introduced to address the class imbalance problem 

in pain intensity datasets, where severe pain samples are far 

fewer than pain-free or mild cases. By dynamically adjusting 

the weights of minority classes and hard-to-classify samples, 

they guide the model to pay greater attention to 

underrepresented pain levels. Subsequently, gradient 

backpropagation is performed with advanced optimizers (e.g., 

AdamW, LAMB, AdaBelief, or NovoGrad), enabling the 

framework to learn more balanced and robust feature 

representations. 
 

Thus, the position of the loss functions in the framework is at 

the prediction layer, where they align the model’s outputs with 

the annotated pain intensity levels, completing the end-to-end 

optimization pipeline illustrated in figure 1. 
 

 
 

Figure 1. Pain Assessment Framework 

 

3.1. Data Pre-Processing 
In this study, the BioVid Heat Pain Database (BVDB) [26] is 

utilized, which contains recordings of spontaneous facial 

expressions and physiological signals from laboratory-induced 

heat pain. The BVDB dataset contains biomedical signals and 

anterior facial recordings from 87 subsets, which are labeled as 

pain-free and four levels of pain intensity, such as mild, 

moderate, moderately severe, and severe pain, as shown in figure 

2. Each subset contains video sequences recorded under various 

pain intensity conditions, labeled with the corresponding pain 

intensity level. Each video has a duration of 5.5 seconds. 
 

 
 

Figure 2. Five samples of pain expression in the BioVid dataset 
 

This study establishes a data preprocessing pipeline on the 

BVDB, as shown in figure 3, to enhance the model's ability to 

recognize pain-related facial features. First, facial regions are 

detected in each video frame using OpenCV [28]. Subsequently, 

68 facial landmarks are extracted using the dlib library [29] to 

perform face alignment. This step addresses variations in facial 

position and orientation across frames, thereby improving spatial 

consistency and enhancing the saliency of facial features 

relevant to pain expression. Finally, based on the detected 

landmarks, each image is cropped to a standardized size of 224 

× 224 × 3, eliminating background noise and focusing on pain-

relevant facial regions. All images are then normalized to ensure 

consistent pixel distribution. This preprocessing procedure 

provides the deep learning model with well-structured and 

semantically focused high-quality input data. 
 

 
 

Figure 3. ResultsProcess of pain expression dataset pre-processing 
 

This section may be divided by subheadings. It should provide a 

concise and precise description of the experimental results, their 

interpretation, and the experimental conclusions that can be 

drawn. 
 

3.2. Model Construction 
Figure 1 presents the overall architecture of our pain intensity 

estimation framework, which includes two key components. 

Initially, ResNet-50 is utilized to extract spatial features from 

each facial frame. Subsequently, a BiLSTM network describes 

the temporal dynamics across the frame sequence. 
 

3.2.1. Extraction of spatial features 

This study employed a deep residual network base on the 

ResNet-50 architecture as a spatial feature extraction module for 

http://www.ijeer.forexjournal.co.in/
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facial images. CNN has the ability to extract local to global 

features layer by layer, but the deep network is susceptible to 

the gradient disappearance, which makes it difficult to train. 

Research presented in [9] proposed ResNet, which can 

effectively mitigate the gradient problem by introducing 

"shortcut connections" to make the network easier to train and 

improve the feature extraction in the classification model. 

ResNet-50 performs well in the expression recognition task with 

strong generalization and robustness. 
 

 
 

Figure 4. A building block of residual learning 
 

In this study, facial image sequences are fed into a ResNet to 

extract robust and discriminative features for pain expression 

recognition. As illustrated in figure 4, each residual block is 

designed to learn the residual mapping rather than the direct 

transformation. Given an input feature x, through the 

convolution operation, the study obtained the residual function, 

which is defined as, wherer denotes the ReLU activation 

function. Then, via a shortcut, the input identity mapping is 

directly added to the output of the convolutional transform, 

yielding the final response, which serves as the input to the next 

layer. As shown in figure 5, the preprocessed video frames are 

successively passed through four stages of residual blocks in the 

backbone network, resulting in a high-level feature 

representation with 2028 channels in the final feature map. Each 

residual block achieves the summation of the input and 

convolution results through constant mapping, which enhances 

the information flow and stability under the depth of the model, 

and thus provides high-quality spatial feature support for 

subsequent time-series modeling. 
 

 
 

Figure 5. The overflow based on ResNet50 feature extraction 
 

3.2.2. Extraction of Spatiotemporal Features 

The LSTM network is a specialized form of RNN. It is designed 

to address the limitations of traditional RNNs in capturing long-

term dependencies, particularly the issues of vanishing and 

exploding gradients during the training of long sequences. As 

depicted in figure 6, the LSTM architecture includes three gate 

mechanisms: forget, input, and output gates, which regulate the 

flow and preservation of important information for long 

sequences through the network. 
 

This study leverages the ability of the BiLSTM [30] model to 

effectively capture the temporal dependencies between 

consecutive frames. Unlike the standard LSTM, which only 

considers the past context, the BiLSTM processes the input 

sequence in both forward and backward directions, thereby 

enabling the model to exploit information from both past and 

future frames simultaneously. Such bidirectional processing is 

particularly important for facial expression recognition, where 

subtle pain-related muscle movements may occur before or after 

a given frame. Figure 5 illustrates the internal structure of a 

single LSTM cell, which is the fundamental unit of the BiLSTM. 

At each time step 𝑢𝑡 ∈ 𝑅1028, extracted from the convolutional 

layers, together with the previous hidden state ℎ𝑡−1 and the 

previous cell state 𝑐𝑡−1. The internal operations of the LSTM cell 

can be described as follows [30]; 
 

𝑖𝑡 = 𝜎(𝛾𝑖 • 𝑢𝑡 + 𝑊𝑖 • ℎ𝑡−1 + 𝑏𝑖)            (1)

   

𝑓𝑡 = 𝜎(𝛾𝑖 • 𝑢𝑡 + 𝑊𝑓 • ℎ𝑡−1 + 𝑏𝑐)             (2) 
 

𝑐𝑡 = 𝑡𝑎𝑛ℎ( 𝛾𝑖 • 𝑢𝑡 + 𝑊𝑐 • ℎ𝑡−1 + 𝑏𝑐)            (3) 
 

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑐𝑡                 (4) 
 

𝑔𝑡 = 𝜎(𝛾𝑔 • 𝑢𝑡 + 𝑊𝑔 • ℎ𝑡−1 + 𝑏𝑔)             (5) 
 

      ℎ𝑡 = 𝑔𝑡 ⊗ 𝑡𝑎𝑛ℎ( 𝑐𝑡)              (6) 
 

Where, 𝑖𝑡, 𝑓𝑡 and otdenote the input gate, forget gate, and output 

gate, respectively, while 𝑐̃𝑡  represents the candidate cell state. 

The vector ctis the updated cell state that integrates both long-

term and short-term memory, and htis the updated hidden state 

passed to the next time step. The symbol σ(⋅)denotes the 

sigmoid activation function, tanh( ⋅)represents the hyperbolic 

tangent function, and ⊗ indicates element-wise multiplication. 

Through this gating mechanism, the LSTM unit is able to 

selectively retain, update, and output relevant temporal features 

from the 1028-dimensional convolutional feature sequence. 

When extended to the bidirectional structure, the BiLSTM 

significantly enhances the model’s ability to capture the 

temporal dynamics of facial expressions related to different pain 

intensities. 
 

 
 

Figure 6. The structure of an LSTM unit [30] 

 

░ 4. EXPERIMENTAL WORK 
4.1. Data Preparation 
In this study, the BVDB dataset is used to validate the 

effectiveness of the proposed method in dealing with the 

category imbalance problem. To ensure fair evaluation and avoid 

data leakage, all experiments adopt a subject-independent 

partition, where subjects in the training and testing sets are 

mutually exclusive. Specifically, all videos from 80% of the 

subjects were assigned to the training set, and the remaining 20% 

http://www.ijeer.forexjournal.co.in/


 

                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 820-829|e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                                     Handling Class Imbalance in Video-Based Pain Intensity 824 

 

to the testing set. To simulate realistic pain distributions—

where high-intensity pain occurrences are rare in medical and 

occupational settings—the raw dataset was reconstructed into 

an imbalanced version through random subject-level down-

sampling. The down-sampling process ensures: (1) samples are 

selected uniformly within each class; (2) no subject appears in 

more than one subset; (3) reproducible selection via fixed 

random seeds. The degree of imbalance follows the commonly 

used imbalance ratio (IR) criterion widely adopted in class-

imbalanced benchmarks such as CIFAR-10/100 [16]. 
 

The resulting distribution is summarized in table 1, where lower 

pain levels contain more samples while high-intensity pain 

levels remain scarce. This forms a more challenging benchmark 

for minority-class recognition. Based on the subject-

independent split, 2,992 videos were used for training and 748 

for testing, as shown in table 2. 
 

░ Table 1. Pain intensity level distribution 
 

Pain Level  Description 
Number of 

Videos 
Percentage 

Level 1 No pain 1,340 37% 

Level 2 Mild pain 1,050 28% 

Level 3 Moderate pain 700 19% 

Level 4 
Moderate 

severe pain 
400 11% 

Level 5 Severe pain 250 6% 

Total — 3740 100% 
 

░ Table 2. Training and testing picture data  
 

Datasets Videos Proportion Level Size 

Training 2992 80% 0, 1, 2, 3, 4 224×224×3pixel 

Testing 748 20% 0, 1, 2, 3, 4 224×224×3pixel 

 

4.2. Experimental Setup 
All experiments were conducted on an HP workstation equipped 

with an NVIDIA Tesla A30 GPU (24GB VRAM) under Ubuntu 

20.04, using CUDA 12.4 and PyTorch (≥2.1). The proposed 

model consists of a ResNet-50 backbone for spatial feature 

extraction and a two-layer bidirectional LSTM with 256 hidden 

units and a dropout rate of 0.3 for temporal modeling. Each 

input frame is resized to 224×224 and processed by ResNet-50 

to produce a 2048-dimensional global pooled feature, which is 

then sequentially aggregated by the BiLSTM. A fully connected 

layer maps the resulting temporal representation to a five-class 

softmax output. 
 

During training, Kaiming initialization is applied to non-

pretrained layers, and gradient clipping with a max-norm of 5 is 

used to stabilize optimization. Mixed-precision (AMP) training 

is enabled to improve computational efficiency. The models are 

trained for 100 epochs with a mini-batch size of 8. We evaluate 

four optimizers—AdamW, LAMB, AdaBelief, and 

NovoGrad—and follow their standard hyperparameter settings 

(e.g., β₁=0.9, β₂=0.999 for AdamW; ε=1e-12 and weight 

decay=1e-4 for AdaBelief). The base learning rate is selected 

from [0.01, 0.001, 0.0001, 0.00001] and is decayed using 

StepLR with a decay factor of 0.1 every 20 epochs. Cross-

Entropy Loss, Focal Loss, and CEFL are employed as training 

objectives depending on the experimental configuration. All 

feature extraction, data loading, and visualization rely on 

Torchvision, Scikit-learn, Matplotlib, and Seaborn. 
 

The experimental setup is designed to comprehensively evaluate 

the model’s performance in the facial pain video classification 

task. A combination of training strategies is employed to conduct 

comparative experiments. In this experimental work, the three 

common loss functions, namely CE Loss, FL, and CEFL 

function will be utilized. Then, for the optimizer, such as 

AdamW, LAMB, AdaBelief, and NovoGrad are used to explore 

the effects of different gradient updating methods on the 

convergence of the model in the learning rate setting. This 

experiment covers multiple initial learning rates, such as 0.01, 

0.001, 0.0001, and 0.00001. The combination of the proposed 

loss functions and optimizers with the dynamic adjustment of the 

learning rate scheduler will improve the training efficiency and 

generalization ability of the model. 
 

To comprehensively assess the performance of the facial pain 

classification model, a set of well-established evaluation metrics 

is employed. These metrics include Accuracy, Precision, Recall, 

and F1-score. In addition, to address the challenges posed by 

class imbalance—common in pain expression datasets—three 

specialized metrics are introduced: Probability of Detection 

(PD), Probability of False Alarms (PF), and Balance (Bal). Bal 

considers the balance between PD and PF comprehensively, 

evaluating the model’s overall performance in pain recognition 

versus false alarm avoidance. Higher Bal values indicate better 

balance between recognition accuracy and false alarm control, 

with ideal values approaching 1. In multi-class classification, 

Bal is typically calculated for each category and then weighted 

or averaged. The definitions of these metrics are as follows: 
 

                 Accuracy =
TP+TN

TP+TN+FP+FN
                         (7) 

 

Pr e cision =
TP

TP+FP
             (8) 

 

Recall =
TP

TP+FN
              (9) 

 

F1 − Score =
2×Precision×Recall

Pr ecision+Re call
           (10) 

 

PD =
TP

TP+FN
             (11) 

 

PF =
FP

FP+TN
             (12) 

 

Bal = 1 −
√(0−PF)2+(1−PD)2

√2
           (13) 

 

4.3. Balanced Loss Function 
Loss function is used to evaluate the error between the predicted 

output and the true label. The balanced loss function employed 

in this study is to improve the class imbalance in facial pain 

videos for five levels pain intensity assessment. Besides, CE also 

adopted as the base loss function due to its stable performance 

in multi-categorization tasks[16]. Formula for the CE loss is as 

follows: 
 

http://www.ijeer.forexjournal.co.in/
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LCE = − log(pt)          (14) 
   

However, facing the problem of severe uneven distribution of 

classes, the standard CE Loss tends to cause the model to be 

biased towards the majority class[31], which affects the 

minority class recognition performance. Lin et al.[15]proposed 

FL function to address the problem of class imbalance. This loss 

function aims to reduce the contribution of easy-to-classify. 

samples by down-weighting gradient ratio between classes, 

Thereby, this effort will be encouraging the model to focus more 

on hard or minority samples which contribute to less learning 

and lead to be biased toward the majority samples. Therefore, 

the FL functions will focus on hard or misclassified samples. 

The formula is as follows[15]; 
 

FL = −(1 − pt)γ log( pt)      (15) 
 

However, it has been found that when the predicted probability 

of the true class (p) is relatively low, such as p≤0.5, Focal Loss 

tends to reduce the loss value compared to Cross-Entropy 

Loss[15]. This may hinder the amplification of the loss gap 

between "easy" and "hard" samples. To address this issue, the 

authors proposed the CEFL, formulated as follows [16]; 
 

CEFL = −
1

N
∑ [(1 − p) log( p) + p(1 − p)γ log( p)]N

i=1 (16) 

Following Lin et al.[15] , the focusing parameter is set to γ = 

2.0, which yielded the most stable convergence in preliminary 

validation. The class-balancing factor α is computed adaptively 

according to class frequency, where the weight for class i is 

defined as: 

ai =
1

ci
⁄

∑ 1
cj⁄

K
j=1

          (17) 

Where 𝐾 = 5 is the total number of categories. This strategy 

essentially normalizes based on the inverse of class frequency, 

giving higher weights to categories with fewer samples, thereby 

increasing the model’s attention to them. 

 

░ 5. DISCUSSION  
5.1. Analysis of Test Results 
The ResNet-BiLSTM model developed in the study is to train 

the model on the BVDB unbalanced dataset with 100 rounds of 

training using CE Loss, FL and CEFL, respectively, and the best 

accuracies were recorded on the Video1 test set. The 

experimental results in table 3 show that the best accuracy of 

FL is 83.3%, which is the best performance among all the loss 

functions; the best accuracy of CEFL is 80.0%; and the best 

accuracy of traditional CE Loss is 78.1%. 
 

░ Table 3. Comparison of best accuracy for ResNet-

BiLSTM model 
 

Function Accuracy Precision Recall F-score Bal 

CE Loss 78.1% 78.53% 77.32% 78.11% 79.52% 

Focal 

Loss 
83.3% 83.76% 82.47% 83.40% 85.88% 

CEFL 80.0% 80.44% 79.20% 80.09% 81.48% 

The analysis of the results indicates that FL exhibits greater 

adaptability when combined with the proposed model and 

dataset, particularly in addressing class imbalance. This 

adaptability is reflected in a 5.2% (83.3% vs. 78.1% in table 4) 

performance improvement over the traditional CE Loss, and also 

in a significantly higher balance performance, with its BAL 

score reaching 85.88%, compared to CE Loss’s 79.52%. The key 

advantage of FL lies in its modulation factor, which dynamically 

down-weights the loss contribution from easy-to-classify 

samples, allowing the model to focus more on hard samples, 

especially those from minority classes. This leads to enhanced 

learning of underrepresented categories and improved 

generalization. 
 

In contrast, although the CE Loss is a classical technique and 

widely adopted loss function for multi-class classification, this 

loss function applies uniform weighting to all samples without 

consideration of their difficulty or class imbalance. This often 

results in a bias toward majority classes in imbalanced datasets, 

limiting their effectiveness in capturing minority class 

characteristics. 
 

Although CEFL attempts to integrate the strengths of both CE 

and Focal Loss. The performance is not as good as the focal loss; 

the result obtained for this loss function only reaches 80.0%, and 

its Bal score is 81.4%, which is notably lower than that of Focal 

Loss. This could be because its loss structure and weight 

adjustment mechanism fail to fully coordinate the advantages of 

the two loss functions, making it difficult for the model to 

effectively focus on key samples throughout the training process 

and lowering the overall performance. 
 

Since FL demonstrates superior performance in the comparative 

results, this loss function was combined with different 

optimizers (AdamW, LAMB, AdaBelief, and NovoGrad) and 

learning rates (0.01, 0.001, 0.0001, 0.00001) on the ResNet-

BiLSTM model. Experimental results reveal significant 

disparities in how different optimizers adapt to learning rates, as 

visualized in the histogram in figure 7 and detailed in table 4. 
 

When the learning rate decreases to 0.0001, almost all optimizers 

achieve their peak accuracy except AdamW. LAMB achieves 

the highest accuracy of 0.8489, closely followed by NovoGrad 

at 0.8459, AdaBelief at 0.8380, and AdamW at 0.8331. At the 

lowest learning rate of 0.00001, AdamW exhibits remarkable 

stability, reaching the highest accuracy of 0.8429—an 

improvement from its 0.8331 at 0.0001, indicating consistent 

performance enhancement as the learning rate decreases. In 

contrast, LAMB’s performance degrades significantly from 

0.8489 to 0.7038, while NovoGrad drops substantially to 0.6431. 

AdaBelief maintains relatively stable performance, shifting from 

0.838 to 0.833, but still falls short of AdamW’s optimal 

performance at this learning rate. In summary, AdamW achieves 

relatively higher accuracy peaks and optimal stability under 

changes in learning rates. 
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Figure 7. Evaluation Metrics Across Optimizers and Learning Rates 
 

░ TABLE 4. Effect of optimizer and learning rate on 

accuracy with focal loss 
 

Optimizer 0.01 0.001 0.0001 0.00001 

AdamW 0.2068 0.2068 0.8331 0.8429 

LAMB 0.2068 0.4046 0.8489 0.7038 

AdaBelief 0.2167 0.5974 0.838 0.833 

NovoGrad 0.1988 0.2086 0.8459 0.6431 

 

Figure 8 illustrates the training and test accuracy curves of the 

ResNet-BiLSTM model trained with Focal Loss and the LAMB 

optimizer on the unbalanced BVDB dataset. The training 

accuracy steadily increases and eventually saturates, while the 

test accuracy improves rapidly during early epochs and 

stabilizes at a high level. The numerical results in table 5 show 

that the LAMB optimizer achieves the highest accuracy 

(84.89%) with a learning rate of 0.0001, highlighting its 

effectiveness in optimizing model performance under class-

imbalanced conditions.  
 

Table 5 summarizes the classification performance of various 

models and loss function strategies on the facial pain intensity 

assessment task. Among them, the proposed ResNet-BiLSTM 

model, integrated with Focal Loss and the adapter optimizer, 

achieved an accuracy exceeding 82%, substantially 

outperforming other baseline methods. In contrast, the CNN-

LSTM [4] model trained with Regularization Center Loss 

reached only 37.42%, likely due to its limited ability to jointly 

capture deep spatial representations and long-range temporal 

dependencies. The standard ResNet [25] model, equipped with 

FL and CosFace Loss, improved the accuracy to 61.88%,  

 

 

leveraging a more discriminative feature embedding and 

enhanced focus on difficult samples. Meanwhile, the Combating 

Uncertainty and Class Imbalance Network (CUCN) [32] model 

using a modified CE Loss attained 63.29%, indicating moderate 

improvement but still falling short in handling imbalanced 

category distributions effectively. 

 
Figure 8. Accuracy variation curve during training of Focal Loss and 

LAMB optimizer 

░ TABLE 5. Effect of balanced loss functions on model 

performance under imbalanced data conditions 
 

Classifier Method Accuracy 

CNN - LSTM 
Regularization center 

loss 
37.42% 

ResNet 
Focal Loss and CosFace 

Loss 
61.88% 

CUCN 
Modifications Cross 

Entropy 
63.29% 

ResNet - BiLSTM 

ResNet - BiLSTM + 

Focal Loss + adapter 

optimizer 

＞82% 
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Considering the dataset’s class imbalance (Level 1: 37%, Level 

5: 6%), we adopted subject-wise 5-fold cross-validation to 

ensure fair evaluation and prevent subject overlap between the 

training and testing sets. The model was trained using Focal 

Loss with the LAMB optimizer (learning rate = 0.0001). 

Performance was assessed using Accuracy, Precision, Recall, 

F1‑score, and Balance (Bal), reported as the mean ± standard 

deviation across folds, as shown in figure 9. Final results were 

Accuracy = 85.30% ± 1.45%, Precision = 84.70% ± 1.30%, 

Recall = 84.90% ± 1.25%, F1‑score = 85.36% ± 1.20%, and 

Balance = 87.40% ± 1.10%, confirming the ResNet - BiLSTM 

model’s generalization under imbalanced conditions. 

 
 

Figure 9. 5-Fold Cross-Validation Performance Comparison 
 

To validate the effectiveness of each component in the proposed 

model, we conducted a systematic ablation study. Specifically, 

we examined the performance of three architectural variants: 

ResNet backbone only, ResNet+LSTM, and ResNet+BiLSTM, 

in order to quantify the contribution of different temporal 

modeling strategies to the overall results. The experimental 

outcomes are summarized in table 6. To further illustrate the 

classification details and inter-class confusion patterns of each 

model intuitively, figure 10 presents the confusion matrices of 

the three variants on the test set. For the ResNet-only model, the 

confusion matrix shows noticeable misclassification between 

 adjacent pain levels. 
 

This suggests that the single ResNet backbone, which lacks 

temporal feature modeling, struggles to capture the dynamic 

characteristics of pain expressions, resulting in limited 

discrimination between similar pain intensities. The 

ResNet+BiLSTM model achieves the most concentrated 

confusion matrix, with the highest diagonal values across all 

categories—particularly for high pain levels (Level 4 and 5), 

where 67 out of 80 Level 4 samples and 48 out of 50 Level 5 

samples are correctly identified. Misclassifications are 

minimized to only a small number of adjacent-level cases (e.g., 

25 Level 1 samples misclassified as Level 2), benefiting from 

the bidirectional temporal modeling of BiLSTM that captures 

both past and future contextual information of video frames. 
  

 

 

░ TABLE 6. Comparison of Model Performance Under 

Different Sequential Modeling Strategies 
 

Model Accuracy 
Precision Recall F-score 

ResNet 62.05% 61.55% 63.20% 62.10% 

ResNet-

LSTM 
81.53% 81.30% 81.05% 81.78% 

ResNet - 

BiLSTM 
84.89% 84.76% 83.47% 84.40% 

 

 
 

Figure 10. Confusion Matrices for Pain Level Classification Models 
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5.2. Discussion 
This study presents a ResNet-BiLSTM-based deep learning 

architecture tailored for sequential pain expression recognition, 

a task characterized by strong temporal dependencies and 

significant class imbalance. The model’s performance is 

systematically examined by evaluating the impact of loss 

function selection, optimizer configuration, and learning rate 

strategies, thereby providing deeper insights into designing 

effective training for imbalanced learning conditions. 
 

First, the architectural design of the proposed model is 

inherently tailored to the task characteristics. Unlike static 

image recognition, pain expression in video sequences is a 

dynamic phenomenon, requiring the effective capture of 

temporal contextual information. The ablation study confirms 

the incremental value of temporal modeling components: the 

ResNet-only baseline, lacking temporal feature extraction, 

achieves limited classification performance due to its inability 

to model frame-wise dependencies; the integration of LSTM 

mitigates inter-class confusion by leveraging unidirectional 

temporal sequences; and the adoption of BiLSTM further 

enhances robustness by capturing bidirectional contextual 

information, which proves critical for distinguishing subtle 

differences between adjacent pain levels (e.g., mild vs. 

moderate pain) and improving the recognition accuracy of high-

intensity pain (Level 4–5). This progressive improvement 

validates that bidirectional temporal modeling is essential for 

recognizing sequential pain. 
 

Moreover, this study examines the impact of various optimizers 

and learning rate combinations on the effectiveness of model 

training. Experiments were conducted using a combination of 

four optimizers: AdamW, LAMB, AdaBelief, and NovoGrad, 

with four learning rates: 0.01, 0.001, 0.0001, and 0.00001. The 

results indicate significant differences in learning rates, 

sensitivity, and performance among the optimizers. 
 

Comparison with existing methods shows that the traditional 

CNN-LSTM + regularized central loss method only achieves 

37.42% accuracy, while ResNet + Focal Loss + CosFace 

improves the accuracy to 61.88%, and CUCN + modified cross-

entropy loss reaches 63.29%. In contrast, the proposed ResNet-

BiLSTM architecture, integrated with Focal Loss and an adapter 

optimizer strategy, achieves an accuracy exceeding 82%. This 

represents a substantial improvement in addressing the 

challenges of recognizing imbalanced and temporally dynamic 

pain. 

 

░ 6. CONCLUSION  
This study aimed to develop a ResNet-BiLSTM model for facial 

pain expression recognition, addressing the dual challenges of 

temporal dependencies and category imbalance inherent in the 

BioVid Part A dataset. To this end, we systematically evaluated 

the impact of different loss functions, optimizers, and learning 

rate strategies on model performance. 
 

Experimental results demonstrate that the proposed model, 

when combined with Focal Loss (FL), achieves the best 

accuracy of 83.3%, outperforming CEFL (80.0%) and 

conventional CE Loss (78.1%). The superiority of FL is 

attributed to its adaptive modulation factor, which enhances the 

learning of underrepresented pain categories by dynamically 

down-weighting easy-to-classify samples. Furthermore, 

optimizer and learning rate experiments reveal that the LAMB 

optimizer achieves the highest accuracy of 84.89% at a learning 

rate of 0.0001, while AdamW exhibits the best stability with an 

accuracy of 84.29% at a learning rate of 0.00001. Overall, the 

ResNet-BiLSTM integrated with FL and adaptive optimization 

strategies achieves an accuracy of over 82%, substantially 

outperforming baseline methods such as CNN-LSTM (37.42%), 

ResNet with FL and CosFace Loss (61.88%), and CUCN 

(63.29%). 
 

These findings confirm the effectiveness of the proposed 

architecture in handling class imbalance and temporal dynamics 

in pain recognition tasks. Future research can further extend to 

the pain recognition task in complex environments in the wild, 

incorporating more robust feature extraction techniques to 

enhance the generalization ability of the model under 

uncontrolled conditions; meanwhile, multimodal information 

(e.g., speech, physiological signals, or gestures) can be 

introduced to enhance the model's semantic comprehension and 

judgment ability, laying the foundation for constructing a more 

realistic and comprehensive automated pain assessment system. 
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